
SpaceWire
2014

6th International Conference
22nd - 26th of September 2014
Athens, Greece

Prof. Steve Parkes, University of Dundee, Scotland
Martin Suess, European Space Agency
Vangelis Kollias, TELETEL, Greece 2014.spacewire-conference.org

M
EC

H
A

N
IS

M
 A

N
T

IK
Y

T
H

ER
A

SpaceWire-2014

Proceedings of the 6th

International SpaceWire Conference

Athens 2014

Editors: Steve Parkes and Carole Carrie

Space

Technology

Centre

University of Dundee

SpaceWire-2014

Proceedings of International SpaceWire Conference

Athens 2014

ISBN: 978-0-9557196-7-7

© Space Technology Centre

 University of Dundee

 Dundee

 2014

All rights reserved. No part of this publication may be reproduced

or transmitted, in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without the prior written

permission of the publisher.

Space

Technology

Centre

University of Dundee

3

Preface

These proceedings contain the papers presented at the 2014 International SpaceWire

Conference, held in Athens, Greece, between 22
nd

 and 25
th
 September, 2014. The International

SpaceWire Conference aims to bring together SpaceWire product designers, hardware engineers,

software engineers, system developers and mission specialists interested in and working with

SpaceWire to share the latest ideas and developments related to SpaceWire technology. SpaceWire

technology is now being used or designed into over one hundred spacecraft, covering science,

exploration, Earth observation and commercial applications. High profile missions like James Webb

Space Telescope, Astro-H, GAIA, ExoMars, Bepicolombo, Solar Orbiter, Sentinels 1, 2, 3 and 5

precursor, and GOES-R are using SpaceWire extensively. SpaceWire is being used in Europe, Japan,

USA, Russia, China, India, and other countries of the World.

The conference covers many different aspects of SpaceWire technology and includes both

academic and industrial presentations. Sessions address recent developments of the SpaceWire set of

standards, space missions and other applications using SpaceWire, new components, sensors and

cables which support the SpaceWire standard; products supporting SpaceWire including onboard

equipment, instruments and related onboard software; methods and equipment to aid the test and

verification of SpaceWire components, units and systems; and SpaceWire networks, their

architecture, configuration, and discovery, as well as “plug and play” concepts, other higher level

protocols and related hardware and software design issues.

Technical seminars at the conference covered SpaceWire Missions and SpaceWire Protocols.

The SpaceWire Missions tutorial looked at how SpaceWire has been used in several NASA, JAXA

and ESA missions. The SpaceWire Protocols tutorial covered several protocols that run on top of

SpaceWire. Each protocol was described in detail to provide a good understanding of its purpose and

how it works. Part 1 of this tutorial looked at protocols that have been approved or that are in the

process of being approved, while part 2 covered new protocols that are in the process of being

specified.

The community of engineers working on SpaceWire meet regularly at the SpaceWire

Working Group meetings to help with the further development of SpaceWire and related standards

and technologies. This group includes engineers from many parts of the World with substantial

contributions from Europe, USA, Japan, and Russia. The SpaceWire Conference complements these

Working Group meetings with more formal presentations from a wider range of contributors.

There is growing interest in the SpaceFibre which aims to provide multi-gigabit/s network

technology for future space flight application like high-resolution multi-spectral imaging and

synthetic aperture radar. The number of papers presented at the conference on SpaceFibre and related

technologies continues to grow.

The conference committee would like to acknowledge the support and hard work of the many

individuals who made International SpaceWire Conference 2014 a reality. First, we thank the authors

and the keynote speakers for their contributions. We express our gratitude to the Technical

Committee for their assistance in the review process. We thank all people supporting us at Teletel,

the Space Technology Centre of the University of Dundee, and the European Space Agency.

The Conference Chairpersons,

Martin Suess, European Space Agency, The Netherland

Steve Parkes, Space Technology Centre, University of Dundee, UK

Vangelis Kollias, Teletel, Greece

4

Technical Committee

Brice Dellandrea – Thales Alenia, France

Omar Emam - Astrium, UK

Wahida Gasti - ESA, The Netherlands

Sandi Habinc – Aeroflex Gaisler

Hiroki Hihara – NEC, Japan

Christophe Honvault - ESA

Torbjörn Hult - RUAG Space, Sweden

Jørgen Ilstad - ESA, The Netherlands

Paul Jaffe - Naval Research Laboratory, USA

David Jameux- ESA, The Netherlands

Gerald Kempf - RUAG Space, Austria

Clifford Kimmery – Honeywell Inc.

Alexander Kisin - MEI, USA

Robert Klar - South West Research Institute, USA

Jerome Lachaize – Astrium, France

Jennifer Larsen - Aeroflex

Jim Lux - NASA JPL, USA

Masaharu Nomachi – University of Osaka, Japan

5

Olivier Notebaert - Astrium SAS, France

Steve Parkes - University of Dundee, Scotland, UK

Manuel Prieto - Alcala University, Spain

Paul Rastetter - Astrium GmbH, Germany

Derek Schierlmann - Naval Research Laboratory, USA

Alan Senior - SEA, UK

Yuriy Sheynin - St. Petersburg State University of Aerospace Instrumentation, Russia

Tatiana Solokhina - ELVEES, Russia

Martin Suess - ESA, The Netherlands

Antonis Tavoularis - Teletel

Raffaele Vitulli - ESA, The Netherlands

Takahiro Yamada - JAXA/ISAS, Japan

Takayuki Yuasa – JAXA, Japan

6

Programme Overview

Monday 22 September

14:00 – 18:00 Registration

15:00 – 19:15 Tutorials of SpaceWire Missions and SpaceWire Protocols

Tuesday 23 September

09:00 – 10:15 Conference Opening / Keynote Presentations (75 min)

10:35 – 12:15 Networks & Protocols Long 1 (100 min)

13:40 – 14:25 Components Short (45 min)

14:25 – 15:10 Missions & Applications Short (45 min)

15:30 – 16:20 Standardisation Long (50 min)

16:20 – 16:45 Test & Verification Long (25 min)

Wednesday 24 September

08:45 – 10:15 Networks & Protocols Short (105 min)

10:35 – 12:15 Components Long (100 min)

13:15 – 14:30 SpaceFibre Long (75min)

14:30 – 16:00 Poster Session (90 min)

7

Thursday 25 September

09:00 – 09:50 Networks & Protocols Long 2 (50 min)

09:50 – 10:50 SpaceFibre Short (60 min)

11:10 – 12:10 Onboard Equipment & Software Short (60 min)

13:25 – 14:55 Test & Verification Short (90 min)

15:15 – 16:00 Standardisation Short (45 min)

16:00 – 16:25 Missions & Applications Long (25 min)

Programme is subject to change

8

Tuesday 23 September

9

 Networks & Protocols 1 (Long)

10

FDIR Techniques for Payload Streaming
Applications using SpaceWire-based Networks

Networks and Protocols, Long Paper

Felix Siegle, Tanya Vladimirova
University of Leicester

Leicester, LE1 7RH, United Kingdom

Jørgen Ilstad
European Space Agency / ESTEC

2200 AG Noordwijk, The Netherlands

Omar Emam
Airbus Defence and Space

Stevenage, SG1 2AS, United Kingdom

Abstract—This paper is concerned with a novel Fault Detec-

tion, Isolation and Recovery (FDIR) methodology for multi-
Field-Programmable Gate Array (FPGA) systems. It features an
embedded hardware platform, which supports adaptive redun-
dancy whereby redundant processor instances can be distributed
over multiple FPGA devices. This is achieved by utilising a Net-
work-on-Chip (NoC), which is heavily based on SpaceWire.

Index Terms—FDIR, Majority Voting, Redundancy, SoCWire,
Spacecraft Electronics, SpaceWire, SRAM-based FPGAs

I. INTRODUCTION
Modern approaches to satellite payload data processing

demand increased processing capabilities. Ideally, the payload
data can be processed in real time while being streamed from
an on-board sensor, e.g. a camera to a mass memory device.
The processing data path may contain several processor nodes
connected in series.

Camera

Image Filter

Image

Compression

Image

Encrpytion

Mass

Memory

Device

Raw RGB Raw RGB JPEG Data

Encrypted JPEG Data

Figure 1: Example for an image-processing pipeline.

An example would be an image processing pipeline, as out-
lined in Figure 1, in which video data is first filtered, then
compressed and finally encrypted. To make such a processing
pipeline adaptable in terms of functionality and reliability, the
different processing steps can be implemented on reconfigura-
ble Field-Programmable Gate Arrays (FPGAs). Since fast
hardware implementations of the processing steps can be rather
resource demanding, techniques are necessary to also exploit
multi-FPGA systems. An example for such a system is the
Dynamically Reconfigurable Processing Module (DRPM)
developed by University of Brunswick, Germany and Airbus
Defence and Space, UK [1], shown in Figure 2. This hardware
development platform comprises a scalable number of payload
data processing units with two reconfigurable SRAM-based

Virtex-4 FPGAs and one LEON3 microprocessor per unit. The
DRPM platform is being used in a research project carried out
at the University of Leicester, which is aimed at the develop-
ment of Fault Detection, Isolation and Recovery (FDIR) tech-
niques for payload streaming applications implemented on
SRAM-based FPGAs.

A novel FDIR technique called Distributed Failure Detec-
tion aimed at utilising multi-FPGA systems more efficiently
was presented in [2] that makes use of a SpaceWire-based
Network-on-Chip (NoC). However, the technique was not
capable of dealing with the asynchronous network streams,
which usually occur when the network nodes are located in
different clock domains. By introducing a stand-alone failure
detector, which is able to synchronise incoming data streams
automatically, the technique was further developed in [3].
Based on the results of a Failure Mode and Effects Analysis
(FMEA), the detector module is designed in such a way that it
can handle typical failure modes occurring in network architec-
tures.

In this paper, an upgraded version of this technique is pre-
sented, in which the failure detector modules are embedded
into routing switches. By doing so, it is finally possible to de-
tect failures in redundant asynchronous network streams,
which are provided by network nodes that can be arbitrarily
placed within the network. In addition, a novel scheme for the
data synchronisation after failure recovery is discussed and a
new evaluation of our technique in terms of power, area and
performance is presented.

SpW

10x

Router

Xilinx

Virtex-4

Xilinx

Virtex-4

LEON3

SoC

SpW-

RTC

Host PC

Configuration

SoCWire

Configuration

SoCWire

SoCWire

Figure 2: Block Diagram of the DRPM Demonstrator Platform.

11

The paper is structured as follows. In Section II, the archi-
tecture of the basic building blocks, the so-called stream pro-
cessors, is described. In Section III, an example is given of how
the Distributed Failure Detection technique allows the distribu-
tion of redundant processors throughout the network. In Sec-
tion 0, results of the conducted FMEA [3] are presented. Then,
the designs for a majority voter module and a broadcast mech-
anism, both based on the results of the FMEA and now inte-
grated into routing switches, are described in Section V. In
Section VI, a novel data resynchronisation scheme for freshly
repaired stream processors is discussed. Section VII evaluates
the power, performance and area overhead of the proposed
techniques before Section VIII concludes the paper.

II. STREAM PROCESSOR ARCHITECTURE
In the proposed FDIR framework, different processing

steps are executed by dedicated stream processors, which can
process incoming data streams independently.
A typical architecture of such a stream processor is shown in
Figure 3. An Intellectual Property (IP) core of the desired func-
tionality, e.g. for data compression, encryption or filtering, is
embedded into a wrapper.

State
Variable
Memory

State
Machine

NoC
Interface

Data In
Interface

Control
Interface

Data
Out

Interface

Protocol
Gen-
erator

IP Core, e.g. compression,

encryption, filtering, etc.

Figure 3: Stream Processor Architecture.

This wrapper comprises a NoC interface for the data ex-
change, some state machine logic and a memory for state vari-
ables. The state machine interprets input control words whereas
input data words are directly fed into the IP core. An additional
memory holds all variables that are necessary to configure the
IP core. If the processing chain uses a specific network proto-
col, a protocol parser and/or protocol generator may be added
to the input and output of the core (here, the CCSDS Space
Packet Protocol [4] was adopted). Partitions, which can host
such a stream processor, are implemented on SRAM-based
FPGAs. They are connected to a packet-switched, flow-
controlled NoC and can be reconfigured during operation by
means of dynamic partial reconfiguration.

The here presented work is based on a NoC implementation
called SoCWire [5]. SoCWire is a minimal version of Space-
Wire. In this protocol, each network packet may start with a
logical address (that is typically used for routing purposes) and
is terminated by an End of Packet (EOP) marker. Every time
the receive buffer has space for eight more characters, the re-
ceiving node sends out a Flow Control Token (FCT). There-
fore, the receiving node can apply backpressure to a communi-

cation channel, i.e. it can force the source node to freeze by
simply ceasing the transmission of further FCTs.

III. NOVEL DISTRIBUTED FAILURE DETECTION METHOD
With our Distributed Failure Detection methodology, first

outlined in [2], failure detectors become part of a network. This
novel approach allows the free distribution of redundant pro-
cessors throughout the network because the output of each
processor can be routed to any failure detector, independent of
its location in the network. The network can even span over
several FPGAs, i.e. links may connect network nodes on-chip
but also off-chip.

The possibility to place redundant stream processors on
several FPGAs has many advantages, for example in cases
where the chip area of one FPGA is not sufficient to host a full
fault-tolerant design.

1P

Src

2

P

3

P

SinkV

1

2

1

2

3

1

2

3

3/4 5/9

4/8

4,5,6,7

Figure 4: Distributed Failure Detection example.

An example network topology is shown in Figure 4. Sever-

al partitions (circles) are interconnected via routing switches. A
processor has been triplicated and the resulting instances (grey
circles) are placed on some of these partitions. Say, data is sent
from a source node Src to the processor and the processor
sends the processed data to sink node Sink. As the processor is
triplicated, the data must first be broadcast within the routing
switches. For instance, routing switch 1 broadcasts the packets
to output port 1, 3 and 4. In switch 2 and 3, the packets are then
routed to the other two redundant instances. After processing,
the resulting packets are routed to the failure detector, which in
this case is the voter module V, connected to routing switch 3.
Finally, the output of the voter is routed to the sink node.

Typically, the network packets do not arrive simultaneously
at the redundant processors. The latency between each redun-
dant processor and the failure detector may differ too. In addi-
tion, the partitions might be implemented in different clock
domains. As a result, the voter module must be able to deal
with asynchronous network streams.

IV. FAILURE MODE AND EFFECTS ANALYSIS
In a recent Failure Mode and Effects Analysis [3], it was

found that two types of failure modes must be expected, those,
which affect the payload of network packets (i.e. the

12

application data), and those, which affect the network traffic
itself. A summary of the FMEA results is shown in Figure 5.

Case (A): Typical operation. The network packets are

identical but may arrive at different points in time at the voter
module. This non-synchronicity can be handled by exploiting
the flow control of the network architecture. The voter module
applies backpressure to the network channels that already
received some data until at least one data character has arrived
in all slots.

EOP 4 3 2 1 LA

EOP 4 3 2 1 LA

EOP 4 3 2 1 LA

EOP 4 3 2 1 LA

EOP 4 3 2 1 LA

EOP E5 3C 2 1 LA

EOP 4 3 2 1 LA

EOP 4 3 2 1 LA

EOP 4 3 2 1 LA

EOP 4 3 2 1 LA

2 1 LA

FF FF FF FF FF FF FF FF FF

EOP 4 3 2 1 LA

EOP 4 3 2 1 LA

TIP

TIC

TIPTLR

Case (A)

Case (B)

Case (C)

Case (D)

Case (E)

Flow Direction

Figure 5: Different observable failure modes in network streams.

Case (B): The network packets have an identical structure, i.e.
the network protocol is faultless, but their payload differs due
to a failure in the application. In most applications, this case
will be the most observed one because the probability of a
failure in the application is usually larger than the probability
of a failure in the network related components. This failure
mode can be detected by a voter mechanism that compares the
(synchronised) network streams character by character.

Case (C): One of the network packets does not arrive at all. It
seems as if the corresponding processor became faulty and
ceased the transmission for some reason. This case can be han-
dled by a timeout mechanism with a timeout value TIP, hereaf-
ter also referred to as Inter-Packet Timeout, which is triggered

once the first redundant packet arrives in one of the slots (i.e. a
receive buffer assigned to a particular processor) of the voter
module. If the timeout elapses and one of the redundant net-
work packets has not arrived in its slot, this slot is marked as
faulty.

Case (D): The transmission of one of the network packets sud-
denly stops before the EOP marker is reached. This case can be
handled by a second timeout mechanism with a timeout value
TIC, hereafter also referred to as Inter-Character Timeout,
which is always retriggered when data character(s) are availa-
ble in some slots but not in others. If the timeout expires, it
must be assumed that the processor associated with the still
empty slot suddenly stopped the transmission and thus this slot
is marked as faulty.

Case (E): One processor becomes a babbling idiot and is
transmitting undefined data at undefined points in time. Deal-
ing with this case can be problematic if the data from the bab-
bling idiot arrives much earlier than the data from the two other
healthy processor instances. Then, the Inter-Packet Timeout
would expire first and the two healthy slots would be spurious-
ly marked as faulty (actually all slots would be marked as
faulty because further voting is not possible). As it is rather
unlikely that two processors fail at the same time, this case is
handled by assuming that the early packet is wrong, i.e. the
corresponding slot is temporarily marked as faulty. Then, a
second timeout value TLR, hereafter also referred to as Last
Resort Timeout, is started. If the packets from the healthy pro-
cessors arrive within this timeout period, no further action is
required. If they do not arrive, however, all slots must be
marked as faulty.

Aside from the aforementioned failure modes, another mode
must be considered when broadcasting data. If a processor
becomes faulty, it may block incoming traffic. This case can be
handled by using a non-blocking broadcast mechanism that
comprises a Broadcast Timeout. If one of the processors blocks
incoming data throughout the timeout period, it is afterwards
excluded from the broadcast until the end of the current packet
transmission.

V. VOTER AND BROADCAST DESIGN

A. Addressing Scheme
For this work, a NoC routing switch has been prototyped

that comprises a logical address table similar to the one known
from SpaceWire devices like the SpaceWire 10X Router ASIC
[6]. The table can be remotely programmed using a simple
protocol and assigns one or more physical output ports to a
specific logical address. If more than one port is assigned to an
address, network packets with this address are broadcast to all
output ports (this behaviour is in contrast to some SpaceWire
devices that implement adaptive routing).

13

NoC Port 1

FF 1

nwrite

full

Q

EN

D

TX 1

NoC Port 2

FF 2

nwrite

full

Q

D

EN

TX 2

NoC Port 3

FF 3

nwrite

full

Q

D

EN

TX 3

Timer

= 0

timerReload

NoC Port 0

RX In

nread

empty

(broadcastEn(3))

(broadcastEn(2))

(broadcastEn(1))

Not only one set

Figure 6: Circuit diagram of the broadcast mechanism.

The proposed concept implements a double addressing

scheme. In the targeted streaming applications, network nodes
are arranged in a processing pipeline and hence each node
sends its data to only one remote node. To simplify the imple-
mentation, each network node is fixed to one logical address,
i.e. instead of assigning a logical address to the remote node
the logical address is actually assigned to the source node. This
addressing technique was chosen because it allows a network
node to be not aware of the logical address of its successor
node and it is therefore sufficient to hardcode the logical ad-
dress into the hardware module. However, there is one excep-
tion: The data resynchronisation mechanism, see Section 0,
necessitates that a network node is also directly accessible.
Thus, a second logical address, also referred to as synchronisa-
tion address, is assigned to each node.

The FMEA revealed that babbling idiots must be expected.
In theory, such a node can send out any random data but in
practice it is more likely that these packets are filled with ze-
roes or ones due to stuck-at faults. Therefore, to isolate such
failures, the logical addresses 0x00 and 0xFF are forbidden
and any packet carrying one of these addresses is automatically
spilled within a routing switch.

Aside from babbling idiots, addressing failures are espe-
cially critical since packets can potentially block essential parts
of the network. Thus, we ensure that all used logical addresses
have at least a hamming distance of 2. By doing so, a Single
Event Upset (SEU) in an address register can only create an
invalid address but not another valid address. Since packets
with invalid addresses are spilled within the routing switches,
such address failures are successfully isolated too.

B. Non-blocking Broadcast Mechanism
Broadcasting data to redundant stream processors is done in

a distributed manner within the routing switches. As mentioned
in Section 0, the broadcast mechanism must be of non-blocking
nature to handle faulty processors that block incoming network
traffic.

A conceptual circuit diagram of the non-blocking broadcast
mechanism is shown in Figure 6. Say, a network packet arrives
at port 0 and its logical address is assigned to physical port 1, 2
and 3. Then, the broadcast mechanism will transfer a data char-
acter to port 1, 2 and 3 if the receive buffer of port 0 is not
empty and all transmit buffers of port 1, 2 and 3 are not full.
This is done by using the handshake signals full, empty,
nread and nwrite:

minOneFull :=(full(1) and broadcastEn(1))or
 (full(2) and broadcastEn(2))or
 (full(3) and broadcastEn(3))
nwrite(1:3) := empty(0) or minOneFull
nread(0) := minOneFull

To tolerate potentially faulty stream processors, a Broad-
cast Timeout mechanism is used which is always active if one
and only one output port of all active output ports is full:

timerReload := true if not
only_one_set(full(1:3) and broadcastEn(1:3))

If this timeout elapses, it is assumed that the stream proces-
sor, which is associated with the blocking output port, is faulty.
Then, the output port is removed from the current broadcast
round by setting its broadcastEn flag to zero. As a result,

14

the remaining redundant stream processors receive input data,
although some additional latency, equal to the broadcast
timeout period, must be expected.

C. Voting Mechanism

NoC

Codec 1

NoC

Codec 2

NoC

Codec N

Switch

Matrix

Slot 1

Slot 2

Slot 3

TX Buf.

Word

Voter

Voter State Machine

Slot Health Status (2:0)

Figure 7: Voter module integrated into NoC routing switch.

The voter module that is used as failure detector is embed-
ded into a NoC routing switch as outlined in Figure 7. It com-
prises three receive buffers, also referred to as slots, a transmit
buffer, a combinational majority word voter and some sequen-
tial state machine logic. The voter module is connected to an
external supervisor (here a LEON3 microprocessor) via bidi-
rectional Slot Health Status flag signals. If one of the slots is
detected to be faulty, the supervisor will initiate a recovery
procedure of the corresponding processor. In the meanwhile,
the voter module automatically degrades to a comparator mod-
ule. Once the faulty stream processor is repaired, the supervisor
can instruct the voter module to reintegrate the freshly recov-
ered slot by simply updating the health status.

S1

S2 S3

S4

S5

T1
T2b

T3b

T3a

T3c

T2a

T4bT5a

T4a

T5b

Figure 8: Voter module state diagram.

The state diagram of the voter module comprises five states
as shown in Figure 8:

State S1: The state machine remains in this idle state until the
first character of the first redundant network packet arrives in
one of the slots. Then, it moves via transition T1 to state S2.

State S2: This is the synchronisation state, in which the state
machine awaits all other redundant packets to arrive at the
voter module. While being in this state, the Inter-Packet
Timeout is active. Two possible exit conditions can be true: If
all active slots received some data, the state machine moves via
T2a to state S4. If one or two slots miss data, the state machine
moves via T2b to state S3.

State S3: First, this state determines which one of the aforemen-
tioned exit conditions is true. If two slots received data, the
third slot without data is now marked as faulty and the state
machine moves via T3a to state S4, i.e. the voter module just
degraded automatically to a comparator and continues its nor-
mal operation. If only one slot received data, however, it is
assumed that a babbling idiot sent this data and the slot is
marked as faulty. Then, the Last-Resort Timeout is started and
the state machine moves via T3b back to state S2, giving the two
missing packets some additional time to arrive at the voter
module. If they do arrive within this timeout period, the state
machine moves via S3 to normal operation state S4 (now work-
ing as a comparator). If they do not arrive, the voter module
cannot continue its operation (which is again determined in
state S3) and the state machine moves back to its idle state S1.

State S4: The state machine remains in this state during normal
operation. The redundant network streams are synchronised
and the state machine sends character by character through the
combinational majority voter, or, depending on the mode,
through the comparator circuit as long as data is available in
all active slots. Every time data is available in some slots but
not in others, the Inter-Character timeout mechanism is trig-
gered. Two possible failure modes can occur in this state:
Either the Inter-Character timeout expires or a voting / com-
paring mismatch occurs. In both cases, the state machine
moves via transition T4b to state S5. If none of these failure
modes occurs and an EOP marker is received, the state ma-
chine moves via transition T4a back to its idle state S1.

State S5: This state determines which failure mode occurred in
state S4 and reacts accordingly. If the Inter-Character timeout
elapsed, the slot that misses data is marked as faulty. In case
of a voting mismatch, the slot that contains wrong data is
marked as faulty, in case of a comparing mismatch both in-
volved slots are marked as faulty. Two possible exit condi-
tions can be true: If two slots are still functional, the voter
module continues its work as a comparator in state S4. Other-
wise, the state machine moves back to its idle state S1 via T5b.

VI. DATA RESYNCHRONISATION
An often-mentioned problem in connection with modular

redundancy is the required data resynchronisation between the

15

redundant module instances after a module has been success-
fully repaired. Fortunately, typical payload processing applica-
tions do not depend on too many state variables. The number
of state variables required for the initialisation of a processor
after reset is often limited to a handful of configuration and
feedback variables. For instance, an image compression core
might need a variable storing the compression quality and one
storing the image line width. Another example could be an
encryption algorithm used in some feedback mode. Here, a
feedback variable storing the last cipher text might be needed
to initialise the freshly repaired processor.

Assuming that the processing chain has more network
bandwidth available than the input data stream or alternatively,
that well dimensioned buffers are available in the network, the
data processing could be stopped for a short time period in
which the state variables are shared between the currently func-
tional stream processors and the freshly repaired stream pro-
cessor. We propose to use the already available resources in the
here presented FDIR methodology to accomplish this task.

As can be seen in Figure 3, each stream processor already
comprises a state variable memory, which stores all required
initialisation variables externally to the embedded IP core.
Thus, it is sufficient to dump theses variables over the network
to the freshly repaired processor, which can then store this
variable set in its own state variable memory. To increase the
reliability of this mechanism, the state variables of the two
functional processors could be first compared before the fresh-
ly repaired processor registers them. Since each voter module
also works as comparator, an elegant solution would utilise the
voter module for this task. Consider the example shown in
Figure 4. Say, the processor connected to routing switch 1 has
been just repaired and needs to be updated with initialisation
variables. The other two processors could stop the data pro-
cessing after finishing the processing of the current block of
data and send their state variables to voter module V. The voter
module could compare the network packet, which contains the
state variables, and forward all identical state variables to the
freshly repaired processor which then updates its own memory.

However, there are two main issues that must be taken into
account:

1. The two functional stream processors are not run-
ning synchronous and therefore a synchronous re-
quest to dump the state variable memory could
lead to situations where one processor is dumping
newer and hence other variables than the second
processor.

2. The two functional stream processors must stop
any data processing until the freshly repaired in-
stance has updated its own state variable memory
and resumed its operation. Otherwise, the shared
variables might be already invalid once they be-
come active in the freshly repaired processor.

To solve the first problem, the request to dump the state
variables must be injected into the input data stream. For in-
stance, a small hardware module placed at the front of the pro-
cessing chain could send out a small synchronisation request
packet containing the synchronisation address of the freshly

repaired stream processor. This request packet would traverse
the network like the regular network stream. Relative to this
input data stream it would arrive at the same bit position and
thus it could be ensured that the still functional processors re-
ceive this request packet when they are both in the exact same
state. Then, the functional processors could bundle their state
variables together with the received synchronisation address
into a synchronisation packet, which is attached to the output
data stream.

At some point, the voter module would receive the redun-
dant synchronisation packets. The voter module is able to de-
tect this special kind of packet and would move into a resyn-
chronisation mode. While in this mode, the aforementioned
second issue could be simply solved by applying backpressure
to the slots associated with the two functional processors. In
other words, after receiving the synchronisation packets, no
more data characters are taken out from the slot buffers and
therefore the functional processors would be forced to stop the
data processing (with some latency as the buffers in the net-
work path would fill up first). In addition, the voter module
could start a Data Synchronisation Timeout. The timeout peri-
od must be chosen wisely to (i) give the freshly repaired mod-
ule enough time to update its state variable memory but (ii)
also take the buffer sizes and bandwidths within the network
into account. The voter module would then send the synchroni-
sation packet to the synchronisation address and thus to the
freshly repaired stream processor. If no comparison mismatch
occurred, the voter module would go into a special wait state
afterwards.

A short time later, the synchronisation packet would arrive
at the freshly repaired processor, which would update its state
variable memory and resume operation. Once the first data is
processed, its first output packet would arrive at the voter
module, which is still in its wait state applying backpressure to
the other two redundant processors.

Now, the voter module would reintegrate the freshly re-
paired stream processor because the first output packet of the
freshly repaired processor would be identical to the output
packets of the other two redundant processors. It would stop
the backpressure and resume normal operation. However, if the
Data Synchronisation Timeout elapsed, it would be assumed
that something went wrong during resynchronisation. In this
case, the backpressure would be released and normal operation
would be resumed without reintegrating the freshly repaired
processor.

VII. POWER, AREA AND PERFORMANCE OVERHEAD
Aside from the practical benefits offered by the here pro-

posed FDIR methodology, it is of interest how well it performs
in terms of power, chip area and clock frequency, compared to
classic mitigation approaches for SRAM-based FPGAs.

Typically, Triple Modular Redundancy (TMR) is applied at
a very low level by triplicating FPGA building blocks and
inserting bit voters into the netlist of a circuit. In the following,
our approach is compared to this mitigation technique. The
proof-of-concept system used here comprises a stream proces-
sor that implements JPEG image compression.

16

Voter

X

JPEG

Core

Voter

X

JPEG

C1

JPEG

C2

JPEG

C3

Voter

X

TMR’ed
JPEG

Core

Figure 9: Failure Masking and Detection Techniques. From left to
right: (a) No Redundancy, (b) Modular TMR as proposed here, (c)
Classic Netlist-TMR approach.

Three scenarios, as depicted in Figure 9, are investigated. In
scenario (a), a single JPEG stream processor is connected to
the NoC routing switch; the voter module was removed (grey).
In scenario (b), three redundant JPEG stream processors are
connected to the NoC routing switch and the voter module is
implemented. In scenario (c), Netlist-TMR is applied to a
single JPEG stream processor by using the Xilinx TMRTool
[7]; the voter module was again removed. The used FPGA is a
Xilinx Virtex XC4VSX55-10. In the following, the power
measurements were conducted using a Tektronix TDS5054B
oscilloscope that was connected to a high precision current
probe TCP312. All results are post-place & route.

TABLE I. REQUIRED CHIP AREA.

Scenario Slices RAMBs DSP48s
(a) No redundancy 9,953 (40%) 90 (28%) 10 (1%)
(b) Modular TMR 21,852 (88%) 260 (81%) 30 (5%)
(c) Netlist-TMR 20,909 (85%) 258 (80%) 30 (5%)

In Table I, the required chip area is listed for the three sce-

narios in terms of Slices, Block RAMs (RAMBs) and Digital
Signal Processing Blocks (DSP48s). The Modular TMR ap-
proach used by the proposed FDIR framework requires slight-
ly more slices and one additional Block RAM compared to the
classic Netlist-TMR approach.

TABLE II. PERFORMANCE RESULTS.

Scenario Min. Period [ns] Max. Freq. [MHz]
(a) No redundancy 9.04 110.66
(b) Modular TMR 9.52 105.02
(c) Netlist-TMR 10.10 98.97

Table II lists the maximum clock frequency, respectively

the minimum period for the three scenarios. Both TMR ap-
proaches perform naturally worse than systems to which no
redundancy is applied. Main reason for scenario (b) is the fact
that the three partitions hosting the stream processors are area
constraint, which limits the capabilities of the place & route
tool. In scenario (c), the critical path length is increased be-
cause many one-bit voters are inserted into the netlist. The
Modular TMR approach used by the proposed FDIR method-
ology performs much better than the classic Netlist-TMR ap-
proach. This is especially an advantage for payload data pro-
cessing systems where performance is more important than
area overhead.

TABLE III. POWER CONSUMPTION

Scenario Relative Power [W]
Not configured 0.00

(a) No redundancy 1.01
(b) Modular TMR 1.87
(c) Netlist-TMR 2.08

The figures in Table III show that the proposed Modular

TMR approach also consumes less power than the Netlist-
TMR approach, another beneficial aspect for payload data
processing systems with power demanding circuits.

VIII. CONCLUSIONS
The Distributed Failure Detection technique in its final de-

velopment stage offers many advantages compared to classic
mitigation approaches for SRAM-based FPGAs, as presented
above. On the one hand, the methodology is adaptive, i.e. re-
dundancy can be added or removed during flight to either in-
crease the system availability or the power consumption of the
system. On the other hand, by utilising a NoC as communica-
tion architecture, redundant stream processors can be distribut-
ed over several FPGAs and hence, multi-FPGA systems can be
utilised more efficiently. Although data resynchronisation after
repair is a serious issue, a novel resynchronisation scheme was
proposed, which results in low implementation complexity and
area overhead. Furthermore, it was shown that for some appli-
cations, the modular redundancy approach performs better than
the classic Netlist-TMR approach in terms of power consump-
tion and maximum clock frequency while the required chip
area is only slightly increased.

The FDIR methodology is not technology-dependent and
could be applied in a similar way to other systems consisting of
multiple processing elements by choosing, for instance,
SpaceWire or SpaceFibre as the network architecture.

ACKNOWLEDGMENT
Sponsorship from ESA under the NPI Programme, Airbus

Defence and Space, UK and the University of Leicester is
gratefully acknowledged.

REFERENCES
[1] F. Bubenhagen, B. Fiethe, J. Ilstad, H. Michalik, P. Norridge, B.

Osterloh, W. Sullivan, and C. Topping, “Enhanced Dynamic
Reconfigurable Processing Module for Future Space Applica-
tions,” in International SpaceWire Conference. International
Space Wire Conference, 2010, pp. 475–482.

[2] F. Siegle, T. Vladimirova, O. Emar, and J. Ilstad, “Adaptive
FDIR Framework for Payload Data Processing Systems using
Reconfigurable FPGAs,” in NASA/ESA Conference on Adap-
tive Hardware and Systems, 2013.

[3] F. Siegle, T. Vladimirova, O. Emar, and J. Ilstad, “New Voter
Design Enabling Hot Redundancy for Asynchronous Network
Nodes,” in NASA/ESA Conference on Adaptive Hardware and
Systems, 2014.

[4] Consultative Committee for Space Data Systems, “Space Packet
Protocol”. Blue Book CCSDS 133.0-B-1, 2003.

17

[5] B. Osterloh, H. Michalik, B. Fiethe, and K. Kotarowski,
“SoCWire: A Network-on-Chip Approach for Reconfigurable
System-on-Chip Designs in Space Applications,” in NASA/ESA
Conference on Adaptive Hardware and Systems, 2008, pp. 51 –
56.

[6] C. McClements, S. Parkes, and G. Kempf, “SpW-10X Space
Wire Router”. User manual issue 3.4, 2008.

[7] Logic Design: TMRTool. [Online]. Available:
http://www.xilinx.com/ise/optional prod/tmrtool.htm

18

SPACEWIRE TIME DISTRIBUTION PROTOCOL

IMPLEMENTATION AND RESULTS
SpaceWire Networks and Protocols / SpaceWire Standardization, Long Paper

Anandhavel Sakthivel, Jonas Ekergarn, Daniel

Hellstrom, Sandi Habinc

Aeroflex Gaisler AB

Kungsgatan 12, SE-411 19 Gothenburg, Sweden

 anand@gaisler.com ekergarn@gaisler.com

daniel@gaisler.com sandi@gaisler.com

Martin Suess

European Space Agency

Keplerlaan 1, 2220AG Noordwjik ZH, Netherlands

martin.suess@esa.int

Abstract—Aeroflex Gaisler has developed, under European

Space Agency (ESA) contract 4000104519, a draft ECSS

protocol for the transmission and synchronization of CCSDS

Unsegmented Code (CUC) time in SpaceWire networks. The

working name of the protocol is "Time Distribution Protocol“.

Apart from transmission and synchronization of time across

the SpaceWire network, the protocol also provides guidelines

to achieve highly accurate time synchronization by mitigating

jitter and latency affecting SpaceWire Time-Code transmission

in a SpaceWire network. The protocol also provides guidelines

for correcting clock drift appearing in local SpaceWire nodes.

A prototype implementation of the protocol was performed

and analyzed for intended functionality. The implementation of

jitter and drift mitigation is based on a simple time interval

measurement of incoming SpaceWire Time-Codes using local

clock. Statistical information is gathered, which is then used to

calculate an average correction value that is applied to modify

a frequency synthesizer which provides inputs for the time

generation. By controlling the frequency synthesizer the time is

maintained stable without drift arising from oscillator or

crystal used to generate the local clock. Distributed interrupts

are used for latency measurement between two nodes in a

SpaceWire network. Time-stamping of reception and

transmission of distributed interrupts provides the values

needed to calculate latency. The calculated latency value is

used for correcting the time maintained in the system. By

performing CCSDS Unsegmented Code (CUC) transmission

and latency, jitter, drift mitigation a stable time keeping in a

system is achieved.

Index Terms— SpaceWire, Network, Time-code, Jitter,

Latency, Distributed Interrupts.

I. INTRODUCTION

Time synchronization in spacecraft is becoming

increasingly important. Traditionally time synchronization

has been done via dedicated signals or via deterministic on-

board buses. With the advent of SpaceWire links and router

switches being used for critical control functions, the need

for accurate time synchronization via this network has arisen.

The SpaceWire protocol provides rudimentary time-code

transmission for time synchronization but the transmission

and reception of time codes suffer from time distribution

delay (or latency) and jitter in a system. Further the time is

generated using the local clock available in a system. The

oscillator or crystal used to generate the local clock may not

only have an incorrect frequency, it may also experience

frequency variations over time (drift), which will directly

affect the time keeping in a system [1].

The aim of this implementation is to synchronize the

time in an initiator to the time in a target. The initiator being

the master maintains its time and no changes is made to the

master time after setting it up with an initial reference. The

target time is synchronized by using the time and SpaceWire

Time-Code transmitted from initiator. The time mentioned

here is based on CCSDS Time Code (time message) and

CCSDS Unsegmented Code (CUC) is used in this

implementation [2]. The SpaceWire Time-Code is mapped

from this CUC time and the structure of the SpaceWire

Time-Code is as per the SpaceWire standard [3]. The time

synchronization protocol defined is briefly explained in the

next paragraph.

The Time Distribution Protocol provides the means for

transferring time of initiator to targets and for providing a

synchronization point in time. The time is transferred by

means of an remote memory access protocol (RMAP) write

command carrying a CCSDS Time Code (time message) [4].

The synchronization event is signaled by means of

transferring a SpaceWire Time-Code. The transfer of the

SpaceWire Time-Code is synchronized with time maintained

by the initiator. To distinguish which SpaceWire Time-Code

to use for synchronization, the value of the SpaceWire Time-

Code is transferred from initiator to target by means of an

RMAP write command prior to the actual transmission of

SpaceWire Time-Code itself. When there is more than one

target the CCSDS Time Code needs to be transferred to each

individual target separately [5].

Accurate time synchronization through SpaceWire

should enable and promote the use of SpaceWire for critical

control functions on-board a spacecraft. It will also allow

19

reduction of the number of on-board buses required in on-

board systems.

This paper will discuss about the details of protocol

implementation, methodology to achieve highly accurate

time synchronization, prototype hardware developed, testing

and validation and provides results of accuracy in time

synchronization achieved.

II. IMPLEMENTATION

The VHDL IP core (named SPWTDP) developed

implements the draft Time Distribution Protocol (TDP) [4].

As shown in Fig. 1 the SPWTDP sends and receives

SpaceWire Time-codes and distributed interrupts by

interacting with a SpaceWire interface. The SpaceWire

interface is also responsible for RMAP command processing.

Figure 1 also explains the complete system which can act as

initiator or target.

Fig. 1. SPWTDP IP core with a SpaceWire Interface

A. Initiator

The initiator which acts as time master is the only node

capable of sending time message and SpaceWire Time-

Codes in a network. There can be only one initiator in a

SpaceWire network during a mission phase. The initiator

also requires SpaceWire link interface implements a RMAP

initiator capable of transmitting RMAP commands and

receiving RMAP replies.

1) The initiator performs the following task

a) Send SpaceWire Time-Codes. The SpaceWire Time-

Codes are provided by the SPWTDP component and

transmission of those codes to targets should be performed

by a SpaceWire interface.

b) Send and receive distributed interrupts

c) Transmission of time messages using RMAP

d) Latency measurement and transmission of latency

value using RMAP.

B. Target

The target should implement RMAP target and capable

of receiving RMAP commands and transmitting RMAP

replies. There can be one or more targets in a SpaceWire

network.

1) The target performs the following task

a) Reception of SpaceWire Time-Codes. The

SpaceWire Time-Codes sent from initiator are received by

SpaceWire interface and provided to SPWTDP component

in target.

b) Reception of time messages through RMAP

c) Qualification of received time messages using

SpaceWire Time-Codes

d) Initialization and Synchronization of received

CCSDS Time Codes with local time in SPWTDP component

e) Latency measurement and correction

f) Jitter and drift mitigation

C. Generation of local time from local clock

The local time counter (time) is implemented complying

with the CUC T-Field. The counter is incremented on the

system clock only when enabled by the frequency

synthesizer. The binary frequency required to determine the

counter increment is derived from the system clock using a

frequency synthesizer. The frequency synthesizer is

incremented with a pre-calculated increment value, which

matches the available system clock frequency. The frequency

synthesizer generates a tick every time it wraps around,

which makes the local counter to step forward with the pre-

calculated increment value. The output of frequency

synthesizer is used for enabling the increment of local

counter. The increment rate of the local time counter and

frequency synthesizer counter is set according to the system

clock frequency. The frequency synthesizer increment value

is calculated as in Eq. 1, where FTW - Fine time width of the

CUC T-Field, FSW - Frequency Synthesizer width, FSINC

Frequency Synthesizer increment value, F - Frequency of the

system clock.

 FSINC = ((2 ^ FSW) * (2 ^ FTW)) / F (1)

Both the initiator and target will have its respective local

time and frequency synthesizer counters. After an initial

value the initiator counters remain constant but the target

counters are varied to achieve time synchronization (the

variations are explained in detail later in this paper).

D. Generation of SpaceWire Time-Codes

SpaceWire Time-Codes are continuously transmitted

from an initiator node (time master) to all target nodes. The

transmission of the SpaceWire Time-Code is synchronized

with the local time counter in the initiator node. The six bits

of the Time-Code time information corresponds to six bits of

the local time counter. The local time bits with lower weights

than the size bits mapped to Time Code time information bits

are all zero at the time of SpaceWire Time-Codes

transmission.

E. Initialization and synchronization of target through

RMAP

The Local time available in an initiator is transmitted to

synchronize time across a SpaceWire network. The initiator

20

transfers time message using RMAP across the SpaceWire

network and the target extracts the time message. The Time

message transmitted using RMAP should be an exact

mapping of the command field available in the SPWTDP

component [5]. The Time message transmitted writes the

command field available in target. Control register available

in command field specify whether the target should be

initialized or synchronized, at which SpaceWire Time-Codes

it should happen (synchronization event) and details of

coarse and fine time available in the time message.

In target, the command field will contain the time

message when it is written by the initiator through RMAP.

When the control register with a Time-Code value in

command field matches with a received SpaceWire Time-

Code then initialization or synchronization will occur to the

local time counter available in the target SPWTDP

component. Initialization completely writes the time message

command time values into the implemented local time

counter whereas synchronization verifies whether the time

message command time and local time counter matches till

the mapped SpaceWire Time-Code level (with a tolerance of

previous value) and only modifies the local time if there is a

mismatch.

After the time in target is initialized, the time needs to be

corrected for time distribution delay (latency) introduced by

the time qualification process i.e. the SpaceWire Time-Codes

are used for time qualification as the time codes undergo

distribution delay the time maintained also delayed and any

variation in the oscillator and local clock drift must also be

corrected for keeping the time synced.

F. Latency measurement using Time-Stamps

The SpaceWire interface available in both the initiator

and target has the capability to send and receive distributed

interrupts. The incoming and outgoing SpaceWire distributed

interrupts are time stamped in initiator and target. The

initiator calculates latency based on these time stamp values.

The time stamp values in target are obtained from initiator

through RMAP.

The distributed interrupt transmission from initiator

(which performs the latency calculation) can be configured

to set how often and at which time code distributed interrupts

are transmitted and time stamping is performed. The time

stamping can be performed in two methods (only Interrupts

or Interrupts and Acknowledgement). Initially initiator sends

a distributed interrupt and when the target received this

interrupt it will send another interrupt (or acknowledgement

is provided by the interrupt handler) which will be received

by the initiator. At each end transmission and reception is

time stamped i.e. the current local time is stored as time

stamp values. The latency is calculated from these time

stamp values based on Eq. 2, where IRX - initiator time stamp

received, ITX - initiator time stamp transmitted, TTX - target

time stamp transmitted and TRX - target time stamp received.

 Latency = ((IRX – ITX) – (TTX – TRX)) / 2 (2)

By calculating the latency value repeatedly (at least for

about 128 times) and taking an average of it will provide the

final latency value. The initiator then transfers the latency

correction information to the latency field available in the

target by means of RMAP transfer. When the latency values

are written it will be adjusted to local time in the target

which cancels the distribution delay. The calculations are

performed by the software by accessing the time -stamp

values and written in the target latency field using RMAP.

The transmission of SpaceWire Time-Codes and

distributed interrupts should be separated by a delay; the

transmission of a Time-Code should not influence the

transmission of distributed interrupt in order to obtain the

exact latency of time code transmission. The delay must be

greater than the time required to transmit the SpaceWire

Time-Code in the initiator.

G. Mitigation of jitter and drift

The jitter and drift correction is performed only in the

target. The frequency synthesizer clocked by the local clock

drives the local time at a given rate. By changing the

frequency synthesizer settings one can adjust the local time.

The coupling between local clock and the local time

(frequency synthesizer increment value FSINC) is adjusted to

the amount of variations seen in the target due to drift or

jitter. The variations are obtained in local clock count and

adjusted to the frequency synthesizer [6].
The correction needed to be performed for time

synchronization are initial offset difference in local oscillator

(incorrect frequency), jitter and drift variations. The

variations are calculated as differences in local ticks and

external ticks. The external ticks are provided by the

SpaceWire interface to the SPWTDP component when

SpaceWire Time-Codes are received from a remote initiator.

The local ticks in target are provided internally in the

SPWTDP component, it happens when a local SpaceWire

Time Code is generated (generated from the local time)

which is only used for internal calculations.

1) Initial offset difference

The number of local clock counts between two local ticks

is obtained; similarly number of local clock counts between

two external ticks is obtained. These two values are

subtracted and the difference is collected over a 64 samples

and averaged to get a variation value in local clock count.

The variation obtained is based on the local clock of the

target node. This variation is multiplied with compensation

value and provided to frequency synthesizer to get the initial

offset difference corrected. The compensation value is

calculated from Eq. 1, considering the target system clock

frequency and the number of SpaceWire Time-Codes

transmitted every second.

2) Jitter correction and drift mitigation

The number of system clock ticks between local tick and

external tick is obtained and averaged over a number of

samples (512 samples is used in this implementation). The

averaged value is multiplied with compensation value to

obtain the correction value and fed into frequency

21

synthesizer. The main aspect of jitter correction is to keep the

local tick in the center of arriving external ticks (or jitter

free), the correction value is immediately applied and the

local tick is got back to the center, further the correction term

is equally distributed to the entire correction interval. The

variation in local clock drift is seen as local tick movement

from the center which is caught by the averaging process and

correction values are fed back as explained above. This will

keep the local ticks jitter and drift free. Figure 2 shows the

jitter and drift mitigation process and FS stands for

Frequency Synthesizer.

Fig. 2. Jitter and drift correction

H. Time keeping complete process

The initiator initiates the target node through a time

message transfer, calculates latency using distributed

interrupts and provides latency correction value and starts

the jitter and drift mitigation process in the target. The

initiator can also send synchronization time messages at

regular intervals and the target checks the local time with the

received synchronization time messages and adjust the local

time if any variations. The transmission of SpaceWire Time-

Codes at regular intervals helps to correct any clock drift in

the target.

III. VERIFICATION

The IP core developed is verified using simulation for

proper functionality. The following section explains about

the accuracy achieved in simulation and explains about the

verification process.

A. Verification of functionality

A VHDL test bench was developed to verify the

functionality of the VHDL IP core. The Test bench consists

of initiator and target each with GRSPW2 SpaceWire

interface, SPWTDP, AMBA controllers and other

components needed for verification. The time

synchronization achieved between initiator and target is

verified using this test bench. The Time messages from

initiator are transferred to target using RMAP writes through

SpaceWire link and qualification of these time messages is

performed by the SpaceWire Time-Codes transmitted from

initiator to target. The target local time is initialized and

synchronized (using time messages). The latency is

calculated based on the values obtained by time-stamping of

received and transmitted distributed interrupts and calculated

value is transmitted using RMAP writes to the target.

The local time maintained in both initiator and target is

nearly equal, only a single difference (local time least

represented value) between the initiator and target local time

was noticed. The number of bits used to represent coarse

time is 32 bits and fine time is 24 bits, system clock used is

50 MHz and verification is performed for 10 Mbps and 200

Mbps transmission data rate, in both cases only a single

difference between the initiator and target local time was

noticed. This corresponds to an accuracy of 60 ns, i.e. the

difference seen in the 24th fine time bit which represents

2^-24 (~60 ns). The simulation is performed between two

SpaceWire nodes without any routers and no additional data

traffic in the network other than NULL control codes and

Time-Codes.

B. Verification of jitter and drift correction unit

The Jitter and drift correction unit is verified in

simulation using a separate VHDL test bench before

integrating into the complete system. The local ticks and

external ticks are generated from different counters (local

time) and external ticks are provided with delay (latency)

and variations in delay (jitter) similar to latency and jitter

experienced by a SpaceWire Time-Code passing through the

network. The clock provided to one of counters (the one

which acts as target) is also modified slowly to simulate drift

in the local clock of target.

 The correction unit must perform the following,

 move the local tick in the center of arriving external

ticks (or jitter free)

 adapt the frequency synthesizer according to the drift

introduced in the local clock

Fig. 3. Adapting to variations in clock drift

The correction unit performed both the needed

corrections. The FSINC provided to the frequency synthesizer

is also monitored whether it varies according to the amount

of drift induced in the local clock, we know the local clock

frequency variation and by using the Eq. 1, we can calculate

what the FSINC value should be for this frequency variation,

the FSINC value varied accordingly and local time remained

stable and the influence of drift from local clock is nullified.

Figure 3 shows an image taken from the simulation tool,

the comp is the FSINC value provided to frequency

synthesizer, initially the simulation started with a frequency

of 50 MHz and corresponding FSINC value of 360287970 and

the FTW value is 24 (fine time width). The local clock

frequency is increased and decreased to simulate the drift in

22

either direction and verified for adaptation in frequency

synthesizer. Also the real-world data collected during the

independent ESA measurements have been used as stimuli to

validate the jitter and drift mitigation technique implemented

in the correction unit [7].

IV. FPGA BASED PROTOTYPING

FPGA based rapid prototyping has been used during the

development. The developed VHDL IP core is integrated

into reference avionics system testbed architecture (RASTA)

testbed [8]. The testbed consists of GRSPW2 SpaceWire

interface with RMAP target and cores like AMBA controllers

required for the implementation of protocol. Figure 4 shows

the test setup.

Fig. 4. Test Setup

The necessary RTEMS drivers required for the RASTA

systems to operate the added functionality is developed. A

test application is developed to demonstrate the time

synchronization functionality.

A. Board setup

The actual picture of the test setup used in this

implementation is shown in Fig. 5. The setup consists of GR-

RASTA-105 acting as an initiator consist of GRSPW2

SpaceWire interface integrated with the newly developed

SPWTDP IP core, the GR-RASTA-TMTC act as target

which also consist of GRSPW2 SpaceWire interface and

SPWTDP IP core. Figure 5 shows 2 GR718 SpaceWire 18x

routers which are connected in between the initiator and

target. The system clock used in all the hardware is 50 MHz

except the target system which used 33 MHz system clock.

The time synchronization functionality is tested without any

routers in the middle and also with 1 and 2 routers in the

middle, the functionality is tested for varying link data rate 2,

10, 50, 100 Mbps. The number of time codes transmitted per

second is 64. The target was also replaced with GR-RASTA-

105 with system clock 50 MHz and tested similar to the

previous set up with 2, 10, 50, 100 and 200 Mbps link data

rate.

Fig. 5. Picture of test setup

V. RESULTS

The tick generated in initiator during SpaceWire Time-

Code transmission and similar diagnostic tick from target

(SpaceWire Time-Code and tick is generated just for

diagnostics in target) is pulled out and monitored using an

oscilloscope. When a tick occurred the local time with lower

weights than the size bits mapped to SpaceWire Time-Code

time information bits are all zero, so comparing the instance

at which ticks generated provides the accuracy in time

maintained between the initiator and target.

The Initial oscillator frequency offset in the target is

nullified for all the cases mentioned in the previous section

and a stable time is maintained between the initiator and

target. When the mitigation is disabled (correction unit

disabled) in target due to the differences in the local

oscillators of initiator and target the tick moved away and

time maintained between the system is incorrect, but when

the mitigation is enabled the target ticks does not move away

from the initiator ticks and maintain a stable time difference.

This proves that the effect of oscillator frequency offset is

nullified by the mitigation unit.

Fig. 6. Before latency correction

Figure 6 shows the ticks viewed through an oscilloscope,

yellow in the top (1) is the initiator tick, green in the middle

(2) is the incoming ticks with jitter in the target (generated

when time codes are received) and pink in the bottom (4) is

the final diagnostic tick from the target. Figure 6 shows

before latency correction in target and Fig. 7 shows after

latency correction. For Fig. 7 the data rate is 2 Mbps with 2

routers in the middle and the initiator running at 50 MHz

system clock and target running at 33 MHz system clock.

Fig. 7. After latency correction, link data rate is 2 Mbps

23

Fig. 8. After latency correction, link data rate is 10 Mbps

For Fig. 8 the data rate is 10 Mbps with 2 routers in the

middle and the initiator and target running at 50 MHz system

clock.

Fig. 9. Camera image of oscilloscope output

In order to depict the incoming time code jitter a direct

image of oscilloscope output is shown in Fig. 9.

The time in initiator and target was monitored directly by

freezing them to a register by an external trigger which

occurs at same instance to initiator and target. The contents

of the registers are read out using two debug monitor

(GRMON) and the values of local time are compared [9].

The local time differences seen are in correspondence to the

time differences seen between the ticks of initiator and

target.

 Figure 10 shows an image of the two debug monitors,

initiator in the left and target in the right. The frozen time

value is marked with a box and the difference in time is only

a single unit difference between the initiator and target time

is noticed.

Fig. 10. Time in initiator and target frozen and stored in a register.

Initially the accuracy was measured between the initiator

and target without any additional traffic (other than NULL

control codes and SpaceWire Time-Codes) the time

maintained in both initiator and target have only a single

difference between the initiator and target time was noticed

and this corresponds to an accuracy of 60 ns, i.e. the

difference seen in the 24th fine time bit which represents

2^-24 (~60 ns).

The same level of accuracy was not able to achieve with

data traffic in the network. The variation in jitter because of

data traffic influences this accuracy. The data characters are

10 bits length whereas the NULL's are 8 bits, the jitter varies

from 8 to 10 bits of transmission period. The jitter mitigation

technique implemented in this design tries to nullify the jitter

by being in the center of the incoming Time-Codes, the

variation in jitter from 8 to 10 bits due to variation in traffic

results in an inaccuracy of single transmission bit period per

link.

CONCLUSION

The implementation successfully mitigates effects of the

oscillator in the target and maintains a stable time between

initiator and target i.e. the time in the target and time in the

initiator is maintained at a constant rate. The implementation

also nullifies the impact of drift (local clock oscillator) in

local time in the target. A methodology to calculate latency

using distributed interrupts is defined, implemented and

verified. The inaccuracy resulting from the jitter variation

have a significant impact for low link data rate like 2 Mbps

(500 ns) the effect of jitter variations will have less impact

for higher data rate like 200 Mbps (5 ns). Even with a defect

in correction principle the jitters impact on time keeping is

reduced by a factor of 10 for any number of links.

REFERENCES

[1] S. Habinc, M Isomaki, D. Hellstrom, “CCSDS Time

Distribution over SpaceWire,” International SpaceWire

Conference, [November 2011]

[2] “Time Code Formats.”, Internet:

http://public.ccsds.org/publications/archive/301x0b4e1.pdf,

[November 2010].

[3] Space Engineering; SpaceWire Links, nodes, routers and

networks, ECSS-E-ST-50-12C, July 2008.

[4] Space engineering: SpaceWire - Remote memory access

protocol, ECSS-E-ST-50-52C, [February 2010].

[5] S. Habinc, A. Sakthivel, M. Suess, “SpaceWire – Time

Distribution Protocol,” International SpaceWire Conference,

[June 2013].

[6] H. Kopetz, A. Ademaj, A. Hanzlik, “Integration of internal

and external clock synchronization by the combination of

clock-state and clock-rate correction in Fault-Tolerant

Distributed Systems,” rtss, pp.415-425, 25th IEEE

International Real-Time Systems Symposium (RTSS'04),

2004.

[7] M. Suess, F. Siegle “SpaceWire Time Code Latency and

Jitter,” International SpaceWire Conference, [June 2013].

24

http://public.ccsds.org/publications/archive/301x0b4e1.pdf

[8] “GR-RASTA.” Internet: http://gaisler.com/doc/gr-

rasta_product_sheet.pdf

[9] “GRMON2 User’s Manuel.” Internet:

http://gaisler.com/doc/grmon2.pdf, [June, 2014].

25

http://gaisler.com/doc/gr-rasta_product_sheet.pdf
http://gaisler.com/doc/gr-rasta_product_sheet.pdf
http://gaisler.com/doc/grmon2.pdf

STP-ISS Transport Protocol for Spacecraft

On-board Networks
SpaceWire networks and protocols, Long Paper

Yuriy Sheynin, Irina Lavrovskaya, Valentin Olenev,

Ilya Korobkov

Saint-Petersburg State University of Aerospace

Instrumentation

Saint Petersburg, Russia

sheynin@aanet.ru, {irina.lavrovskaya, valentin.olenev,

ilya.korobkov}@guap.ru

Dmitry Dymov, Sergey Kochura

JSC "Academician M.F. Reshetnev" Information Satellite

Systems"

Zheleznogorsk, Russia

dymovdv@mail.ru, kochura@iss-reshetnev.ru

Abstract— SpaceWire is a data-handling network for

spacecraft which combines simple, low-cost implementation, with

high performance and architectural flexibility. SpaceWire is

intended for data-handling applications but does not address

such aspects of quality of service as robustness, determinism and

durability that are essential requirements. Nowadays there is a

number of transport protocols intended to operate over

SpaceWire. They are: RMAP, CCSDS PTP, STUP, JRDDP and

STP. Each of them is designed to solve its particular tasks.

However, there is no SpaceWire oriented transport protocol

providing reliability, guaranteed services and scheduling.

The paper presents the new Transport protocol STP-ISS for

SpaceWire networks. Firstly, it gives an overview and analysis of

SpaceWire oriented transport protocols, then, considers general

requirements for the Transport protocol to operate over the

SpaceWire network technology. Finally, we describe the current

status of the STP-ISS specification and consider the future

evolution of the standard.

Index Terms— SpaceWire, STP-ISS, Transport Protocol, On-

board Network, Quality of Service.

I. INTRODUCTION

SpaceWire is a data-handling network for the spacecraft

which combines simple, low-cost implementation with high

performance and architectural flexibility [1]. MIL-STD 1553

has long been the communications bus of choice for spacecraft

avionics. Limited to 1 Mbits/s aggregate data rate and

constrained to the bus topology, MIL-STD 1553 is struggling

to cope with today’s spacecraft requirements. So new

technologies are being actively integrated into new spacecrafts,

and SpaceWire is one of them. SpaceWire is now being used

on more than 30 high profile missions and by all of the major

space agencies and space industry over the world.

The basic SpaceWire protocol standard covers three bottom

layers of the OSI model and does not provide transport

services. There are a number of transport protocols that had

been specially developed to operate over SpaceWire. So the

first part of the paper gives the overview and analysis of these

protocols.

II. SPACE ORIENTED TRANSPORT PROTOCOLS REVIEW

A. Remote Memory Access Protocol

The Remote Memory Access Protocol (RMAP) has been

designed to support a wide range of SpaceWire applications. Its

primary purposes however are to configure a SpaceWire

network, to control SpaceWire nodes and to gather data and

status information from those nodes [2]. RMAP can be used for

the SpaceWire configuration, setting the parameters of a device

and network information gathering. Also it can be used for data

transmission, with polling as the main mode of operation.

The RMAP protocol can be described by its following

general features:

 RMAP is a connectionless transport protocol;

 supports path, logical and regional addressing;

 write commands can be acknowledged or not

acknowledged, verified and not verified;

 provides means for reading and writing of data into the

memory by just one command (read-modify-write

command);

 no timeouts mechanism;

 no flow control.

RMAP defines three types of commands:

 write commands;

 read commands;

 read-modify-write commands [2, 3].

The RMAP protocol provides guaranteed delivery service

in the acknowledged mode and best effort service in a non-

acknowledged mode.

B. CCSDS Packet Transfer Protocol

CCSDS Packet Transfer Protocol (CCSDS PTP) – is a

packet transfer protocol which encapsulates a CCSDS Space

Packet into a SpaceWire packet, transfers it from an initiator to

26

a target across a SpaceWire network, extracts it from the

SpaceWire packet and passes it to the target user

application [4].

The CCSDS PTP protocol can be described by its

following general features:

 connectionless protocol;

 user may request data transfer at any time;

 variable or fixed packet length (minimal length is 7

bytes, maximal – 65542 bytes);

 unidirectional data transfer without acknowledgments;

 no data retransmission mechanism;

 no packet verification (it’s a user application

functionality) [4].

CCSDS PTP does not provide any mechanisms for

guaranteeing a particular quality of service [4].

C. Serial Transfer Universal Protocol

Serial Transfer Universal Protocol (STUP) is intended for

data transfer over the SpaceWire network. Its main feature is a

minimized complexity [5].

The general features of the STUP protocol are:

 connectionless protocol;

 easy to implement protocol (minimized complexity);

 just 2 types of commands: write and read;

 does not provide guaranteed delivery services.

STUP commands have checksum fields for verification of

received data [5].

D. Joint Reliable Data Delivery Protocol

The Joint Architecture Standard Reliable Data Delivery

(JRDDP) is a protocol which provides reliable data

transmission. It uses the lower-level SpaceWire data link layer

to provide reliable packet delivery services to one or more

higher-level host application processes [6].

The JRDDP protocol has the following main features:

 connection-oriented protocol;

 multiple logical connections;

 reliable data delivery;

 detection of missing packets;

 out-of-sequence packet reordering;

 buffer fragmentation and reassembly [6].

The JRDDP defines the following packet types:

 application data;

 acknowledge;

 open/reset command;

 close command;

 urgent.

JRDDP provides three types of quality of service: priority,

guaranteed and best-effort data delivery. According to JRDDP

specification the data flows should have the following

priorities: acknowledgment packets, control packets, urgent

packets, retransmit packets, data packets.

Best-effort QoS is optionally used for urgent messages

delivery such as time broadcasts, messages with exceptions and

errors control, meta-messages, etc. [6].

The JRDDP protocol provides fault detection and fault

tolerance by means of CRC checksum and packet sequence

numbering. Moreover, it uses timeouts for detection of missing

and duplicate packets and acknowledgements for indication a

successful packets delivery.

E. Streaming Transport Protocol

The Streaming Transport Protocol (STP) is developed for

streaming data transmission over SpaceWire network. This

protocol also supports simultaneous transmission of multiple

coherent data flows [7].

The STP protocol is oriented for asymmetric establishment

of transport connection: on the one side there is a host (master),

and the slave device is on the other side. The host device is an

initiator of a transaction session. The master performs the

connection establishment, configuration of connection

parameters and packets flow control [7].

The STP protocol can be described by its following general

features:

 connection-oriented protocol;

 reliable handshake for connection establishment and

teardown (3-way handshake);

 asymmetric connection (data transmission is performed

from slave to host device);

 multi-streaming (up to 65535 connections);

 fixed length of transmitted data;

 periodical data transfer in specified time period in

accordance with the configuration parameters and

during the whole duration of the connection;

 data delivery without acknowledgements and

retransmission;

 data flow control.

The STP protocol uses the following mechanisms to

provide fault detection and fault tolerance:

 packet fields verification, header and payload CRCs;

 timeouts mechanism;

 terminal node status monitoring procedure (status

command sending).

F. Protocols comparison

General features of each overviewed protocol are given in

the Table I [8].

It is clear from the Table 1, that there is no such a protocol

existing for the SpaceWire networks which provides reliability,

guaranteed data delivery, scheduling and configuration

flexibility. Therefore, a new Transport protocol should be

developed to operate over SpaceWire.

27

TABLE I. PROTOCOLS COMPARISON

Protocol

Feature R
M

A
P

P
T

P

S
T

U
P

J
R

D
D

P

S
T

P

Configuration flexibility – – –

Multiple applications – – –

Data flows of different priorities – – – –

Data flow control – – –

Transport connection establishment – – –

Segmentation – – – –

Data correctness check –

Data sequence check – – – –

Data retransmission – – – –

Acknowledgements – – –

Scheduling – – – – –

III. GENERAL REQUIREMENTS FOR THE TRANSPORT

PROTOCOL

This section gives a list of the main requirements to the

new Transport protocol. These requirements were elaborated in

such a way that the new Transport protocol will cover all

previously unsolved problems.

A. Transport interface

The Transport layer protocol should provide transmission

of the following general data flows passing from the

Application layer: control commands, application messages,

SpaceWire time-codes, SpaceWire interrupt codes and

interrupt-acknowledge codes.

B. Segmentation

Segmentation of large messages should be performed by

the Application layer. The target segments with the additional

service information should be passed from the Application

layer to the Transport layer. The transport layer should give

ability for the Application layer to assemble the message from

a number of segments, so it should support transmission of

additional information in the secondary header (for example,

segment number).

C. Data flows and priorities

Each data flow should have its particular priority. The data

flows should have the following precedence:

1. Control commands – the highest priority;

2. Urgent messages;

3. Common messages – the lowest priority.

D. Buffering on the transmitter side

Transport protocol should contain a separate logical buffer

for each data flow priority.

E. Quality of service

The target Transport protocol should provide additional

fault detection over the SpaceWire connection by means of the

following mechanisms:

 CRC checksum;

 successful packet transmission acknowledgements;

 detection of lost packets by timeouts.

Each transport data flow is characterized by particular

features and, consequently, requires its particular quality of

service. The priority quality of service is required by all data

flows. Control commands and urgent messages should be

delivered with guaranteed quality of service. In turn, common

messages can be transmitted with guaranteed or best effort

quality of service.

Taking into account the transport protocol analysis and the

technical requirements, we proposed a list of technical

solutions for the first revision of STP-ISS transport protocol.

At the moment a first version of the STP-ISS specification is in

the modeling stage. The next section of the paper gives an

overview of the STP-ISS transport protocol and shows its

further evolution plans.

IV. STP-ISS TRANSPORT PROTOCOL

Figure 1 shows an example of the on-board network for a

small-sized satellite. Dotted lines show the information flows

from sensors to the other parts of the satellite. It is just an

example of the applied topology, and STP-ISS can be used for

the much more complex networks also.

Switch

Processor

On-board

device #2

Control

unit

On-board

device #0

Sensors
On-board

device #1

Fig. 1. An example of the onboard network topology

A. STP-ISS general description

STP-ISS is a transport layer protocol that describes the

informational and logic interaction between onboard devices,

packets’ formats and packet transmission rules for the

SpaceWire network. The onboard software performs the

functions of the session, presentation and application layers

according to the OSI model [9]. STP-ISS protocol corresponds

to the Transport layer and provides means for transmission of

data between the nodes of the network with the required quality

of service type and data flow priority. This protocol gives

ability for data resending in case of the error detection in the

received data. This procedure is called resending. The place of

28

the STP-ISS protocol in the SpaceWire standard’s family and

conformity to the OSI model is shown in Fig. 2.

STP-ISS

SpaceWire
(ECSS-E-ST-50-12C)

Physical layer

Data link layer

Network layer

Onboard software

Transport layer

Session layer

Presentation layer

Application layer

SpaceWire

standards

family

RMAP
CCSDS

PTP

Fig. 2. STP-ISS protocol and OSI model

B. STP-ISS interfaces

There are three interfaces for the interaction between the

STP-ISS and Applications: Data Interface, Configuration

Interface and Control Codes Interface. In addition, there are

two interfaces for the interconnection with the SpaceWire:

SpaceWire packets interface and Control Codes Interface

(see Fig. 3).

STP-ISS

SpaceWire

Data interface

(messages,

control

commands)

Control codes

interface

(time-codes,

interrupts)

SpaceWire

packets

interface

link

Control codes

interface

(time-codes,

interrupts)

Applications

Configuration

interface
Transport interface

Network interface

Fig. 3. STP-ISS interfaces

STP-ISS provides transmission of the following types of

data through those interfaces:

 control commands;

 data packets;

 SpaceWire time-codes;

 SpaceWire distributed interrupts and interrupt-

acknowledges.

The data interface provides transmission of control

commands and data messages. Messages and control

commands are transmitted to the remote node by encapsulation

into SpaceWire packets.

The configuration interface provides means for the STP-

ISS configuration parameters change and for transmission of

status information and reset commands.

The control codes interface passes the SpaceWire time-

codes and distributed interrupts to the SpaceWire and then – to

the other nodes of the network.

C. STP-ISS application messages

One of the main tasks of the STP-ISS transport protocol is

to provide the transmission of messages from the Applications

to the remote nodes of the SpaceWire network. The message is

a data block that is passed to the STP-ISS from the application

layer. There are two types of application messages:

 urgent messages (higher priority);

 common messages (lower priority).

Messages from Applications are encapsulated into

SpaceWire packets at the transport layer (see Fig. 4).

Message / segment

EOPHeader

DA
Transport

header
Message / segment data CRC

STP-ISS data

packet

Transport interface

SpaceWire network interface

Data

Fig. 4. STP-ISS encapsulation of a message into a SpaceWire packet

The length of each message should not exceed 2048 bytes,

because the STP-ISS transport protocol does not perform

segmentation. Segmentation of messages is done by the

application layer and STP-ISS processes these segments as

usual independent messages. The Application layer of the

remote node assembles the segments into the original message.

The message should be assembled basing on the segment

identifiers that should be transmitted in the segment header.

For this purpose STP-ISS packet has a secondary header,

which should be used by the Application to transmit the

information for the messages assembling (for example, a

number of the segment).

STP-ISS provides the reliable data transmission by using

CRC-16 for protection of payload and packet header and for

errors detection. CRC-16 covers the packet starting from the

first byte of the STP-ISS packet header and finishing with the

last byte of data, excluding the end of packet symbol EOP

(see Fig. 5).

Header CRC EOPData

0 : 42 bytes 1 : 2048 bytes 2 bytes

Fig. 5. STP-ISS data packet format

29

D. STP-ISS lifetime timers

STP-ISS protocol has a special packet lifetime timer, which

counts the time, when the packet is still actual in the

SpaceWire network. Each packet is stored in the buffer during

its lifetime. The value of the lifetime timer is an STP-ISS

configuration parameter and it could be set during the

configuration stage. Each packet type could have different

values of lifetime timer. The lifetime timer should start when

the packet is written to the buffer. The packet should be deleted

from the buffer when the lifetime timer expires.

E. Resend buffers

The transmitter side of the protocol has separate buffers for

each priority of the transmitted data:

 control commands buffer;

 urgent messages buffer;

 common messages buffer;

The size of these buffers should be set depending on the

message or segment size, which the node uses for the data

exchange. Also the size of the buffer depends on the type of the

device, which implements STP-ISS, also. But for each buffer

(on the transmitter of receiver side) it is recommended to set

the size such a way, that buffer should be able to store

minimum two packets. These buffers are shown in Fig. 6.

Common

messages

buffer

Urgent

messages

buffer

Control

commands

buffer

CRC calculation,

packet formatting

Arbiter

Resend buffers

management

send ACK

Message,

Control command

Control command

packet
Urgent

packet

Common

packet

SpaceWire packet

timers ctrl

ACK rcvd

Fig. 6. STP-ISS resend buffers

The packet should be stored in the buffer until one of the

following events occurs:

 the STP-ISS transmitter received an acknowledgement

for this packet;

 transmission of the packet with the best effort quality

of service to the SpaceWire network;

 lifetime timer for this packet expired.

The receiver side of the transport protocol has one buffer

for all types of the packets, because SpaceWire packets come

from the SpaceWire interface sequentially.

F. STP-ISS quality of service

One of the benefits of the STP-ISS is the possibility to

transmit data using the following quality of service types:

 Priority quality of service;

 Guaranteed delivery quality of service;

 Best effort quality of service.

G. Priority quality of service

Priority quality of service is the main quality of service type

that should be supported by all the network end-node devices,

which communicate with STP-ISS. According to this quality of

service type, the data with the higher priority should be

transmitted first. Current STP-ISS specification supports 7

levels of priorities:

1. Acknowledgement packets;

2. Control command packets;

3. Resend control command packets;

4. Urgent data packets;

5. Resend urgent data packets;

6. Resend common data packets;

7. Common data packets.

H. Guaranteed delivery quality of service

Guaranteed delivery quality of service provides

confirmation for the successful packet transmission by sending

the acknowledgement packets. Also it resends the data from

the transmitter end-node if the acknowledgement is lost

(resending mechanism).

Guaranteed delivery is provided by a number of

mechanisms such as resend timers and successful transmission

acknowledges. Data resending is based on the packets

numeration. This numeration is performed by the application

layer by giving an identification number for each packet that is

transmitted from a particular application. So the combination

of the application identifier and a packet identification number

uniquely identifies each packet.

If a packet is passed to the network layer with the

guaranteed delivery quality of service, STP-ISS should start the

resend timer for this packet. If a resend timer expires before the

receipt of an acknowledgement, this means that the packet or

its acknowledgement is lost, or the packet has been corrupted

during the transmission. So when the resend timer expires, the

corresponding packet should be sent to the network again.

Each transmitted packet should have its own resend timer.

The acknowledgement packets are used for confirmation of

the packet’s successful receipt. Acknowledgements are sent

when there is no CRC error, the data length field is correct and

there is a flag “Guaranteed delivery packet” set to 1 in the

received packet’s header. Within the acknowledgement the

receiver sends a combination of the application identifier and

the transmitted packet’s identification number. When the

transmitter gets the acknowledgement, the corresponding

packet should be deleted from one of the transmitter’s resend

buffers. All the timers associated with this packet should be

stopped.

I. Best effort quality of service

Best effort quality of service provides data transmission

without sending acknowledges. Such packets have the flag

“Guaranteed delivery packet” set to 0 and they do not need

resend timers. When STP-ISS receiver gets a best effort packet

it checks the CRC and data length, but in case of error or if the

packet ends with EEP, data packet still should be sent to the

Application, but with an error indication.

30

J. STP-ISS configuration parameters

The important STP-ISS feature is the configuration

flexibility. The protocol has a number of configuration

parameters, which give ability to tune the protocol depending

on the developer needs (required quality of service, onboard

equipment type, resource constrains, etc.). Configuration of the

STP-ISS protocol is performed via the configuration interface.

Configuration is done in the following cases:

 switching-on/off the device;

 reset;

 switching to the redundant onboard device;

 emergency recovery.

The current STP-ISS specification describes 5

configuration parameters:

1. Control command lifetime;

2. Urgent message lifetime;

3. Common message lifetime;

4. Resend timeout;

5. Guaranteed / best effort data transmission.

K. Reset and Flush

There are two additional signals that could be passed from

the application layer to the STP-ISS though the configuration

interface: Reset and Flush. Reset corresponds to the warm

reset, and Flush is used for the clearing of both transmit and

receive buffers.

When STP-ISS gets the Reset, it should clear transmit and

receive buffers, stop all the timers corresponding to deleted

packets and set all the configuration parameters to the default

settings.

When STP-ISS gets the Flush, it also should clear transmit

and receive buffers and stop all the timers corresponding to

deleted packets, but all the configuration parameters should not

be changed.

V. CONCLUSION

The paper gives an overview of STP-ISS transport protocol

for the onboard SpaceWire networks. The current revision of

the STP-ISS is the first version and the protocol will be

actively evolved and trialled; further updates are planned also.

The following additions are considered to be included to the

second revision of the STP-ISS:

1. Scheduled quality of service, when each node of the

SpaceWire network will have a permission to send the

data during the particular time-slot only.

2. Connection-oriented data transmission.

3. Flow control mechanism for each transport connection.

4. Duplicate packets detection.

Also we plan, that the second revision of STP-ISS would

successfully work with the first revision.

REFERENCES

[1] ESA (European Space Agency). Standard ECSS-E-50-12C,

“Space engineering. SpaceWire – Links, nodes, routers and net-

works. European cooperation for space standardization”.

Noordwijk: ESA Publications Division ESTEC, 2008. 129 p.

[2] ESA (European Space Agency). Standard ECSS-E-ST-50-52C,

“Space engineering. SpaceWire — Remote memory access

protocol. European cooperation for space standardization”.

Noordwijk: ESA Publications Division ESTEC, 2010. 109 p.

[3] ESA (European Space Agency). Standard ECSS-E-50-11 Draft

E, “Space engineering. SpaceWire — Remote memory access

protocol. European cooperation for space standardization”.

Noordwijk: ESA Publications Division ESTEC, 2006. 58 p.

[4] ESA (European Space Agency). Standard ECSS-S-ST-50-53C,

“Space engineering. SpaceWire — CCSDS Packet Transfer

Protocol. European cooperation for space standardization“.

Noordwijk: ESA Publications Division ESTEC, 2010. 21 p.

[5] EADS Astrium (European Aeronautic Defence and Space

Company), SMCS-ASTD-PS-001 1.1, “STUP SpaceWire

Protocol Protocol Specification”, 2009. 7 p.

[6] Sandia National Laboratories, Sandia report SAND2011-3500,

“Joint Architecture Standard Reliable Data Delivery Protocol

Specification”. Sandia National Laboratories, Albuquerque,

New Mexico, 2011. 39 p.

[7] Sheynin Y., Suvorova E., Schutenko F., Goussev V. “Streaming

Transport Protocols for SpaceWire Networks”, International

SpaceWire Conference 2010, Saint Petersburg, 2010.

[8] V. Olenev, I. Lavrovskaya, I. Korobkov, D. Dymov, “Analysis

of the Transport Protocol Requirements for the SpaceWire On-

board Networks of Spacecrafts”, Proceedings of 15th Seminar of

Finnish-Russian University Cooperation in Telecommunications

(FRUCT) Program; Saint-Petersburg: Saint-Petersburg

University of Aerospace Instrumentation, 2014. pp. 65-71.

[9] Tanenbaum, A. S., “Computer Networks”, Fifth Edition;

Prentice Hall, 2011. 962.

31

Satellite / spacecraft on-board data handling

by coupling ARINC-664 (AFDX) and

SpaceWire

NOT PERMITTED TO PUBLISH PAPER

32

 Components (Short)

33

Solutions for copper-based SpaceFibre Links
SpaceWire Components, Short Paper

Stéphane Hermant

‘Axocom’ Space Products Division

Axon’ Cable SAS

Montmirail, France

s.hermant@axon-cable.com

Nigel Kellett

Axon’ Cable Ltd

Rosyth, Scotland

n.kellett@axon-cable.co.uk

Abstract—This paper will primarily present a design for high

speed copper-based links, capable of transmitting SpaceFibre

signals at 2.5Gb/s or higher, using a custom interface connector

not significantly larger than the 9 way Micro-D style used for

existing SpaceWire links. The paper additionally looks briefly at

the feasibility of creating miniature, multi-channel SpaceFibre

links for short lengths or ‘inside the box’ applications.

Index Terms—SpaceFibre, SpaceWire, Micro-D, Nano-D,

AXOMACH.

I. INTRODUCTION

Axon’ Cable has been working recently on a copper-based

solution for transmitting SpaceFibre signals at 2.5Gb/s or

higher – using connectors (for a single channel version) with

approximately the same space envelope as the current 9 way

Micro-D style connector used for SpaceWire links. This work

is being carried out in connection with the SpaceFibre

Demonstrator contract A0/1-7489/13 for ESA and the

University of Dundee.

An additional remit of this contract is to explore initial

feasibility of creating miniature, multi-channel links for short

length applications, similar in performance to existing

commercial products such as eSATA or PCIe, but using space

grade componentry.

Regarding the prime objective of the contract, Axon’ has

elected to propose a design based on a modified version of its

AXOMACH product.

II. AXOMACH HERITAGE

The AXOMACH product range is a space grade family of

cable assemblies capable of operation at up to 10 Gb/s per

channel. Developed originally for a military space application,

the product has since been extensively evaluated by the CNES

French Space Agency, and is currently in the process of being

created as a ESA ECSS component. It is based on two RF

quality coaxial cables per channel, terminated into impedance-

matched, EMC optimized and polarized connectors.

The existing 2 channel crossover version of this product has

already been successfully demonstrated by Star Dundee in their

SpaceFibre simulator, operating at 2.5Gb/s.

As well as the original (classified) military satellite use,

AXOMACH has, among other applications, been integrated

within the Mars Atmosphere and Volatile EvolutioN

(MAVEN) mission, launched on November 18, 2013. The

probe is scheduled to start orbiting Mars on September 21,

2014, to explore the planet’s upper atmosphere, ionosphere and

interactions with the sun and solar wind to find out how and

why the Red Planet has been losing its atmosphere over

billions of years.

III. DESIGN SOLUTION

For the SpaceFibre Demonstrator Links, Axon’ has taken

the existing 2 channel crossover version of AXOMACH and

placed all four coaxial contacts, which together form the two

channels, into one single D-Form on the connector face, thus

minimizing the overall connector width. This brings the

overall connector space envelope quite close to that of the

existing 9 way Micro-D connector currently used for

SpaceWire links.

For clarity, this solution, although similar in size, is

completely different from a SpaceWire connector and is not,

therefore, backwards compatible with SpaceWire.

Axon’s intention is to make this family an open source

solution and put the product forward for ECSS approval.

Fig. 1: Left: Reduced size SpaceFibre Demonstrator connector;

 Right: Existing 2 channel AXOMACH connector

34

mailto:s.hermant@axon-cable.com
mailto:n.kellett@axon-cable.co.uk

Fig. 2: Inline version of SpaceFibre connector

Fig. 3: PCB version of SpaceFibre connector

One of the main goals of the study is to reduce the size of

the existing connector. The re-design from the AXOMACH

starting point saves around 38% surface area on the equipment

interface:

Fig. 4: Surface reduction: 28.07 x 9.07 to 23 x 8:

 38% saved

IV. PERFORMANCE RESULTS – AXOMACH STYLE

SPACEFIBRE LINKS

At the time of writing this paper the very first SpaceFibre

Demonstrator links had just been manufactured and rapidly

tested. In general, Axon’ was expecting that the overall

SpaceFibre performance would be acceptable, but particular

attention was to be paid to crosstalk results due to the

‘compressing’ of all four contacts into the same D-form space.

Initial results are summarised later in Table I.

IV.1 Production of Different elements

The RF coaxial cable is exactly the same cable reference,

Ax2.4, as already used for the AXOMACH range – no more

difficult to manufacture.

The connector, however, needs very specific tooling to

manufacture it in order to make the assembly of all the parts,

including cable soldering, insulation parts and contact

insertion. Particular attention is required on skew reduction

during the cutting phases of the coaxial cables.

A transmission test is performed on each link using an Eye

Pattern mask to verify the signal integrity. On the left in

Figure 5 below, a pattern generator up to 12.5Gb/s, and on the

right, a sampling scope with 50Ghz BandWidth.

Fig. 5: SpaceFibre Links Transmission test general setup

Fig. 6: Connection from the scope to the harness under test using a SpaceFibre

Test Adaptor Harness to the equipment (with SMA connectors)

35

Ultimately, within the scope of the project, five different

lengths will be tested in order to be compatible with the range

of lengths to be used in the future. These test vehicles are each

made with 4 coaxial cables (Figure 7) linked to the

SpaceFibre dual channel (4 way) male connector at each end as

described in Figure 8.

Fig. 7: Ax2.4 AXOMACH and SpaceFibre coaxial cable

Fig. 8: General design of SpaceFibre links

Fig. 9: PCB version of SpaceFibre connectors

The input signal is well defined to verify the signal

integrity. In order to be working in the worst case, we set the

signal level at the minimum. (300mV) (Figure 10)

The mask of the output signal from the harness is also well

defined by the SpaceFibre specification (Figure 11)

Then the measurement can be performed easily on the

scope using the mask test sequence.

Fig. 10: Input signal Fig. 11: Output signal mask

Table I, below shows the initial test results, comparing 2M

long versions of a classic AXOMACH 2 channel crossover

with the same product using the SpaceFibre connector.

TABLE I. COMPARATIVE RESULTS BETWEEN CLASSIC

AXOMACH AND SPACEFIBRE CONNECTOR

CHARACTERISTIC
AXOMACH

crossover, 2M

SpaceFibre

crossover, 2M

Limits (From

AXOMACH)

Insulation Resistance Similar >5000MΩ

Voltage proof

Leakage current

Similar <2mA/600Vrms

Contact resistance

(Rated current)
Similar

<5mΩ

Coax cond. resistance
Similar <110mΩ/m

Coaxial shield

resistance

Similar <45 mΩ/m

Metal shell

conductivity

Similar 50mΩ

Characteristic

Impedance

Similar 100 Ω +/-10

Skew between coaxial

cables (4)

Similar <20pS

Jitter PP (5) Similar <20pS

Jitter rms Similar <5pS

Quality factor Similar >7

Insertion loss
Similar <1dB (5Ghz)

<2dB (10Ghz)

Return loss
Similar <12dB (5Ghz)

<9dB (10Ghz)

Crosstalk (TBC)
<-45dB@5Ghz

<-35dB@10Ghz

<-30dB@5Ghz

<-20dB@10Ghz

Mask test Similar Go/NoGo mask

 So for the static tests (continuity and insulation) and the

dynamic tests (signal integrity), the characteristics are very

similar to AXOMACH family. The main difference, as

expected, comes from crosstalk which is significantly poorer

than that of the classic AXOMACH. Less than -30dB up to

5Ghz (-45dB for AXOMACH) and less than -20dB up to

10Ghz (-35dB for AXOMACH). These initial results on a 2M

length, see table Figure 13, need to be confirmed on all the test

36

vehicles.V. FEASIBILITY STUDY INTO MINIATURE MULTI-

CHANNEL SPACEFIBRE LINKS

A second remit of the EMITS was to explore the feasibility

of creating Space grade miniature multi-channel links for short

length applications.

Considerations. The links and were to be as small as

possible, but using space grade components throughout, the

key objective being the possibility of having multiple channels

in the same connector.

Initial design proposal: multiple, sub-miniature space

grade coaxial cables, style SM50, terminated into ESA

evaluated Nano-D connectors, according to ESCC 3401-086

Principle: 4 x SM50 coaxials form one dual way channel

of SpaceFibre. By terminating the central coax core to one

contact and adjacent coaxial contact to the next-but-one contact

(i.e. skipping one contact each time) we can achieve the

necessary space to terminate the coaxials, and also help with

the impedance objective. All the coaxial screens are

terminated together to the outer shell of the connector.

In this way, 8 coaxials can be terminated to a standard 15 way

Nano, achieving 4 SpaceFibre channels.

- 12 coaxials in a 25 way Nano, giving 6 channels

- Or 24 coaxials in a 51 way Nano providing 12

channels

An initial feasibility test was conducted on a prior

manufactured sample with a typical SpaceWire (9 way Micro-

D) connector at one end and a 15 way Nano-D connector at the

other. (Figure 13)

Fig. 13: Test vehicle with MDSA 9pins and NDSA 15p, test leads fitted

Conclusion. The initial test results were positive, with the

Nano-D link capable of up to 3.4 Gb/s for a 1m length, and up

to 1.5 Gb/s for a 2.3m length, see also Figure 14.

Fig. 14: Micro-D to Nano-D 1m link @ 2.5Gb/s

V. OVERALL CONCLUSIONS

A. Primary objective. The dual channel SpaceFibre

Demonstrator Crossover Link based on the modified

AXOMACH family. A preliminary conclusion is this can

be a very effective space grade copper-based solution for

transmission of 2.5Gb/s SpaceFibre signals up to 10m in

length. (or indeed higher speeds) The crosstalk on the

connector, while significantly poorer than that of the classic

AXOMACH, is generally considered to be acceptable for

data rates of up to 2.5Gb/s.

B. Secondary objective. Feasibility of creating space grade

miniature multi-channel SpaceFibre links. Early

indications are that it may indeed be possible to design such

a link, using the ESA approved Nano-D style of connector.

A short paper will be produced on this subject, within the

scope of the project for the University of Dundee, to gauge

interest in developing such products for future applications.

VI. THANKS AND ACKNOWLEDGEMENTS

Axon’ wishes to thank the team at the University of Dundee,

Scotland, for their help and input into these two projects.

37

 Radiation tolerant heterogeneous Multicore "system

on chip" with built-in multichannel SpaceFibre switch

for the “intelligent” signals and images processing

systems
Components, Short Paper

Tatiana Solokhina, Jaroslav Petrichkovich, Alexander

Glushkov, Ilya Alekseev, Leonid Menshenin

ELVEES RnD Center,

Zelenograd, Russia,

tanya@elvees.com

Sheynin Yuriy, Suvorova Elena

University of Aerospace Instrumentation,
St. Petersburg, Russia

sheynin@aanet.ru

 Abstract— Тhe article presents a Radiation tolerant

heterogeneous Multi-core ASIC MC-30SF6 as the SoC (System–

on-Chip) for the onboard “intelligent” signals and images

processing systems. MC-30SF6 based on a CMOS 180nm

Radiation tolerant library and consists of the five ELVEES IP –

cores for the processing and compression data with extra

performance more than 9 GFLOPs. The SoC design and

architecture support fault tolerance against SEU errors. SoC has

built-in multichannel multiprotocol SpaceFibre/GigaSpaceWire

(SpaceWire-RUS standard)/SpaceWire embedded networking

subsystem. The networking subsystem provides multiple ports

for high-rate interconnection with combination of

SpaceWire/GigaSpaceWire/SpaceFibre links. SoC support four

ports GigaSpaceWire/two ports SpaceWire switch. Input and

processed data streams transmitted via 1.25 Gbps two

multiprotocol SpaceFibre/GigaSpaceWire and four

GigaSpaceWire links. Two SpaceWire links (ECSS-Е-50-12С)

provide data transfer bandwidth from 2 up to 400 Mbps. The

MC-30SF6 embedded networking subsystem on the base

SpaceWire/GigaSpaceWire/SpaceFibre provide a balance

between ASIC throughput and SoC performance especially for

the multifunctional micro and nanosatellites systems.

Index Terms — Radiation tolerant heterogeneous Multicore

ASIC, multiprotocol SpaceFibre/GigaSpaceWire based links

I. INTRODUCTION

In the spacecraft signal/image processing on-board systems,

for example, for the Earth Observation (EO) missions it is

necessary to solve several important tasks, including:

1. The task of delivering large amounts of data at high

speed from the sensors to the proper processing system;

2. The task of achieving the required performance in the

onboard processing system, which in fact determines all the

main qualitative characteristics of the optical/radar monitoring

or "intelligent" on board processing of the synthesized images

with “video analytics”;

3. The compression task of optical/radar image for

subsequent storage or for the transmission;

4. The overall management space system task.

Therefore these missions have the highest performance

needs for the signal/Image processing and analysis, data

reduction and compression. Typical application data types

demand both fixed-point and floating point processing

capability.

Expected processing power and the key requirements needs

for the EO Payloads have been analyzed in an ESA study [1]

and can be summarized as follows.

Candidate Payload - MTG IR sounder:

- Peak sensor data rate - 2.2 Gbit/sec;

- Processing power - 10 GOPS, mixed fixed

& floating point operations.

Candidate Payload - High Resolution Wide Swath SAR:

- Peak sensor data rate - 500 Gbit/sec;

- Peak processing power - 1000 GOPS.

Even the minimum requirements for the implementation of

these tasks in the spacecraft show the global gap between these

current (future) needs onboard processing capabilities and the

implementation of modern silicon for space applications.

Thus, the limiting factor in the development of modern and

advanced high-performance and a high bandwidth on-board

signal/image processing systems is the absence of a large

selection of space microprocessors for the high-performance

space computing, that provided the highly throughput by the

links (up to the gigabits) based on modern advanced standards

such as SpaceWire and SpaceFiber and its modifications.

This article describes the experience in the creation of an

actual high-performance the highly throughput "system-on-

chip" MC-30SF6 qualified for space applications with

balanced architecture of processing IP-cores and network

subsystem of the data exchange between ASIC resources and

between multiprocessor networks on the SpaceWire,

38

SpaceFiber [2] and Giga SpaceWire (SpaceWire-RUS

standard) base.

II. THE MC-30SF6 ARHITECTURE

Radiation tolerant Multicore ASIC MS-30SF6 (Fig.1) was

developed as the heterogeneous SoC (System–on-Chip) for the

“intelligent” signals and images processing systems.

Figure 1. MC-30SF6 chip in the CPGA720 package.

The ASIC consists of five processing MULTICORE

platform based IP – cores for processing and compression

images with extra performance it is provided with the rich

periphery also.

All ASIC processors and accelerators operate

independently from each other (each on its own program) and,

therefore, represent the three power core “system-on-chip”

with MIMD - architecture (MIMD - Multiple Instructions

Multiple Data).

The top system manager (CPU) is a standard RISC -

processor (RISCore32) with 4-stage pipeline. CPU has EEE-

754 compliant Floating Point Unit (FPU) supports single and

double precision data types. With Multiply/Divide accelerator

CPU provides the addition, multiplication and division

operations with single/double precision in floating-point format

(maximum issue rate of one 32x32 multiply per clock, 2 cycle

multiply latency, 11 cycle divide latency). CPU also has a

memory management unit (MMU) on the basis of fully

associative address translation buffer (TLB) of 16 double cells,

the instruction cache (I CACHE) of 32 Kbytes of data cache (D

CACHE) of 32 Kbytes. The programmable MMU provides

two operating modes: with TLB (Translation Lookaside

Buffer) and FM (Fixed Mapped). On-chip JTAG IEEE 1149.1

Debug Unit support the single stepping and data address/value

breakpoints.

MC-30SF6 ASIC was realized to support all architectural

solutions, which increased its resistance to failure and fault

tolerance. All ASIC memory blocks including the register files

in CPU/DSP are protected by Hamming code with single

errors correcting and two errors detecting. It was provided the

Single event upset mitigation with Triple Modular

Redundancy (TMR) for all triggers registers in CPU. The

mode can be switched off in order to provide reduce power

consumption for the all chip.

As the RISCore32 tools we used gcc 3.2.3., Gcc 4.3.2. To

develop and debug programs we created the IDE MCStudio ®,

which supports the configuration of our multicore chip based

on RISCore32 IP - core and others IP - cores, for example,

DSP.

MS-30SF6 contains high-performance Dual DSP cluster

from IP – cores library developed by ELVEES. DSP cluster

used for digital signal/image processing with fixed and floating

point and provides data processing with variable data formats.

The 7-stage pipeline and flexible address modes allow realizing

algorithms of signal/image processing with high efficiency.

Dual DSP IP-core main features:

- 8/16/32/64-bit fixed-point data types;

- 32/bit floating-point data types;

- 16/32/64/128-bit data formats;

- high effective instruction set density: 16 bits per

instruction;

- configurable data/program memory size;

- X and Y data memory pointers;

- VLIW-type parallelism: up to 2 computational

operations and up to 2 data transfers per cycle;

- SIMD-type parallelism: 128-bit data vectors for

8/16/32-bit data types.

In one cycle DSP cluster can perform (with 140MHz

clock):

- 16 op/s with floating point data format (24E8,

IEEE754) - 2.24 GFLOPs;

- 16 op/s with integer data format (int32) - 2.24 GOPs;

- 48 op/s with integer data format (int16) - 6,72 GOPs;

In addition to the named three processor cores (CPU and

Dual DSP) the “system-on-chip” MS-30SF6 includes two

hardware accelerators (FFT and JPEG), operating in parallel.

Additionally, system on chip includes two hardware

accelerators: FFT IP - core and JPEG IP-core.

FFT (Fast Fourier Transform) Accelerator:

- Input-output data are carried out in real time, in

parallel with processing;

- Entrance/output data for the user are in a direct order;

- For calculations and data storage in a direct order

additional memory isn't required;

- The formats of real/imaginary component of the

entrance and output data: 32-bit floating point format

(IEEE-754 standard), 32-bit integer (additional code),

16-digit integer (additional code). Format of

calculations: 32-bit floating point;

- The maximum amount of a directly carried out

transformation – 8192, minimum – 16. The limit

amount of increased transformation – 256K;

- Performance: for one step 40 arithmetic operations

with a floating point (24 additions/subtraction and 16

multiplications) are carried out. That with a work

frequency 160 MHz corresponds 6.4 GFLOPs.

The signal/image Compression accelerator (JPEG

Encoder) according to the JPEG standard provides Input-

output of images is carried out in real time, in parallel with

processing. The productivity of the accelerators image

compression is:

- one component (Y, by Cb or Cr) with a size of block of

8х8 pixels is processed with a speed of 2,46 pixels for a

39

step. With a frequency of 200 MHz productivity of

compression is equal 490 megapixels/s.

- at three components of the same size of the YCbCr 4:4:4

format productivity of compression is equal to 164

megapixels/s or 75 fps Full HD.

Parameters of the real performance of the processor units

are similar to the peak, as input and output data and the

intermediate results of processor cores transmitted

simultaneously with basic data processing.

RISC IP-core together with the signal and image processing

IP-cores provides 9 gigaflops ASIC performance.

The new generation МС-30SF6 applies the ability to turn

off unused processor IP cores and other resources such as

unused high throughput links. The МС-30SF6 also supports

a sleep mode in which it consumes minimum milliwatts of

power.

The ASIC has two DDR2 memory ports (1600 MB/s),

support DMA transfers between external I/O ports and external

memory, have four Multifunctional Buffed Serial Ports

(MFBSP) that can act as SPI, I2S, LPORT, GPIO interfaces,

Ethernet MAC 10/100, six Space Wire family, USB port,

External memory Port (MPORT):

- Data bus - 64-bit address bus - 26 bits;

- Integrated controller of the memory (SRAM,

FLASH, ROM, SDRAM);

- Software Configuration for memory blocks and its

size.

Input and processed data streams via through eight

SpaceWire based family links (six up to the 1.25 Gbps and two

up to 400 Mbps) provide a balance between its throughput and

SoC performance.

МС-30SF6 also has a dedicated test and debug interface;

run the Linux operating system; and have a C /C++ application

software compiler for the CPU and DSP cores.

III. THE MC-30SF6 SOFTWARE PLATFORM

The MC-30SF6 software platform basic advantages are:

- The Complete tool set for the fast development and

integration of the space signal/image processing applications,

includes MCStudio IDE (Integrated Development

Environment);

- Full software development kit: optimizing C

compilers, advanced multi-core debugger, simulators,

application profiler and industry’s proven signal, video and

image processing Software and Algorithms library;

- Full-featured simulation model allows to start

application software developing early;

- Unified programmable DSP core allows to avoid

software migration troubles;

- Instruction-level support for all C language data

types, including floating-point and complex types, enables

effective use of C compiler for different applications,

improving time-to-market;

- Standard API – all software components (including

signal/image processing and algorithms).

IV. THE MC-30SF6 ASIC

EMBEDDED NETWORKING

SUBSYSTEM

The MC-30SF6 embedded networking subsystem provides

multiple ports for high-rate interconnection with combination

of the SpaceWire/SpaceFibre /GigaSpaceWire (SpaceWire-

RUS standard) links.

The combination of the SpaceWire based family links

(SpaceWire, SpaceFibre and GigaSpaceWire with various

speeds and opportunities) provides unprecedented flexibility

and scalability for space on-board processing systems with the

equal efficiency as for the large distributed digital signal/image

processing applications and as stand-alone multifunctional chip

based systems for micro and nanosatellites.

The eight MC-30SF6 SpaceWire based family serial high-

rate links consist of:

1) Two multiprotocol ports such as SpaceFibre

(4 VC, 1250Mbps)/GigaSpaceWire(SpaceWire-

RUS); have rates up to 5,10,15 ... (with 5 Mbps

increments) ... 125, 312.5, 625, 1250 Mbps);

2) Four ports GigaSpaceWire (SpaceWire-

RUS); have rates up to 5, 10,15 ... (with 5 Mbps

increments) ... 125, 312.5, 625, 1250Mbps), this

ports efficiently combined using six ports internal

switch with two SpaceWire ports;

3) Two SpaceWire ports (ECSS-Е-50-12С)

have rates up to 2-400 Mbps.

It should be noted that MC-30SF6 ASIC SpaceWire links

implementation supports the extensions towards next

SpaceWire standard revision such as Distributed interrupts and

others.

It is also important to note that the GigaSpaceWire ports

can provide bandwidth up to the 1250 Mbps, but can operate

also in a range of lower data rates, down to 5 Mbit/s. Lower

data rates could efficient for longer distances or using older

types of cabling.

GigaSpaceWire is in fact a high-rate link for SpaceWire

networks, and has the exactly the same Packet, Network layers

and the same packet formats that makes the packets routing

and switching between any combination SpaceWire and

GigaSpaceWire ports straightforward and resource-efficient.

The internal switch operates as a SpaceWire routing switch,

with routing and switching SpaceWire/GigaSpaceWire packets

between any combinations of its ports, in accordance with

ports operation modes and the routing table.

Two SpaceFibre links [3] are provided by the

multiprotocol network interface controller. The main

SpaceFibre link rate in the MC-30SF6 ASIC is 1250 Mbit/s.

In the multiprotocol ports implementation another

operation mode is to support the GigaSpaceWire protocol.

Such combination of the different types of ASIC links

(SpaceWire/SpaceFibre/GigaSpaceWire) and internal switches

makes the MC-30SF6 very flexible in building ASIC network

interconnection with external processors, nodes, and

peripherals with any type of

40

SpaceWire/SpaceFibre/GigaSpaceWire networks, provide

different types of network services.

While SpaceFibre links provide advanced QoS features

(very important for the space onboard control systems), the

SpaceWire/GigaSpaceWire combination links provide

effective and cost-efficient networking for other on-board

applications (for example, for the space signal/image

processing systems). Such applications may not require

SpaceFibre QoS features with an extra cost of the SpaceFibre

implementation silicon area. The analysis of the complexity

of SpaceFibre implementation is presented in the next section.

 Thus MC-30SF6 ASIC is a new generation balanced data

processing “system on a chip” of that supports a wide class of

space on-board applications ranging from control systems to

onboard signal /image processing high-end systems.

As the conclusion from the comparative analysis of the

Stereo Computer Vision task application example follows that

if DSP “Elcore30” will support clock ~ 140 MHz and ARM

Cortex A9 will provide ~ 1 GHz then this task speedup for the

ELVEES Single DSP core will be 0.58x and for the Dual DSP

core - 1.0x. This means that the Radiation Tolerant MC-30SF6

multicore microprocessor will decide such application task not

worse than powerful 1 GHz ARM Cortex A9 microprocessor.

So MC-30SF6 SoC is capable not only to form video

streams, but also providing the on-board real-time analysis of

multi-megapixel image data with video analytics approach
which will provide autonomous on board situational analysis

and real time the on-board mission decision-making.

V. THE MC-30SF6 ASIC PROOF ON THE

SILICON

The space qualifiable (Radiation Tolerant) ASIC

Microelectronics technologies for the area and timing

parameters estimations was reviewed [4].

The virtual design of the SpaceWire-RT (SpaceFibre)

ASIC IP-Core (digital controller and CML- transceiver) was

developed based on the using IP-core Library from the

ELVEES ASIC platform MULTICORE including “Soft” and

“Hard” IP-cores (8B/1B CODEC, SERDES, PLLs,

transceivers). The Netlist and layout of SpaceWire-RT ASIC

IP - Core were synthesized on the various qualified for space

microelectronic libraries also were used as an assessment for

the implementation of the SpaceWire-RT ASIC IP – Core.

During the project, we analyzed the complexity and

feasibility of six channels SpaceFiber switch built-in

microprocessor with four virtual channels each.

The limitations of implementing (area cost) for the used

Radiation Tolerant Libraries not allowed to unify and to

implement the all SpaceFibre six high-speed links plus

switch, and, moreover, as multiprotocol variant. The total

silicon area cost of the six multiprotocol links is about 60.3

mm*2 (including 54, 06 mm*2 for the six SpaceFibre digital

controllers, with the Broadcast controller and the mode/state

registers block in each).

And, on the other hand, the size of the topology area of a

6-channel switch SpaceFiber with controllers SpaceFibre is

161,46 mm * 2 (excluding space for the block of mode/state

registers and the Broadcast processing unit), which occupies

more than half the area of the possible size of a

microprocessor (306 mm * 2).

On the one hand the SpaceFibre benefits provided high

cost area for virtual channels (VCh) and thereby to realize

only a small number of SpaceFibre ports for a real space

qualifiable ASIC.

And, on the other hand, using a little additional ASIC areas

cost we can provide multiprotocol link and an inexpensive

opportunity to transmit information through the

GigaSpaceWire link supporting low cost data transmission

networks, which do not require such properties as virtual

channels.

In this MC-30SF6 ASIC project it was created a new

innovative multiprotocol port IP - core

(SpaceFibre/GigaSpaceWire IP – core) that provide a

balanced solution between all advantages in QoS, FDIR and

others from SpaceFibre and the simplicity and low cost of

implementation from GigaSpaceWire. In this MC-30SF6

ASIC project it was created a new innovative multiprotocol

port IP - core (SpaceFibre/GigaSpaceWire IP – core) that

provide a balanced solution between all advantages in QoS,

FDIR and others from SpaceFibre and the simplicity and low

cost of implementation from GigaSpaceWire.

MC-30SF6 ASIC was developed and synthesized on the

space qualifiable ASIC technologies base. The chip size is

17.5 mm x 17.5 mm (Fig.2). During the project, we analyzed

the complexity and feasibility of 6 - channel SpaceFiber

switch built-in microprocessor with four virtual channels

each.

GigaSpaceWire (SpaceWire-RUS standard) digital

controller IP - core is almost in the 19 times more economical

in terms of the silicon area than the SpaceFibre digital

controller IP - core (4 virtual channels). For a greater number

of channels, this ratio is even more dramatic.

Figure 2. MC-30SF6 chip post-layout area. The chip size: 17.5 mm x 17.5

mm.

41

This is particularly evident in the SpaceFibre switches

/routers ASIC implementations.

From the MC-30SF6 ASIC post-layout area analysis the

size of the silicon area for some radiation tolerant MC-30SF6

IP - cores (real layout):

- TMR CPU: 57.00 mm*2;

- DSP (total): 126.11 mm*2, including:

 One DSP-core: 40.96 mm*2;

 FFT+JPEG - accelerators : 41.55 mm*2;

- multiprotocol port SpaceFibre (4VC)

/GigaSpaceWire (controller): 10.05 mm*2

- SpaceFibre (4VC) part -9,01 mm*2;

- GigaSpaceWire (controller): 0.54 mm*2;

- SpaceWire (Controller): 0.33 mm*2;

- Switch (for the four GigaSpaceWire ports plus two

SpaceWire ports): 8.64 mm*2.

The main parameters of the SpaceFibre/GigaSpaceWire CML

based transceivers IP-cores, based on the space qualification

Radiation Tolerant Libraries, are:

- A wide range of data rates 5, 10, 15… (with discrete

of 5)...125, 312.5, 625, 1250 Mbps – for the

GigaSpaceWire mode (including multiprotocol links)

and - 1250Mbps for the SpaceFibre mode;

- The transmitter and receiver IP blocks dimensions are

the same: RX = TX = 0.233 mm*2.

VI. CONCLUSION

Robust, high-performance MC-30SF6 space quality

SoC provides power signal/image processing based on the

software/hardware, programmable, intelligent Signal/Image

processing platform proven on the silicon.
Open and modular МС-30SF6 innovative

microprocessors architecture is supported by a set of hardware

accelerators and special DSP instructions that can be used if

necessary to obtain high performance and unprecedented

flexibility in data formation and processing and their

subsequent analysis.

MC-30SF6 SoC hardware and software are a unique,

programmable, heterogeneous multi-core platform dedicated

to addressing the computational needs of the most

sophisticated on-board signal/image processing applications

as for the single-chip standalone configurations as for the

multichip parallel systems using balanced integrated

embedded networking subsystem provides multiple ports for

high-rate interconnection with combination of the

SpaceWire/SpaceFibre/GigaSpaceWire (SpaceWire-RUS

standard) links on the ASIC.

REFERENCES

[1]. Next Generation Processor for On-board Payload Data

Processing Application ESA Round Table Synthesis, ESA,

TEC-EDP/2007.35/RT, October 2007

[2]. S.M. Parkes, C. McClements, M. Dunstan and M. Suess,

“SpaceFibre: Gbit/s Links For Use On board Spacecraft”,

International Astronautically Congress, Daejeon, Korea, 2009,

paper IAC-09-B2.5.8

[3] “D2.1 - SpaceWire-RT Outline Specification”, SPACEWIRE-RT

Consortium, 06.09.2012.

[4] “D5.1 - SpaceWire-RT ASIC Implementation Feasibility

Summary Report”, SPACEWIRE-RT Consortium, 09.05.2013

42

Experiences with a SpaceWire Backplane Connector
SpaceWire Components, Short Paper

John-Paul Coetzee, Alan Senior

Space Division

Thales Alenia Space UK (TASUK)

Bristol, United Kingdom

John-Paul.Coetzee@thalesaleniaspace.com,

Alan.Senior@thalesaleniaspace.com

Jørgen Ilstad

European Space Agency, ESTEC

Noordwijk ZH, Netherlands

jorgen.ilstad@esa.int

Abstract — Prototype connectors have been developed by

Smiths Connectors (Hypertac) for backplane applications, and

testing has been performed by TASUK under ESA contract.

The connector is a modular type with different pin inserts for

power, signal and high-speed data, making it suitable for

SpaceWire applications.

This paper describes TASUK’s experience designing a test setup

and using the backplane connector.

Index Terms—SpaceWire, backplane, connector, layout

I. INTRODUCTION

The SpaceWire Backplane connector has been designed to

be modular so that it is suitable for a range of applications of

differing complexity. Common card sizes in space applications

are single and double Eurocard (and extended versions) and the

SpaceWire Backplane Connector has been designed for these

sizes.

Fig. 1. Typical backplane card sizes

The connector used for TASUK’s testing is 97.5mm long.

It incorporates two types of data interconnect, one

general-purpose and one high-speed coaxial for differential

links. It also has two types of power connector, one with 7.5A

pins and one with 5.75A pins. Fig. 2. shows the connector. The

tightly-packed general-purpose signal pins have a pitch of

1.5mm (the "Signal 10.4 modules", ~1 Gbps). The co-axial

differential pins are shielded ("Quadrax modules", ~3 Gbps)

[1].

Fig. 2. SpaceWire backplane connector pins

Tests were required in the following areas:

• Physical - check dimension, mass, solderability,

mating/de-mating.

• SpaceWire - check SpaceWire performance over both

types of data interconnect.

• Eye diagram - capture some basic eye diagrams on data

transfers over both types of data interconnect.

• Power - measure power transfer losses over both types of

power interconnect.

TASUK have designed and tested a suitable system. This is

the first time that such a backplane connector has been used in

a real-world SpaceWire application.

This paper focuses on the user experience of the SpaceWire

Backplane connector, in particular the layout of the backplane

and daughterboards to achieve an extensible, high-speed

system. Some rudimentary test measurements were performed

but these were not rigorous and are provided here to

demonstrate usability of the connector. Rigorous parametric

analysis will be performed by Smith Connectors.

II. TEST SYSTEM

The test system consists of a small backplane board and

two small daughterboards. The connections across the

daughterboards and backplane allow end-to-end testing of the

different interconnect types in a representative environment.

All connectors and test pins are easily accessible.

Fig. 3. shows the test system with one daughterboard

disconnected. In the figure the two micro-D SpaceWire

43

mailto:John-Paul.Coetzee@thalesaleniaspace.com
mailto:Alan.Senior@thalesaleniaspace.com
mailto:jorgen.ilstad@esa.int

connectors on the daughterboard have black protective covers.

One of these SpaceWire connectors is connected to co-axial

differential Quadrax modules, the other to pins within a Signal

10.4 module. The SMA connectors are connected to Quadrax

modules.

Fig. 3. Test system showing backplane and two daughterboards

For testing all the boards are mounted in a simple frame

constructed from extruded aluminium. This provides a robust

framework and holds the daughterboards perpendicular to the

backplane to prevent any damage from flexing.

Fig. 4. shows the test system in the frame and connected to

a Xilinx Virtex 6 evaluation board which was used to generate

high-speed signals for eye diagram measurements. Fig. 5.

shows the system connected to a laptop running Star-Dundee

SpaceWire link verification software to measure data

throughput, Fig. 6. shows the same system connected to power

supplies and load resistors to test the performance of the power

connectors.

Fig. 4. Eye diagram testbench

Fig. 5. SpaceWire throughput testbench

Fig. 6. Power measurement testbench

III. PCB LAYOUT

IIIA. BACKPLANE LAYOUT

For optimal performance the backplane design must

facilitate a multi-slot backplane high-signal-integrity

architecture with flow-through routing. This can be especially

challenging in the close pin fields of dense connectors.

A 6-layer FR4 board is used, providing two power layers,

two ground layers and two inner signal layers. This stack-up is

sufficient to achieve an extensible flow-through architecture.

The layout of the backplane is illustrated in Fig. 7. Fig. 7.

also shows how the flow-through architecture allows designs to

be easily extended to multiple slots.

44

Fig. 7. Backplane layout showing multiple slots

Two important factors in routing differential pairs are (a)

keeping the separation of the pairs constant (and matched to

100R differential) and (b) minimising skew between the two

traces in a pair. The skew between the differential traces on a

backplane adds to the skew on the daughterboards and this

must be taken into account when designing high-speed systems

which include a backplane.

In TASUK’s backplane design all differential signals can

be routed, even in the dense pin field of the Signal 10.4

modules (Fig. 8.). The path difference between the individual

traces within these differential pairs is approximately 2.2mm.

The crossover in the traces connecting the Quadrax modules

keeps the path difference between the individual traces down to

about 0.2mm.

Fig. 8. Backplane layout showing detail in Signal 10.4 modules

IIIB. DAUGHTERBOARD LAYOUT

The daughterboard layout is shown in Fig. 9. It is also a 6-

layer board, all signals are easily routed.

Fig. 9. Daughterboard layout

Fig. 9. also shows the thick traces from the power pins.

These reduce resistance and hence both voltage drop along the

trace and heat generated. Power is connected using two

adjacent 0.1" pins to spread the current across pins. Power is

measured using a 4-wire connection facilitated by the provision

of voltage measurement pins adjacent to the pins carrying

power.

IV. TEST RESULTS

The following tests were performed on the SpaceWire

backplane assembly.

 Physical tests

 SpaceWire signal tests

 Eye diagram tests

 Power tests

Further tests will be performed by Smiths Connectors.

A. Physical tests

1) Visual inspection

The connectors were visually inspected and no defects were

found. Considering these are prototypes the precision of

manufacture and the quality of the build was high.

2) Dimensions

The PCB layout was performed directly from the drawings

supplied by Smiths Connectors [1]. The prototype connectors

fitted the PCBs exactly indicating the correctness of the

drawings.

Other basic dimensional checks were performed that

demonstrated compliance with the drawings.

3) Mass

The connector is modular and therefore the mass will vary

according to the contact types fitted. The drawing [1] indicates

a mass of ~53g for the mated pair. The measured masses of the

prototype connector are:

 Daughter connector (socket): 35.97g

 Backplane (plug): 15.76g

Thus the mated pair weighs 51.73g.

It is anticipated that a connector fully populated with all

Quadrax modules would have the highest mass, though the

delta is likely to be small.

4) Solderability

The pins are gold plated, no soldering issues were found.

During the manufacture of a spacecraft unit the contact tails

that enter the PCB would be de-golded to prevent solder

embrittlement, this process could not be performed by a dip

into a molten solder pot due the close proximity and shape of

the connector body, however each pin could be de-golded

manually.

Soldering on the prototype board proved straightforward.

Inspection of the top joint is hampered by the low profile of the

connector body but is possible. The pins have a shoulder that

prevents a full solder fillet forming on the PCB top surface

under the connector body however confirmation of solder flow

up the Plated Through Hole (PTH) is possible and the joint

meets the inspection criteria imposed by ESA [2].

45

5) Mating

The connectors have a high mating and de-mating force.

Smiths Connectors have stated that the prototype may not have

the same insertion and extraction force as the final design. The

connector drawing [1] predicts a connector mating force of

100N (TBC). TASUK has not measured this force.

The test system does not have a designed-in method of

extraction so de-mating is difficult without applying leverage.

Extraction tools and methods may need to be developed when

using this connector to avoid damage from non-linear forces.

TASUK have previously manufactured Spacecraft unit

modules that use 2 off 144-way Hypertac KMC connectors,

these connectors have an insertion/extraction force of 100N, so

the module insertion/extraction force could be 200N. Insertion

forces of this magnitude are not considered excessive since

there are robust surfaces to push against; also the card guides

and dedicated connector alignment pins align the card.

Extraction is more difficult since a typical board has no

features which allow a firm grip. To solve this TASUK

designed a mechanical extractor which engages with the PCB

and pushes against the front lip of the unit box, pulling the card

smoothly from the unit in a controlled manner. For reference a

picture of the TASUK designed extraction tool is shown in Fig.

10. .

Fig. 10. Extraction tool designed and used by TASUK on Spacecraft units

B. SpaceWire Signal Tests

1) Setup

Fig. 5. shows the backplane, STAR-Dundee SpaceWire

brick (green LEDs showing traffic) and laptop with the test

software. The SpaceWire brick was used to investigate the

SpaceWire data rate capability of the two types of data

interconnect. The blue SpaceWire cables were connected in

loopback.

One of the daughterboard’s two SpaceWire micro-D

connectors is connected via the “Quadrax module” shielded

differential co-axial connectors, the other via the “Signal 10.4

module” unshielded plain connectors. Both were tested, with

the same results.

2) Results

STAR-Dundee provides two software test utilities, the

“spacewire_usb_test” console application and the “SpaceWire

Validation Software” Java application.

“Spacewire_usb_test” showed a slowest link speed of

131.07 Mbit/s and “SpaceWire Validation Software”

transferred >187Gbytes with 0 errors at an average data rate of

100.648 Mbit/s, see Fig. 11.

These speeds were exactly the same as those measured with

the SpaceWire brick in loopback i.e. the speeds are limited by

PC software or SpaceWire brick, not by the SpaceWire

backplane.

Fig. 11. SpaceWire backplane SpaceWire Validation Software results

C. Eye Diagram Tests

Only rudimentary eye diagram tests were possible owing to

lack of suitable equipment; more comprehensive tests will be

performed by Smiths Connectors. The oscilloscope was only

capable of triggering on a rising edge and not on a recovered

clock so these are not true eye diagrams; however the results

are indicative of the low distortion levels.

1) Setup

A Xilinx Virtex 6 evaluation board was used to generate

high-speed signals. The board has differential outputs with the

Tx+ and Tx– signals available on SMAs. See Fig. 4. and Fig.

12. In Fig. 4. the blue cable into Ch1 is connected to the brown

cable from the Xilinx board Tx+ using an SMA connector to

keep the total cable lengths the same. The connector cannot be

seen in the figure.

Bit-Error Rate test code was downloaded from the Xilinx

website (UG811 “ChipScope Pro Tutorial - Using an IBERT

46

Core with ChipScope Pro Analyzer”). The code uses the GTX

transceivers to perform bit-error rate tests, the bit rate can be

set to 625Mbps, 1.25Gbp, 2.5Gbps or 5Gbps. The oscilloscope

had a 1Gbps bandwidth so the only data rate which could be

tested was 625Mbps.

Eye diagrams were generated for two signals (i) directly

from the Tx+ SMA output of the evaluation board (i.e. without

the test backplane in the signal path) and (ii) from Tx- via the

“Quadrax module” shielded differential co-axial connectors in

the SpaceWire backplane.

Fig. 12. SpaceWire backplane eye diagram test setup

2) Results

See Fig. 13. The top trace is the direct connection i.e.

without the test backplane in the signal path, the bottom trace is

via the “Quadrax module” shielded differential co-axial

connectors. As may be expected the eye diagram of the signal

via the SpaceWire backplane was different from the direct

connection.

Fig. 13. SpaceWire backplane eye diagram results

D. Power Tests

1) Setup

To simulate power transfer across the backplane, power

was applied at one end of the backplane and a low-resistance

load connected across connectors on the daughter board. The

voltage drop across the backplane was measured using a 4-wire

measurement, Fig. 6. shows the testbench.

There are two different types of power connector modules

in the backplane (a) “PWR5.75 module” with pins of 5A

current-carrying capacity and (b) “PWR3.1 module” with pins

of 7.5A capacity. Two measurements were made for each

connector type, across different pairs of pins.

2) Results

a) PWR5.75 module pins (5A)

1. Voltage measured = 31.6mV, current = 4.99A

=> Resistance = 31.6/4.99 = 6.3 mΩ

2. Voltage measured = 27.6mV, current = 4.99A

=> Resistance = 27.6/4.99 = 5.5 mΩ

These pins have a specified resistance of 3mΩ [1].

b) PWR3.1 module pins (7.5A)

1. Voltage measured = 32.6mV, current = 7.49A

=> Resistance = 32.6/7.49 = 4.4 mΩ

2. Voltage measured = 32.0mV, current = 7.47A

=> Resistance = 32.0/7.47 = 4.3 mΩ

These pins have a specified resistance of 2mΩ [1].

V. CONCLUSION

The SpaceWire backplane and daughter board have proved

the feasibility of the SpaceWire backplane concept, PCB layout

and the use of the backplane components in a real-world

application. The application incorporates a representative

backplane, two daughter boards and the backplane connectors.

Testing shows that the SpaceWire links routed through two

pairs of connectors will run at the maximum possible rate of

the SpaceWire Brick.

Eye diagrams of the “Quadrax module” shielded

differential co-axial connectors within the connectors at

625MHz show some expected attenuation, and that the link is

not creating any unexpected discontinuity or distortion.

Power measurements show that the power pins are

performing at their rated capability with minimal losses. It

should be noted that the pins used in the connectors are

prototype rather than production parts.

The layout of the backplane and daughter boards have

shown that a multi-slot backplane with a flow-through

architecture is easily achieved, even within the tight restrictions

of the closer pin field of the densest connector module types.

A flexible architecture has been shown to be feasible using

only 6 layers.

REFERENCES

[1] Smiths Connectors / Hypertac drawing HYP-6890 (Provisional)

dated 10.01.2014.

[2] ECSS-Q-ST-70-08C Space product assurance - Manual

soldering of high-reliability electrical connections (6 March

2009)

47

 Missions & Applications (Short)

48

Service oriented integration of SpaceWire and

conventional protocols with reference to SOIS
SpaceWire Missions and Applications, Short Paper

Hiroki Hihara, Asako Terada, Satoko Kawakami,

Muneyuki Iwanabe

NEC TOSHIBA Space Systems, Ltd.

10, Nisshin-cho 1-chome, Fuchu, Tokyo, 183-8551, Japan

h-hihara@bc.jp.nec.com, a-terada@vx.jp.nec.com,

s-kawakami@bk.jp.nec.com, m-iwanabe@sx.jp.nec.com

Takayuki Tohma, Takashi Kominato,

Kazuyo Mizushima, Kenichi Baba

Space Systems Division,

NEC Corporation

10, Nisshin-cho 1-chome, Fuchu, Tokyo, 183-8501, Japan

t-tohma@bx.jp.nec.com, t-kominato@pd.jp.nec.com,

k-mizushima@cb.jp.nec.com, k-baba@dg.jp.nec.com

Takeshi Takashima, Motohide Kokubun,

Tadayuki Takahashi

Institute of Space and Astronautical Science, JAXA,

3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210, Japan

ttakeshi@stp.isas.jaxa.jp, kokubun@astro.isas.jaxa.jp,

takahasi@astro.isas.jaxa.jp

Takayuki Yuasa

RIKEN The Institute for Physics and Chemical Research

2-1 Hirosawa, Wako, Saitama 351-0198, Japan

takayuki.yuasa@riken.jp

Masaharu Nomachi

Osaka University

1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan

nomachi@rcnp.osaka-u.ac.jp

Abstract—Conventional protocols have been integrated with

SpaceWire through service oriented approach with reference to

SPACECRAFT ONBOARD INTERFACE SERVICES (SOIS).

The design framework is based on the definition of determinism

provided by SpaceWire-D draft standard in order to keep

established services inherited from previous satellite projects.

The implementation result is under evaluation in order to

establish the consistency with the draft standard of SpaceWire –

Plug-and-play protocol. This paper describes the integration

approach and the evaluation of implementation experience.

Index Terms— SpaceWire, Networking, SpaceWire-D, Plug

and play, SOIS.

I. INTRODUCTION

Next generation spacecraft bus architecture has been

established by JAXA/ISAS (Japan Aerospace Exploration

Agency/Institute of Space and Astronautical Science) and NEC.

Scalability with well-defined interface specification is the main

issue for the architecture in order to apply the architecture on

wide range of satellites with great flexibility. Various units are

to be connected to spacecraft system bus in simple way as

plugging in power plugs into outlets.

Service oriented approach was employed for the integration

with reference to SOIS concept [1]. SpaceWire [2]/RMAP

(Remote Memory Access Protocol) [3] is adopted in the

architecture with SpaceWire-D draft standard [4], and

conventional protocols have been integrated with SpaceWire

exploiting the “New Concept” research project and scientific

satellite projects. Almost all of onboard subsystems of

ASTRO-H, such as the command/data handling subsystem, the

attitude and orbit control subsystem, and four types of X-

ray/gamma-ray telescope instruments, are connected to the

SpaceWire network using a highly redundant topology [5], [6],

[7], [8]. The number of physical SpaceWire links between

onboard components exceeds 140 among 40 independent units,

and there are more links in intra-component (intra-board)

networks. A partial redundant SpaceWire networks with the

electronics units developed in ASTRO-H project has been

demonstrated in orbit by HISAKI successfully in 2013. Hybrid

systems with conventional interfaces and SpaceWire interfaces

are also under development in HAYABUSA2 [9] project and

ASNARO project [10], [11].

In order to accommodate conventional interfaces, discrete

command and telemetry interfaces have been integrated into

SpaceWire network by dedicated attachments, and serial digital

interfaces as MIL-STD-1553B, UART and dedicated serial

transmission protocol for Japanese scientific satellites have

been transformed through protocol bridges. The

implementation methods for interface specification conversion

were investigated through the new concept research, which

encompassed software implementation, device implementation

and equipment architecture.

The ground station operation scheme using CCSDS

framework was also carefully investigated through the

49

mailto:h-hihara@bc.jp.nec.com
mailto:a-terada@vx.jp.nec.com
mailto:s-kawakami@bk.jp.nec.com
mailto:t-tohma@bx.jp.nec.com
mailto:t-kominato@pd.jp.nec.com
mailto:k-mizushima@cb.jp.nec.com
mailto:k-baba@dg.jp.nec.com
mailto:ttakeshi@stp.isas.jaxa.jp
mailto:kokubun@astro.isas.jaxa.jp

Autonomous operation

software

Command generator

software

Telemetry monitor

software

Data conversion

software tools

Onboard Protocol

(SpaceWire)

System

information base 2

(SIB2)

Data handling system: Ground segment

Onboard

Equipment

preliminary design phase of ASTRO-H space X-ray

observatory in order to maintain the operation manner of

previous projects. This development activity had been resulted

in service oriented approach by categorizing the network

transmission scheme of prior projects with referenced to

CCSDS SOIS concept. The flexibility of remote memory

access protocol of SpaceWire and the determinism for system

integration and test provided by SpaceWire-D draft standard

were exploited to accommodate each service, and specific

memory space has been assigned as the channel for each

service.

The implementation result is under evaluation in order to

establish the consistency with the draft standard of SpaceWire

– Plug-and-play protocol [12].

II. INTEGRATION APPROACH

Four types of satellite systems have been developed using

SpaceWire. They are single system, partial redundant system,

fully redundant system, and hybrid system with legacy network

as shown in Table 1. In order to encompass these types of

satellite systems, four approaches have been carried out for

establishing the scalability through the project. They are the

establishment of design criteria, the establishment of the

standard onboard network architecture based on SpaceWire,

the development of standard units and devices, and the service

oriented network definition.

Most technology development has been achieved in

ASTRO-H project [13]. Design criteria have been established

through the development phase of the project, and standard

electronics units were also developed. A partial redundant

system, which is called as “HISAKI”, was developed with the

design criteria and standard electronics units have already been

demonstrated in orbit successfully. A data handling subsystem

in single configuration and an attitude and orbit control

subsystem in dual standby redundant configuration are

employed for HISAKI. Therefore, single and standby

redundant operation scheme of common onboard computer

(Space Cube
®
2) have been demonstrate and validated. PIM

(peripheral interface module) is an inherited legacy onboard

network for JAXA scientific satellites, and it is used in

HAYABUSA2 project with SpaceWire [14]. The preliminary

integration test of HAYABUSA2 has been completed and the

hybrid system has also been established. In consequence the

scalability of the design criteria have been validated.

Standard onboard network architecture based on SpaceWire

has been established by ISAS [15] in order to realize scalability.

The architecture is based on the functional model of spacecraft,

and the functional model of spacecraft is defined with

functional objects [16].

TABLE I. FOUR TYPES OF SPACEWIRE NETWORKS

Redundancy Project

Single system
ASNARO

(planned to be launched in 2014)

Partial standby system
HISAKI (SPRINT-A)

(launched on 14th September 2013)

Full redundant system
ASTRO-H

(planned to be launched in 2015)

Hybrid system
HAYABUSA2

(planned to be launched in 2014)

Fig. 1. ISAS functional model development framework

The attribute, operation, event, behavior, and diagnose rule

of the functional model are specified in system information

base 2 (SIB2). The architecture consists of three sub-

architectures, which are physical architecture, functional

architecture and protocol architecture. The development

framework of the functional model is shown in Fig. 1.

The physical architecture specifies how to configure

onboard network systems physically and defines basic physical

elements. Any onboard network system will be constructed

physically by connecting basic physical elements according to

the characteristics and the complexity of the spacecraft. The

functional architecture specifies how to configure onboard

network functionally and defines basic functional elements.

These functional elements are implemented in physical

elements. The protocol architecture specifies how to connect

physical and functional elements with communications

protocols and defines a set of standard protocols to be used.

By using this architecture, the basic portion of onboard

systems will be developed by selecting appropriate standard

components and connecting them. The difference in the size of

different spacecraft will be reflected in the number of units

used in each spacecraft.

50

top: Space Cube2, bottom left: SpaceWire router, bottom right: data recorder

Fig. 2. Standard components for SpaceWire network

As for the development of standard components, Space

Cube2 onboard computer, SpaceWire router and Data Recorder

(mass storage unit) have been developed with SpaceWire based

on the architecture. Figure 2 shows those three standard

components.

The service oriented network definition refers to SOIS.

Communication services are defined in reference to SOIS sub

network services, and two design criteria are established. The

criteria are independent on data link layer and physical layer,

so both SpaceWire and legacy protocols refer to them.

TABLE II. TELEMETRY COLLECTION FORMAT FOR EACH COMMUNICATION

SERVICE

Communication service

Collection format

Space Packet
Raw data through

RMAP

Essential housekeeping data X

Auxiliary housekeeping data X

Housekeeping packet data X

Response value telemetry X

Memory dump data X

Notification X

Acknowledge X

User request X

Payload correction data X

Fig. 3. MIL-STD-1553B interface attachment for Space Cube2

Fig. 4. Payload interface unit (PIU)

Prioritization, segmentation and blocking are defined in

telemetry/command design criteria, and SpaceWire and legacy

network use the same design criteria. Retry and redundancy

are specified in network design criteria, which is dependent on

each data link layer protocol such as SpaceWire.

Two types of data collection scheme are provided for

communication services. One is to collect Space Packet

directly from each target, and the other is to collect raw data in

order to make Space Packet by initiator. The raw data is

collected through multiple transaction of RMAP. Telemetry

collection format for each communication service is shown in

Table 2.

III. PROTOCOL BRIDGE DEVELOPMENT

In order to incorporate units with legacy communication

interfaces into SpaceWire networks, two types of protocol

bridges have been developed.

One is an attachment for an onboard computer. The

attachment is connected to a CPU base module. Either

SpaceWire or other protocols as PCIbus
®
 [17] are used to

connect the attachment to a CPU base module. SpaceWire

active backplane is used in case that SpaceWire is used for

inter-module communication. Figure 3 shows an attachment

for Space Cube2, which adopts MIL-STD-1553B.

The other type of the protocol bridge is an independent unit,

which is called as a payload interface unit (PIU). Figure 4

shows an example of PIU. The PIU is used for dedicated

51

interface as communication equipment as well as discrete

interfaces for sensors and actuators.

IV. DESIGN FRAMEWORK

The protocol layer of onboard and space link

communications shown in Fig. 5 [18], [19]. Three upper layers

are common for both space link communication and onboard

communication. As for onboard data bus, inherited network

design from previous scientific satellites had the access

protocol whose image is close to memory access image. A

linear address space encompasses network-wide access, and

communication services are tied to reserved address space.

The upper protocol layers [20], which include RMAP and

SpaceWire-D, are independent on the data link layer and

physical layer. The notion of RMAP is used both for

SpaceWire network and legacy network. The characteristics of

physical layer affects the transmission speed and latency.

Therefor SpaceWire-D is essential for designing both

SpaceWire network and legacy network. The time slot design

criteria and latency definition scheme of SpaceWire-D are

incorporated into the definition of our SpaceWire network

design criteria [21] as well as inherited legacy network design

criteria. In consequence, the design flow of all system shown

in Table 1 is the same. The maximum transaction numbers in

one time slot and the latency performance between an initiator

and a target are essential to system performance, so the

standardized design criteria for the time slot and latency

specified in SpaceWire-D draft standard are adopted both for

SpaceWire networks and legacy networks.

V. THE EVALUATION OF IMPLEMENTATION EXPERIENCE

Since our application layer protocol and segmentation/

blocking scheme is independent on data link protocol layer and

physical layer [22], the functions are implemented as the upper

layer on SpaceWire and RMAP.

In addition to that, we adopted two draft standards, which

are SpaceWire-D and SpaceWire Plug and Play. SpaceWire-D

had been almost established during the design phase of

ASTRO-H project, and the draft B version was applied to our

SpaceWire network design creteria. SpaceWire Plug and Play

specification had been in the early stage of its establishment

during the design phase of the projects shown in Table 1, and

the notion of the specification has been reflected both on the

SpaceWire netrwork design criteria and each electronics unit

interface design specification.

In accordance with our experiencs, SpaceWire-D is useful

for system design phase, because the transaction performance

within a time slot is essential for system perforrnance. The

common design flow for the network interface was established

with the standardisation for transaction and latency definition

which is quoted from the SpaceWire-D draft specification.

The latency definition was also useful for assigning time out

duration on each SpaceWire router.

The notion of SpaceWire Plug and Play was useful for

component design phase and system test phase. Common

access scheme for the status of each unit is useful for

diagnosing the status and configuration information of each

electronics unit during the system test. The ownership is tied

to network region or network domain in our design, and

SpaceWire time code and system time indicator [23] belong to

the ownership [8].

ACKNOWLEDGMENT

Authors thank ASTRO-H project people for their precious

suggestions for implementing real-time system for a wide

range of scalable system design as well as hybrid system

design with legacy interface specifications.

REFERENCES

[1] The Consultative Committee for Space Data Systems, CCSDS

850.0-G-1, “SPACECRAFT ONBOARD INTERFACE

SERVICES”, June 2007.

[2] European Space Agency, ECSS-E-ST-50-12C, "Space

engineering, SpaceWire - Links, nodes, routers and networks",

31, July 2008.

[3] European Space Agency, ECSS-E-ST-50-52C, "Space

engineering, SpaceWire – Remote memory access protocol", 5

February 2010.

[4] Space Technology Centre, School of Computing, University of

Dundee, “SpaceWire-D, Deterministic Control and Data

Delivery Over SpaceWire Networks“, April 2010.

[5] Tadayuki Takahashi, et al., ”The ASTRO-H Mission”, SPIE,

7732, 77320Z, 30 July 2010.

[6] Tadayuki Takahashi, et al., "The ASTRO-H X-ray

Observatory", Proceedings of SPIE, 8443 (2012)

[7] Tadayuki Takahashi et al., "The ASTRO-H X-ray Astronomy

Satellite’', Proceedings of SPIE, 9144 (2014)

[8] Takayuki Yuasa, Tadayuki Takahashi, Masanobu Ozaki,

Motohide Kokubun, Masaharu Nomachi, Hiroki Hihara,

Kazunori Masukawa, “A Deterministic SpaceWire Network

Onboard the ASTRO-H Space X-ray Observatory'', International

SpaceWire Conference 2011, 8-10 November 2011, p.348-351.

[9] Hiroki Hihara, Kaori Iwase, Junpei Sano, Hisashi Otake,

Tatsuaki Okada, Ryu Funase, Ryoichi Kashikawa, Isamu

Higashino, Tetsuya Masuda, “SpaceWire-based thermal-infrared

imager system for asteroid sample return mission

HAYABUSA2,” J. Appl. Remote Sens. 8 (1), 084987 (April 28,

2014); doi: 10.1117/1.JRS.8.084987

[10] Toshiaki Ogawa, Yusuke Kobayashi, Shoichiro Mihara, Koichi

Ijichi, and Hideyuki Hamada “Outline and Progress of

ASNARO (Advanced Satellite with New System Architecture

for Observation) Satellite System”, 8th IAA Symposium on

Small Satellites for Earth Observation, Berlin, Germany, 04 – 08

April 2011.

[11] Hiroki Hihara, Toshiaki Ogawa and Kenji Kitade, “NEXTAR:

Small Satellite Bus Based on SpaceWire Deterministic

Implementation”, International SpaceWire Conference 2011, 8-

10 November 2011, p.344-347.

[12] European Space Agency, ECSS-E-ST-50-54C draft, "Space

engineering, SpaceWire – Plug-and-play protocol", 22 March

2013.

[13] Takayuki Yuasa, Tadayuki Takahashi, Masanobu Ozaki and

Motohide Kokubun, “A Deterministic SpaceWire Network

Onboard the ASTRO-H Space X-Ray Observatory”,

International SpaceWire Conference 2011, 8-10 November

2011, p.348-351.

52

OSI reference

Application layer

Network layer

Data link layer

Physical layer
RF and Modulation Systems

(CCSDS 401.0-B)

TC Sync. and Channel Coding

(CCSDS 231.0-B)

TM Sync. and Channel Coding

(CCSDS 131.0-B)

TC Space Data Link Protocol

(CCSDS 232.0-B)

AOS Space Data Link Protocol

(CCSDS 732.0-B)

SpaceWire

(ECSS-E-ST-50-12C)

SpaceWire Protocols

(ECSS-E-ST-50-11C)

RMAP

(ECSS-E-ST-50-52C)

SpaceWire-D

(ECSS-E-ST-50-52C)
SpaceWire-PnP

(ECSS-E-ST-50-54 draft)

Space Packet Protocol

(CCSDS 133.0-B)

ADU

(SOG102)

SMCP

(GSTOS 200)

SpaceWire Network Design Criteria
(ASTH-112/SP-112)

Telemtry/Command Design Criteria (ASTH-111/SP-111)

Uplink Command Downlink Telemetry Onboard Communications

Space Communications

[14] Hiroki Hihara, Koutarou Moritani, Ryu Funase, Tetsuya

Masuda, Hisashi Otake, Tatsuaki Okada, "Intelligent Navigation

System with SpaceWire for Asteroid Sample Return Mission

HAYABUSA2", International SpaceWire Conference 2013, 10-

14 June 2013, pp.308-311.

[15] Takahiro Yamada, and Tadayuki Takahashi, “Standard Onboard

Data Handling Architecture Based on SpaceWire”, International

SpaceWire Conference 2008, 4-6 November 2008, p.253-256.

[16] Takahiro Yamada, GSTOS 201-0.7a, “Functional Model of

Spacecraft (FMS)”, 15 September 2009.

[17] PCI Special Interest Group, “PCI Local Bus Specification2,

Revision 2.2”, 18 December, 1998.

[18] NEC Corporation, ASTH-111/SP-111, “Telemetry/Command

Design Critria”, 12 October 2010.

[19] Takahiro Yamada, GSTOS 200-0.10a, “Spacecraft Monitor &

Control Protocol (SMCP)”, 15 September 2009.

[20] NEC Corporation, ASTH-112/SP-112, “SpaceWire Network

Design Criteria”, 15 November 2010.

[21] SpaceWire User’s Group, Japan, “SpaceWire Network Design

Guideline”, Version 1.0, 13 May 2010.

[22] Takahiro Yamada, “Proposal for Defining Standard Services

Over SpaceWire –Revision A -”, The sixteenth SpaceWire

working group meeting ESTEC, Netherlands, 22 March 2011.

[23] Aeroflex Gaisler AB, “High Accuracy Time synchronization

over SpaceWire Networks - update”, April 2012.

Fig. 5. Standard Platform Protocol Layer

53

Frequency Calibration of the SWI Instrument on-

board of JUICE using SpaceWire Time-Codes
SpaceWire Missions and Applications, Short Paper

Martin Suess

ESTEC, European Space Agency

Noordwijk,

The Netherlands

martin.suess@esa.int

Abstract—The Sub-mm Wave Instrument (SWI) is one of the

scientific instruments on board of the JUpiter ICy moons

Explorer (JUICE) mission. It is a sub-millimeter wave

spectrometer with a very high spectral resolution. In order to

calibrate the location of the spectral bands the frequency of the

instrument’s ultra-stable oscillator (USO) has to be monitored to

very high accuracy. The instruments on board of JUICE are

connected through a SpaceWire network which is used for the

transmission of the scientific data to the on-board memory as

well as to control the instruments and for the transmission of

instrument housekeeping data. The objective of this paper is to

investigate if SpaceWire Time-Codes can be used to calibrate the

USO frequency of the SWI to the required accuracy. It presents

an end-to-end budget of the elements contributing to the error of

the frequency calibration with the reference on ground.

Index Terms—SpaceWire, Time-Codes, frequency calibration,

SWI, JUICE

I. INTRODUCTION

The JUpiter ICy moons Explorer (JUICE) mission has been

selected as the first large mission to be implemented in ESA’s

Cosmic Vision Program. The objective of JUICE is to

investigate the Jovian system focusing on its ice covered

moons Ganymede, Europa and Calypso [1].

Amongst the 11 scientific experiments and instruments on

board there is the Sub-mm Wave Instrument (SWI). Its

development is led by the Max Planck Institute for Solar

System Research in Germany. The SWI is a spectrometer and

radiometer working in the frequency range of 530 to 601 GHz

with a spectral resolution of up to ~10
7
. One objective of the

SWI is to measure a wind speed and temperature profile in the

Jupiter stratosphere and troposphere.

The measurement principle used is to sense the Doppler

shift and shape of specific absorption lines of molecules in the

Jupiter stratosphere. For this the location of the measured

spectral bands has to be known with a very high accuracy. An

Ultra-stable Oscillator (USO) is used as the frequency

reference in SWI from which all other frequencies in the

instrument are derived. In order to meet overall accuracy

requirements the frequency of this USO has to be known with

an accuracy better than 1.7·10
-8

.

II. USO FREQUENCY KNOWLEDGE REQUIREMENT

The measurement of Doppler shifts of the absorption lines

caused by atmospheric motions relies on a precise absolute

frequency calibration of the observed spectra. SWI’s frequency

scale is derived from the USO frequency.

The required frequency knowledge is derived from the

Doppler shift accuracy measurement requirement. To allow

atmospheric wind measurements from observations of Doppler

shifted spectral lines with a systematic error of less than 5 m/s

due to a drift in the absolute frequency scale the relative error

must be less than Δv/v = (5 m/s)/c = 1.7×10
-8

 where c is the

speed of light. This relative error corresponds to a 10 kHz

frequency error at 600 GHz.

The USO used for SWI must provide a frequency signal

with a very low phase noise as its frequency is multiplied by a

large factor to mix down the 600 GHz signal received. The

long term stability of this type of low phase noise oscillators is

somewhat limited and therefore the frequency drift of the USO

needs to be monitored on a regular basis of about once a

month.

Ultimately this frequency has to be calibrated against an

absolute atomic clock frequency reference on ground. The

regular monitoring can be done by comparing the SWI USO

frequency to a second, more long term (or sufficiently known)

stable oscillator on board of the spacecraft or to measure the

SWI USO frequency using on the Mission Elapsed Time

(MET) which is the time reference held in the On-Board

Computer (OBC). At the same time this MET must be

correlated with an highly accurate time reference on the

ground.

The accuracy of this second option is investigated in this

paper. It is further investigated if the SpaceWire links using

SpaceWire Time-Codes can be used to perform this frequency

measurement or if a special time signal transferred between the

OBC and SWI over a dedicated line is needed.

In paragraph III the accuracy of a frequency counter to

measure the USO frequency is derived and compared with the

time jitter introduced by SpaceWire Time-Codes. In paragraph

IV the process used for time synchronization between

spacecraft and ground is explained. In paragraph V the

54

achievable time correlation accuracy is compared with the time

correlation performance which has been achieved in the Gaia

mission as example.

III. ANALYSIS OF THE SWI FREQUENCY MONITORING

ACCURACY REQUIREMENT

The frequency of the oscillator has to be measured with an

accuracy better at least an order of magnitude better than the

required frequency accuracy of 1.7×10
-8

. One way of

measuring the frequency of an oscillator is to use a frequency

counter. This is to count the number of cycles in a fixed and

well known period of time TG. This period of time TG is called

the gate time. For a given gate time TG and the counter value N

the frequency f is calculated by f=N/TG.

Due to the statistical uncertainty of how the counted events

are falling relative to the beginning and the end of the gate time

window, the counter value N will differ by one count in 50% of

the measurements:

 2Δf = f2 - f1 =(N+1)/TG - N/TG = 1/TG

This corresponds to a principle frequency uncertainty of a

frequency counter relative to the mean frequency (f2+f1)/2 of

half a clock period: Δf=1/(2TG). On the other side this means

that by extending the gate time the frequency measurement

accuracy can be greatly improved to match that accuracy

requirement.

The requirement for SWI is on the frequency knowledge

Δf/f=1/(2TG f) < 1.7·10
-8

.

With an USO frequency of 10 MHz and if TG is perfectly

known this would require a time gate of at least 2.94 seconds.

Any error on the knowledge of the gate time increases the

principle uncertainty of the frequency counter measurement.

If the possible error of the gate time TG is ±ΔTG the relative

frequency error Δf/f can be calculated as follows:

2∆𝑓 = 𝑓2 − 𝑓1 =
𝑁

𝑇𝐺 − ∆𝑇𝐺
−

𝑁

𝑇𝐺 + ∆𝑇𝐺

=
2∆𝑇𝐺𝑁

 𝑇𝐺 − ∆𝑇𝐺 𝑇𝐺 + ∆𝑇𝐺

∆𝑓

𝑓
=

∆𝑇𝐺𝑁

 𝑇𝐺 − ∆𝑇𝐺 𝑇𝐺 + ∆𝑇𝐺

𝑇𝐺

𝑁
=

∆𝑇𝐺

𝑇𝐺 −
∆𝑇𝐺

2

𝑇𝐺

≅
∆𝑇𝐺

𝑇𝐺

The time distribution mechanism using SpaceWire time-

codes introduces a certain mean latency and a jitter. If the

begin and the end of the gate time is signaled using SpaceWire

time-codes only the jitter needs to be considered as the mean

latency stays the same. This jitter which has been investigated

in [3] is dependent on a number of parameters. As one example

for a link speed of 60 Mbps the jitter introduced by a single

link has a standard deviation of 39 ns. Consequently the

standard deviation of the gate time will be 55 ns which is the

RSS summation to the standard deviation of the two

statistically independent time-code arrival events. Just looking

at this error contribution the necessary gate time to achieve

relative frequency knowledge Δf/f= ΔTG/TG< 1.7·10
-8

 is at least

3.24 seconds. In order to get the final figure for the required

gate time length all contributors to the gate time error have to

be summed up in the RSS sense. As the frequency counter gate

time uncertainty of half a period at a USO frequency of

10 MHz corresponds to 50 ns, the combination of this error

with the SpaceWire time-code jitter of 55 ns results in a

standard deviation of 74.3 ns. Consequently a gate time TG of

at least 4.37 seconds shall be used.

In order to improve the statistical certainty the 3σ error

value should be used to calculate the actual gate time.

IV. TIME SYNCHRONISATION BETWEEN SPACECRAFT AND

GROUND

The On-board Computer (OBC) has a counter derived from

free running clock. This counter represents the Mission

Elapsed Time (MET). The MET is the basis for the execution

of the on-board time lines, time tacking of telemetry,

generation of SpaceWire time-codes and other time based

functions. In order to guarantee the proper spacecraft operation

the MET has to be related to the UTC time reference on

ground. This is done by means of correlation. Commonly the

correlation between MET and Universal Coordinate Time

(UTC) is performed as follows:

The MET counter is read out and sampled every time a

telemetry frame is sent to the ground. This sampling is

triggered by the telemetry frame generator whenever the first

bit of the Attached Synch Marker (ASM) of the TLM frame is

generated. The sampled time value is then transmitted together

with other information in the following TLM frame to the

ground.

On the ground the digital processor demodulates the signal

and time stamps every frame received based on the local UTC.

This time stamp is generated upon the arrival of the leading

edge of the first data bit after the ASM. The time information is

memorized and “attached” to the frame for post-processing

evaluation together with ranging data.

In order to correlate the MET with UTC the time delay

between the sampling of the MET on board and time stamping

of the received frame on the ground needs to be compensated.

There are a number of contributors which have to be take into

account. Some are static, others change dynamically.

V. TIME CORRELATION PROCESS OF THE GAIA MISSION

In order to illustrate what level of time correlation can be

achieved in scientific missions the Gaia mission [4] is

presented as reference. For the highly accurate star position

measurements performed by Gaia the precise correlation

between MET which is called Spacecraft Elapsed Time

(SCET) in the Gaia case and UTC is of outmost importance

[5].

There are actually two time scales which are defined for

used on-board Gaia:

55

- the On-Board Time (OBT) for the science packets

time stamping and

- the Spacecraft Elapsed Time (SCET) for the platform

generated data time stamping.

Gaia follows the a one-way time correlation procedure

which has been described in paragraph IV. In regular time

intervals a time report is generated on-board and transmitted to

ground. Once the event is generated on-board, it is used to

sample both the OBT and SCET (actually sampled exactly on

the rising edge of the first bit of the related frame Attached

Synch Marker (ASM)). The arrival date of this event on ground

is time tagged in UTC.

When the first leading edge of the transfer frame ASM is

determined by ground a time stamp (UTC) is applied at the

ground station. The GPS linked ground station Maser is

therefore time stamping the frame after the following delays:

- delays between the ASM event occurrence and the on-

board time taken to record and transmit;

- the delay between the sending of the event and its

arrival on ground (in propagation time);

- delays between the arrival on-ground of the signal and

the on-ground recorded time;

- the relationship between the station time reference and

a known time standard.

To meet the timing accuracy requirements of the Gaia

mission the on-board time is generated from a single highly

accurate Rubidium atomic master clock in the Clock

Distribution Unit (CDU). The main clock generates the OBT

which is used directly to time stamp the scientific data

generated in the Gaia Focal plane. Additionally, the SCET,

generated within the OBC called Central Data Management

Unit (CDMU), is kept in synchronisation with the master clock

by means of a pulse per second reference and a Numerically

Controlled Oscillator (NCO).

Before this synchronisation both, the SCET and OBT are

free running counters. Even after the synchronisation is

achieved the OBT and the SCET are not aligned, only

synchronised, so there is still a fixed offset between the two

time lines.

The final OBT-SCET-UTC correlation accuracy depends

on the precise determination of the free space transmission

delay between the satellite and ground. The residual error in

this delay calculation depends heavily on the knowledge

accuracy of the Gaia orbit.

The mission requirement for the end to end time correlation

accuracy is 1.7µsec with an on-board contribution of less than

1µsec.

For the GAIA mission the end-to-end OBT-UTC time

correlation budget as shown in TABLE I has been established.

The expected performance is clearly much better the end-

to-end time correlation requirement of 1.7 µs. In order to

achieve this time correlation accuracy a number of measures

and tests had to be put in place calibrate internal delays and to

control their variation. The effort made in this respect for the

Gaia mission goes beyond what is normally applied for

missions with a not so demanding time correlation accuracy

requirement.

TABLE I GAIA ERROR CONTRIBUTIONS FOR TIME CORRELATION ACCURACY

 Description of error contributions Error size

1 On-board delays 300 ns

2 Propagation delays (75m error, restituted orbit) 250 ns

3 Tropospheric correction 1 ns

4 Station delay error (daily range calibrated) 1 ns

5 Demodulator jitter/quantization 57 ns

6
Correction to Attached Synch Marker (ASM) bit 0

(inc. puncture code variations)
100 ns

7
Intermediate Frequency Modem System (IFMS) sync
to Inter-Range Instrumentation Group (IRIG) B

100 ns

8 Station time sync to GPS (corrected maximum) 200 ns

9 Station GPS to GPS master clock sync 80 ns

 Total RSS Error 414 ns

VI. IMPLICATIONS OF THE GAIA RESULTS FOR THE JUICE

MISSION DESIGN

It has been demonstrated by GAIA that a very accurate

level time correlation between the MET used on board and

UTC on ground can be achieved. This requires a very tight

control of the absolute time delays on board but also in the

ground station during the duration of the mission.

For the calibration of the USO frequency of the SWI

instrument absolute time delays are not relevant to obtain a

good performance. It is only the change in time delay between

the beginning and the end of the calibration measurement, the

Gate Time, which contributes to the error. Some of the

important error contributors listed in

56

TABLE I can be assumed to be stable during the calibration

measurement period. Other more noise like terms may still

contribute to the calibration error.

The error contributors in lines, 1, 5, 6 and 7 may still play a

role for the short term time delay error. A realistic requirement

could be that this short term time error should be less than

500 nsec.

In order to meet the frequency monitoring requirement of

the SWI instrument the gate time has to be chosen long enough

relative to the end-to-end time delay variation. In this particular

case in accordance with equation (3) the gate time should be

longer than 29.7 sec to achieve a frequency calibration

accuracy better than 1.7·10
-8

The important result here is that the timing jitter in

measurement of the MET interval trough the space to ground

link is approximately 10 times higher than the gate time error

introduced through the frequency counter and the SpaceWire

time-code jitter. In this case the option to use a dedicated line

using a dedicated line between the OBC and the SWI for the

gate time signal distribution will reduce the required calibration

measurement time by 0.17 sec which is insignificant. The use

of SpaceWire time codes instead will help to reduce the

number of interfaces and the required harness mass.

It should be further noticed that an end to end time

correlation accuracy of less than 2 µsec like demonstrated by

the Gaia mission can only be achieved with significant effort

not only on board but also in the ground system. The

SpaceWire time code jitter size as reported in [3] has to be set

in relation time correlation accuracy. In most cases these errors

will only be minor contributor to the overall error.

In some cases there may be a benefit to synchronize the

different on-board times and to measure or remove the offset

between them as explained in [6].

For some special type of instruments the synchronization

requirement between on board clocks may be much higher than

the achievable space to ground correlation accuracy. Even if

this is not the case the synchronization between the clocks may

be a significant system simplification as the time correlation

with only the one reference on board clock is needed. In other

cases the measurement of the clock offset due to the time code

latency may be one important measurement to perform the time

correlation.

VII. CONCLUSIONS

This paper investigated the possibility to use SpaceWire

time codes on-board of the JUICE mission to calibrate the

USO frequency of the SWI instrument. When measuring a

frequency with a frequency counter any uncertainty in the

knowledge of the measurement period, which is called gate

time, is directly contributing to the frequency measurement

error. It has been shown that the gate time uncertainty

introduced by the time-code jitter at a link speed of 60 Mbps is

of the same order of magnitude as the inherent uncertainty of a

frequency counter measuring the frequency of a 10 MHz USO.

In comparison the gate time uncertainty introduced by the

space to ground link is approximately 10 times higher.

Fortunately all the errors sources contributing to the gate time

uncertainty can be compensated by increasing the gate time

length until the required frequency measurement accuracy is

met. In the investigated case the required gate time length is

determined by the time jitter in the space to ground link.

It is concluded that SpaceWire time-codes can be used

without problem to indicate the start and the stop of the gate

time. A dedicated line for a time signal between the on-board

computer and the SWI instrument does not improve the

measurement accuracy or reduce the required measurement

time significantly.

The analysis of the time correlation accuracy achieved in

the Gaia mission allows further to draw even some wider

conclusions for the use of SpaceWire time codes for the time

distribution on board of spacecraft. It has been shown that the

achievable time correlation accuracy is dominated by the time

jitter of the space to ground link as well. In comparison the

jitter introduced by the SpaceWire time codes contributes only

little to the overall time correlation error budget. This result

advocates the use of the SpaceWire network and SpaceWire

time codes for the on-board time distribution which will reduce

the number of on-board interfaces and required harness.

[1] JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit

Ganymede and to characterise the Jupiter system, Grasset, O. et.

al, Planetary and Space Science, Volume 78, April 2013, Pages

1–21.

[2] The Submillimetre Wave Instrument on JUICE, P. Hartogh et.

al., European Planetary Science Congress 2013.

[3] SpaceWire Time Code Latency and Jitter, M. Suess, F. Siegle,

Proceedings SpaceWire Conference 2013, 11-13 June 2013,

Gothenburg, Sweden.

[4] The Gaia mission science, organization and present status, L.

Lindegren et. al., Proceedings IAU Symposium No. 248, 2007.

[5] GAIA.EST.TN.28135, Gaia System Time Correlation Budget.

[6] SpaceWire time distribution protocol implementation and

results, A. Sakthivel et. al., SpaceWire Conference 2014,

Athens, Greece.

57

How RMAP improves in-flight update of on-board

software via SpaceWire
SpaceWire Missions and Applications, Short Paper

Holger Michel, Adrian Belger, Björn Fiethe, Tobias

Lange, Harald Michalik

Institute of Computer and Network Engineering

Technische Universität Braunschweig

Braunschweig, Germany

michel@ida.ing.tu-bs.de

 Martin Kolleck

Max Planck Institute for Solar System Research

Göttingen, Germany

Abstract—Modern space probes such as Solar Orbiter employ

a SpaceWire network to connect to on-board computer (OBC),

solid state mass memory (SSMM), and scientific instruments.

Management of SpaceWire links within scientific instruments is

typically performed by a data processing module (DPM)

featuring a space qualified processor that is executing on-board

software. To adapt to changing mission requirements, account

for failures and fix possible software bugs, the ability of

uploading and patching instrument software is mandatory.

However uploading and over-writing of the software’s boot

image cannot securely be performed by the software itself. If

over-writing the boot image fails, the remaining image might be

corrupted. So the processor may not be able to reboot

successfully and no further upload would be possible. Therefore

reception of uploaded patches must be performed by an

independent entity. Currently, this is accomplished by a

dedicated boot loader in separate memory area, to be qualified

according to ECSS criticality category B. This boot loader

processes uploading of patches and copies them to the second

boot area, where the actual software including the operating

system is stored. Due to the opportunity of modern processors to

handle SpaceWire RMAP accesses (e.g. SpW-RTC, UT699,

GR712RC [1], or upcoming NGMP [2]), it would be possible to

perform uploading and patching of the instrument software

independent of software execution using RMAP. This would

dramatically simplify the development, eliminate the need for a

class-B qualified boot loader, and will inherently improve

reliability, as reception of patches would entirely be performed

by hardware. This paper presents a possible update and patch

process for boot images using hardware based RMAP features.

Furthermore implications of the standard ECSS services

affecting such patching routines are discussed.

Index Terms—SpaceWire, RMAP, in-flight update, boot

loader, CCSDS PUS.

I. INTRODUCTION

In modern scientific instruments a data processing module

(DPM) handles processing of science data, instrument control,

and telecommand (TC), telemetry (TM) and housekeeping

(HK) communication. To receive TC and send TM and HK to

the on-board computer (OBC) and solid state mass memory

(SSMM) modern space probes such as Solar Orbiter or

BepiColombo are equipped with a SpaceWire network. The

DPM typically features a processor running instrument

software to process TC, generate TM and HK, and perform

instrument control. The instrument software is stored in a boot

memory contained in the DPM and is booted automatically on

power up. Due to changing scientific mission requirements or

handling of unexpected difficulties with the instrument, this

software may need to be exchanged or updated. Furthermore, if

in disregard of instrument changing scientific requirements, the

instrument was equipped with software that cannot be fixed

and updated it would be required to completely qualify the

software to almost highest ECSS criticality category. This

causes additional effort and limits possibilities like dynamic

memory allocation. Dynamic memory allocation in turn is

essential for fast external interfaces using direct memory access

(DMA).

II. TELECOMMAND (TC) AND HOUSEKEEPING (HK)

STANDARDS AND STRUCTURE

The standard for data structures in TC, TM, and HK packets in

ESA spacecrafts is ECSS-E-70-41A [3], which is based on

guidelines agreed on in the Consultative Committee for Space

Data Systems (CCSDS) such as reference document [4]. The

standard ECSS-E-70-41A [3] is a packet utilization standard

(PUS), defining the packet structure and a set of standard

services. For TC packets arriving at a scientific instrument, the

defined structure is depicted in Figure 1. Also this PUS [4]

defines a set of standard services. These services are functions

of the commanded entity e.g. the instruments DPM consisting

of a command, an action, and if applicable a reply. The

standard services are listed in Table I.

For a particular spacecraft the contractor building the

spacecraft platform performs a tailoring of this standard and

selects mandatory and optional services, the payload

instruments must be able to perform.

58

mailto:michel@ida.ing.tu-bs.de

Table I : Table 1 standard service defined by ECSS-E-70-41A [2]

Service Type Service Name

1 Telecommand verification service

2 Device command distribution service

3 Housekeeping & diagnostic data reporting service

4 Parameter statistics reporting service

5 Event reporting service

6 Memory management service

7 Not used

8 Function management service

9 Time management service

10 Not used

11 On-board operations scheduling service

12 On-board monitoring service

13 Large data transfer service

14 Packet forwarding control service

15 On-board storage and retrieval service

16 Not used

17 Test service

18 On-board operations procedure service

19 Event-action service

Within that standard set of services, the service that can be

used to update the instrument software is service 6 subtype 2

“Load Memory using Absolute Addresses service”. After an

upload and storing of a new software version has finished, the

DPM would simply have to be rebooted. There is no standard

service for rebooting a payload instrument; one possibility is

to use the service 8 subtype 1 “Perform function” or to use a

set of private services, if they are allocated for the mission, to

implement the reboot function. It is not sufficient if a boot

loader supports only these two services, instead the boot

loader must also implement a set of minimal standard PUS

services, so that spacecraft requirements for nominal operation

are fulfilled and the spacecraft allows further operation and

does not power down the instrument, Table II lists an

exemplary set of services.

Table II : Exemplary collection of a set of services

Minimal services that need to be supported

Service 1: TC Verification Service

TM 1 1 TC acceptance success report

TM 1 2 TC acceptance failure report

TM 1 7 TC execution success report

TM 1 8 TC execution failure report

Service 6: Memory Management Service

TC 6 2 Load data into memory area using absolute address

TC 6 5 Dump memory area using absolute address

TM 6 6 Memory dump using absolute address Report

TC 6 9 Check memory area using absolute address

TM 6 10 Memory check using absolute address Report

Services for which the boot loader may need to generate a reply

that avoids tripping error detection by the OBC

Service 3: Housekeeping and Diagnostic Data Reporting Service

TM 3 25 Housekeeping Parameter Report

Service 5: Event Reporting Service

TM 5 1 Normal / Progress Report

TM 5 2 Error / Anomaly Report - Low Severity –Warning

TM 5 3 Error / Anomaly Report - Medium Severity - Ground Action

TM 5 4 Error / Anomaly Report - High Severity - On-board Action

Service 9: Time Management Service

Service 17: Test Service

TM 17 1 Connection Test Response

TM 17 2 Connection Test Response Report

Service 19: Event-Action Service

TC 19 1 Add an Event to the Detection List

TC 19 4 Enable Actions

TC 19 5 Disable Actions

III. CCSDS / PUS SERVICES IN SPACEWIRE PACKETS

In SpaceWire packets a protocol identifier defines the

packet type [6]. RMAP is assigned to the protocol identifier

value 0x01 and the CCSDS packet transfer protocol is assigned

to the protocol identifier value 0x02. [7] defines how packets

of the CCSDS packet transfer protocol are transmitted through

a SpaceWire network by appending addressing, protocol

identifier, a reserved and user application byte at the start of the

packet and an EOP marker at the end of the packet, see Figure

2.

Target Spw Address Target Spw Address Target Spw Address

Target Logical
Address

Protocol Identifier Reserved = 0x00 User Application

CCSDS Packet
(First Byte)

CCSDS Packet CCSDS Packet CCSDS Packet

Target Spw Address CCSDS Packet

CCSDS Packet
CCSDS Packet

(Last Byte)
EOP

Figure 2 : SpaceWire packet transporting a CCSDS packet as defined by [6]
ECSS-E-ST-50-53C

IV. BOOT MEMORY OPTIONS AND ARCHITECTURE

In order to avoid the effort of qualifying the entire

instrument software to highest ECSS criticality level and allow

for updates during space flight, current DPMs (such as for the

Packet Header (48 Bits) Packet Data Field (Variable)

Packet ID
Packet

Sequence
Control

Packet
Length

Version
Number

(=0)

Type
(=0)

Data
Field

Header
Flag

Applica-
tion

Process
ID

Grouping
Flags

Source
Sequence

Count

3 1 1 11 2 14

16 1616

Data Field
Header
(most

services)

Source
Data

Spare
(Optional)

Packet
Error

Control
(Optional)

Variable Variable Variable
Not CCSDS,

but ECSS

Figure 1 : CCSDS packet structure as refined by ECSS-E-70-41A [3]

59

Polarimetric and Helioseismic Imager (PHI) instrument on

Solar Orbiter) have a two stage boot process, as depicted in the

system in Figure 3. The default boot memory address range

(0x0000 0000-0x0FFF FFFC) of the employed LEON

processor connects to a non-volatile memory containing a

minimal boot loader plus an additional boot memory which is

larger in storage and the content of which can be exchanged. In

the case of Solar Orbiter PHI DPM a minimal PROM memory

could be implemented within the Microsemi RTAX2000

system FPGA and a redundant NOR-flash is used to store the

second boot image, which includes an RTEMS operating

system and the complete instrument software. The basic boot

loader will need to initialize processor registers and the

SpaceWire interface and implement a basic driver for the

SpaceWire interface. As the SpaceWire interface in processors

such as the GR712 RC [1] uses direct memory access a

substantial amount of software complexity and therefore boot

loader size is required. Subsequently the boot loader needs to

perform basic TC and TM handling and check if an update of

the boot software needs to be performed. As NOR-flash cannot

be written directly like a simple SRAM device, a driver

performing defined program sequences also needs to be

integrated in the boot loader.

LEON3-FT
Processor

e.g. GR712RC

SpaceWire
LVDS driver

Driver

Processor’s memory bus

Spacecraft

1st Bootloader

orBoot
PROM

Mian
Boot

Memory
e.g.

NOR-Flash

FPGA
logic

Driver

Figure 3 : Instrument data processing module boot memory set-up

V. REMOTE MEMORY ACCES PROTOCOL (RMAP)

The SpaceWire Remote Memory Access Protocol (RMAP)

is a protocol that works over SpaceWire. This Protocol allows

reading and writing memory remotely in a SpaceWire node.

RMAP is defined in ECSS-E-ST-50-52C [5]. A memory write

transaction is depicted in Figure 4 and it consists of SpaceWire

addressing, protocol identifier, instruction, key, reply address,

initiator logical, transaction identifier, address, data length, data

and CRC-byte. In many radiation hard processors, such as e.g.

the Aeroflex Gasiler GR712RC [1] the Aeroflex UT700 etc.

the RMAP protocol is supported directly in hardware. In these

devices even the complete address space from the processor

bus can be read and written by RMAP. Therefore all the cores

on the processor’s AMBA bus including the debug support unit

(DSU) can be reached. On ground the software debugger

(GRMON) can connect to the processor through the SpaceWire

interface without requiring an additional debug connector. Also

on ground the second boot memory in the NOR-flash is written

by uploading the boot image and a small program to the

processor’s working memory and then starting the small

program that copies the boot image from working memory to

the NOR-flash.

Target Spw Address Target Spw Address Target Spw Address

Target Logical
Address

Protocol Identifier Instruction Key

Reply Address Reply Address Reply Address Reply Address

Reply Address Reply Address Reply Address Reply Address

Data EOP

Reply Address Reply Address Reply Address Reply Address

Initiator Logical
Addess

Transaction Identifier
(MS)

Transaction Identifier
(LS)

Extended Address

Address (MS) Address Address Address (LS)

Data Length (MS) Data Length Data Length (LS) Header CRC

Data Data Data Data

Data Data

Data CRC

Figure 4 : SpaceWire packet containing an RMAP write command (as given

by ECSS-E-ST-50-52C [4])

VI. USING RMAP FOR UPDATE OF INSTRUMENT SOFTWARE

As the boot memory update procedure on ground only uses

the SpaceWire interface, which is also available via the space

craft’s OBC in flight, it seems logical to also use this procedure

to update the boot software during flight operation. The only

changes that would be necessary are, to create a separate

RMAP command for the processor initialization that GRMON

performs in the update process on ground and use RMAP’s

safety and error checking capabilities. However as RMAP

provides access to all registers including debug support unit

(DSU) this is not a problem. Thus a possible update procedure

via RMAP for e.g. the GR712RC could consist of:

1) Stopping the software execution of the processor, by

simply writing to the DSU register “break now”

2) Initializing processor register via DSU including program

counter and Ancillary State Registers (ASRs)

3) Initializing the interrupt controller, memory configuration

registers, and the GPIO controller

4) Disabling breakpoints and the debug mode by writing to

the DSU control register and disabling the DSU Debug Mode

Mask register

5) Uploading a program that writes boot memory content

(see step 6) from working memory into the NOR-flash

memory; alternatively this program could already be stored in

another memory area and just copied to the working memory

to minimize upload data volume, but still being replaceable by

a newer version if needed

6) Uploading the new boot image via RMAP to the working

memory. This could also be optimized by only uploading

addresses and chunks of data where a difference to the current

boot image occurs (patch)

60

7) Finally starting the copy to NOR-flash process by writing

to the DSU break and single step register, when copying the

data has finished the program can cause the processor to boot

from the new boot image or cause a processor reset via a

register in the supervisor FPGA.

As RMAP features a key byte and can be used with target

logical address and RMAP cores are able to check these two

bytes, they can be used as a security check to prevent any

accidental triggering of the steps mentioned above, like e.g.

stopping software execution.

VII. RMAP ACCESS PROBLEMS

Despite appearing pretty straight forward an RMAP based

software update procedure has some problems. Firstly in the

many cases such as the GR712 processor the hardware RMAP

support can be disabled by software, whereby a corrupted

software image could potentially block any further accesses

and disable software updates. Also software can set the

SpaceWire logical address in the SpaceWire core of the

GR712, which results in the SpaceWire core discarding any

data that does not start with this logical address. Both of these

problems could be somewhat alleviated by ensuring correct

core settings through the first boot loader and halting the

processor execution or including a wait before the second boot

loader is started for a sufficient amount of time. As this is only

a register access it will not increase the size of the first boot

loader by a lot.

VIII. CONCLUSION

In the case of Solar Orbiter the ground operation team and

particularly the OBC only offers CCSDS PUS services for

payload instruments. Reasoning this with safety checks

performed on the OBC and SSMM, which require a match

between a SpaceWire packet’s logical address and the

application ID (APID) inside the CCSDS data packet, see

Figure 1. However an RMAP write packet, which is depicted

in Figure 4, starts with instruction, key and, reply address bytes

and therefore cannot contain a CCSDS type header including

APID which could be used for this safety check. Furthermore

the Spacecraft would need to allow sending a packet with the

protocol ID of RMAP (0x01). As the reply address in RMAP

has 12 Bytes and logical addressing of a single byte is used it

would be feasible to use the remaining 11 bytes for such header

information. However this only applies to a reply, as in a

request the position of an APID is the first byte of the reply

address which is used for routing the reply packet.

Despite these difficulties an RMAP based update procedure

would have several advantages. Such an update procedure

would completely eliminate the need of any instrument

software in the update process and thereby be inherently more

reliable. Furthermore, if no software is required, this software

does not need to be stored, which frees valuable FPGA

resources or eliminates the need of an additional PROM, which

would simplify system architecture and processor bus load as

depicted in Figure 3. Additionally it would reduce development

effort and costs, because no boot loader would need to be

developed and qualified.

In conclusion RMAP would be an elegant, effective and more

reliable mean of updating the instrument software, but there is

a lack of harmonization between the two standard protocols of

SpaceWire RMAP and the CCSDS PUS services and missing

support by the OBC platform at least in the exemplary case of

Solar Orbiter.

REFERENCES

[1] GR712RC – User’s Manual, Aeroflex Gaisler AB,

http://www.gaisler.com, Issue 2.3, May 2014

[2] LEON4-N2X - Data Sheet and User's Manual, Aeroflex Gaisler

AB, http://www.gaisler.com, Issue 2.3, May 2014

[3] CCSDS 102.0-B-5 Packet Telemetry, Blue Book, Issue 5,

November 2000

[4] ECSS-E-70-41A “Ground systems and operations - Telemetry

and telecommand packet utilization”, European Cooperation for

Space Standardization http://www.ecss.nl/, January 2003

[5] ECSS-E-ST-50-52C “SpaceWire - Remote memory access

protocol”, European Cooperation for Space Standardization

http://www.ecss.nl/, February 2010

[6] ECSS-E-ST-50-51C “SpaceWire protocol identification”,

European Cooperation for Space Standardization

http://www.ecss.nl/, February 2010

[7] ECSS-E-ST-50-53C “SpaceWire - CCSDS packet transfer

protocol”, European Cooperation for Space Standardization

http://www.ecss.nl/, February 2010

61

 Standardisation (Long)

62

Standardisation of the Network Management

Service Suite (N-MaSS) for Fault Detection,

Isolation and Recovery for SpaceWire

NOT PERMITTED TO PUBLISH PAPER

63

Standardized SpaceWire Solutions for Next

Generation Systems
SpaceWire Standardization, Long Paper

Joseph R Marshall

BAE Systems

Manassas, Virginia, USA

joe.marshall@BAESystems.com

Abstract1—SpaceWire is leveraged as one of three main fabrics

in SpaceVPX, a new system physical interconnect and form

factor standard nearing completion at VITA. RapidIO and I2C

along with heritage CompactPCI enable space systems to be built

with full single point fault tolerance yet leverage the existing

OpenVPX infrastructure for prototyping and test. SpaceVPX is

described along with new network components under

development that together may be applied across a large range of

spaceborne electronics mission needs yet providing

interoperability, scalability and future upgrade savings.

Index Terms— Relevant indexing terms: SpaceWire,

Networking, Spacecraft Electronics, SpaceVPX, OpenVPX,

RapidIO, I2C, CompactPCI, NGSIS, Processor, Endpoint,

Packet Switch, Crosspoint Switch, fault tolerance, DSP, RCC.

I. INTRODUCTION

SpaceWire continues to see extensive usage throughout the

space community. As a medium speed serial fabric,

SpaceWire provides a low cost alternative to bussed systems

and is easily scaled to meet performance requirements from

less than 1 Mbps up to a couple of Gbps, after which a

SERDES-based interface becomes appropriate. Supported by a

large body of users, SpaceWire continues to evolve. This

support and flexibility has caused SpaceWire to be written in as

the control plane of VITA 78 (SpaceVPX) document, one of

the Next Generation Spacecraft Interconnect Standards

(NGSIS). The document specifies an interoperable form factor

for space electronics boards within a backplane-based system

needing multiple levels of fabric based interconnects for future

space systems under AIAA, Serial RapidIO and VITA

standards umbrellas.

This paper describes the history and development of the

SpaceVPX standard and how the standard grew out of an

industry consensus for a high performance internal form factor

to support future high performance space payloads. The

capabilities and extensions of the standard that are built on top

of the extensive infrastructure developed for OpenVPX® –

VITA 65 are highlighted. SpaceWire is leveraged in

SpaceVPX as the control plane across defined slots and

1
 Approved for Public Release #ES-MVA-072814-0388

backplanes and as an intricate part of the fabric families

supported (RapidIO, SpaceWire and I2C). The paper will

describe how SpaceWire and SpaceVPX may be applied to

space systems, both large and small. The application of BAE

Systems’ family of processing and network products with

SpaceWire capabilities to SpaceVPX illustrates how systems

may be built from a small set of network building blocks. Such

building blocks may be utilized to create various interoperable

SpaceVPX modules and networks, which range from remote

endpoints to high performance processing payloads. The paper

concludes with a view of future efforts in the NGSIS and

SpaceVPX realms.

II. SPACEVPX DEVELOPMENT

A. NGSIS Formation and Goals

In 2011, a group was formed at the GOMACTech

conference to look at the future in interconnect standards. Both

government and industry people realized that they were on the

verge of moving spaceborne onboard processing solutions from

bussed based systems to fabric based systems. SpaceWire was

the first successful foray into these new topologies though it

did not offer enough scalability for upcoming mission data

movement needs. With high speed SERDES elements

supporting multiple commercial / protocol standards beginning

to appear in advanced space technologies, there was a risk of

multiple development options fracturing the space market.

Rather than everyone invent their own way to do this, the

group was formed to develop or adopt common standards. The

Next Generation Spacecraft Interconnect Standards group was

formed under the leadership of AFRL and JPL. [1]

The NGSIS group spent the first year capturing

requirements and defining scope according to standard system

engineering practices. With this in hand, the group determined

the best interfaces to focus on. Four levels of interfaces were

explored – a high speed SERDES fabric for data, a medium

speed LVDS fabric for control and data, some form of lower

speed interface such as 1553 for telemetry and a bussed

interface such as PCI or VME. Comparing different trade

studies for the best SERDES interface showed most

organizations had selected Serial RapidIO as the most

64

promising because of its efficient data and error handling and

power needs [2]. RapidIO also had sufficient commercial

industry usage to provide an infrastructure to build on.

SpaceWire was selected as the best choice for the medium

speed control and data handling interface due to widespread

usage, scalable performance, ease of implementation, existing

standards and, though unique to spacecraft applications -

sufficient existing test equipment infrastructure. 1553 and PCI

were both identified as heritage interfaces to consider though

1553 was more oriented to box to box than internal boxes.

This led to two major focuses of the NGSIS effort. One

group focused on creating a space version of RapidIO with

extensions to that standard that are beneficial for using

RapidIO in future spaceborne applications.[3] Originally

named Part S, this has since been moved to the mainstream of

the standard and will be incorporated in upcoming releases.

The other group focused on a common form factor for NGSIS

applications as otherwise there would be little interoperability.

Once again, the consensus of the members was that OpenVPX

or VITA 65 was the best match to the types of systems and

modules that would be created in the future. This led to the

formation of the SpaceVPX study group assigned to VITA 78

by the VITA Standards Organization.[4]

B. SpaceVPX History

The study group set a number of goals for their standard.

SpaceVPX was to be as close to OpenVPX as reasonable to

make sure users could leverage the OpenVPX infrastructure of

modules, chasses and backplane for their systems. The

standard would extend OpenVPX so that fully single point

fault tolerant systems could be built by following the standard.

RapidIO and SpaceWire would form the major interfaces in

slot and backplane profiles defined to support interoperable

modules that could support both mesh and star topologies.

Heritage modules from previous systems would be

accommodated.

One of the major early trades was how to extend the fault

tolerance of modules beyond that of OpenVPX. Analysis

showed that there were several single points of failure in the

power and utility signal areas. SpaceVPX decided not to

extend modules or place active circuitry on the backplane.

Instead one new type of module, a Space Utility Management

(SpaceUM) module was added. The SpaceUM module

contains switching circuits and logic necessary to present one

set of power and utility signals to each module selected from at

least two sets of power and utility signal feeds from redundant

elements. With proper fault containment, this provides single

fault tolerance yet allows reuse of OpenVPX modules and

backplanes for prototyping.

III. SPACEVPX CAPABILITIES

SpaceVPX is mainly defined as overlapping profiles as

shown in Fig 1. Chassis profiles define the structures that

SpaceVPX backplanes and modules plug into. Power-keying

profiles define the mix of voltages and currents that may feed

the SpaceUM modules for selection to the logic modules.

Backplanes describe the combinations of slot profiles that are

used to build a system. Slot profiles defined the module

pinouts and Module profiles define the protocols that are

mapped onto the slots. The slot and module profiles provide

the maximum opportunities for interoperability between

vendors as flight backplanes will likely use SpaceVPX

backplanes as guides – final flight backplanes will exactly

match their needs to minimize size, weight and power.

Chassis
Profile

Module
Profile

Slot
Profile

Backplane
Profile

Power-
Keying
Profile

Module
Profile

Slot
Profile

Module
Profile

Slot
Profile

Figure 1 – SpaceVPX Profile Map

A. Interconnections and Planes

SpaceVPX, like OpenVPX, is all about connections

between circuit card assemblies or modules. SpaceVPX

provides a defined set of interconnection planes to span a large

set of applications. These start with the System Management

Interface (SMI) which is defined as I2C supplemented with a

reset and a status line. This may operate up to 400 KHz. The

SMI is designed to enable the system controller to handle

chassis management, low speed commands, configuration,

telemetry and status limited by the speed of the interface. The

SMI is supplemented with a system reset and up to four

broadcast clock or strobe signals to make up the signal portion

of the utility plane in SpaceVPX.

SpaceWire is defined as the control plane for SpaceVPX.

This provides a medium speed (up to 400 MHz) interface for

both higher speed control, status, testing and telemetry as well

as data rates that can make use of the speed of one or more

SpaceWire links. SpaceVPX only defines the control plane in

backplanes as a switch/router topology. However, SpaceWire

switch/routers with embedded payload functions could be used

in a mesh topology especially if no data plane was required.

The highest speed data needs are met by SpaceVPX’s Data

Plane. This is defined as RapidIO in configurations of one to

four lanes each running up to 6.25 GHz per lane. SpaceVPX

65

defines both switch and mesh topologies to enable system

integrators to build exactly what is needed.

SpaceVPX also defines an expansion plane that may be

used to route high speed interfaces in a slot to slot fashion,

forming rings or subnets independent of the main data plane.

RapidIO is one of the interfaces that may use this additional

plane, but the expansion plane may also be used for user

defined interfaces between modules such as additional

SpaceWire, XAUI, PCI Express or a unique protocol.

All these planes are connected in point to point networks,

even the SMI. This is one the enablers for the advanced fault

tolerance possible in SpaceVPX systems as compared to

OpenVPX. Figure 2 shows a maximum slot profile with all the

various planes and user defined pins identified.

Control Plane
(SpaceWire)

Data Plane
(RapidIO)

Utility Plane
(SMI, Clocks,
Reset, Power,
GA, JTAG)

User Defined

Utility Plane
(SMI, Clocks)
To SpaceUM

System
Controller
with Data,
Expansion
Planes and

Heritage
Interfaces

Heritage
(cPCI)

Expansion Plane
(RapidIO or
User Defined)

Figure 2 – Slot Profile Planes

B. Form Factors

SpaceVPX builds upon the metric form factors of

OpenVPX, VITA 48.2[5], defining 3U and 6U form factors in

lengths of 160, 220, 280 and 340 mm. Module pitch may be

0.8”, 1.0” or 1.2”. Larger slots may be created by ganging any

of these. 6U Slot connector and pin definitions are identical for

any length or pitch form factor. This is also true for 3U slot

definitions within the standard.

The form factor uses the front edge of the top printed

wiring board as the datum for all measures with standardized

envelopes defined for each size. The 1.2” module pitch was

added to OpenVPX’s so larger components could be placed on

both the front and the back of the modules. All SpaceVPX

modules are assumed to be conduction cooled and wedgelocks

are allowed on either side as long as the overall dimensions and

connector placement are maintained. Module dimensions were

chosen to allow OpenVPX modules to fit in SpaceVPX

backplanes and chassis. Daughter cards are allowed within the

envelope.

OpenVPX has defined three connectors which each may be

used on OpenVPX modules. These connectors fit in the same

space on a printed wiring board and thus are interchangeable to

the design. The three require different backplane connectors

and are thus not inter-matable. A system designer must pick a

backplane connector for each slot and then that will determine

which connector needs to be on the pluggable module. The

working group could not differentiate sufficiently between the

three connector types and thus also passed along this choice in

SpaceVPX. The working group expects initial users will

choose one connector and that may become the defacto

standard for SpaceVPX modules. Or the ease of changing

connectors on a module without other changes may encourage

the use of two or all three.

Large 6U OpenVPX modules with multiple graphic

engines can use up to 500 W per module. In the conduction

cooled space environment, this is way beyond today’s practical

space cooling limits. SpaceVPX limits any 6U module to

100W and expects most initial modules to be under 50W.

OpenVPX allows modules to take most of their power from

12V (>40A) and remaining amounts on 5V (>20A). 3U

OpenVPX modules allow 20A on 12V, 5V and 3.3V. Since all

power goes through the SpaceUM module with pin and

isolation imposed limits on inputs and distribution, SpaceVPX

defined several power profiles with varying amounts from

either one to all three of these voltages. Keying is used to

allow either 6U or 3U power schemes to be used on any

module. This allows 6U heritage module designs that are 3.3V

powered to be easily mapped to a SpaceVPX form factor

without major redesign. Like the connector, power profiles are

expected to consolidate around a few popular choices and

others may be eliminated in a future version of the standard.

C. Fault Tolerance

The largest enhancement in SpaceVPX is the extension for

fault tolerance. SpaceVPX defines the requirements to

construct a single point fault tolerant system. This led to the

following improvements:

At least two of every key element in the system is required.

There are two power supplies, two system controllers and at

least two of each payload, switch or peripheral module. For

items like specific payloads or peripherals, M of N sparing may

be employed to produce a more efficient sparing than multiple

pairs of devices. All interfaces are cross-strapped between

primary and redundant elements. Each redundant element

must be designed for error containment to make sure an error is

not able to propagate primary and redundant copies.

All utility and power signals in OpenVPX were analyzed.

Any that have usage in SpaceVPX are duplicated by each

system controller (e.g. CLOCKS, SMI) or contain a parity bit

(e.g. the SYS_CON and SYS_CONP signals) to guard against

single bit errors.

66

The newly defined SpaceUM module is a logical extension

of the power supplies, the system controller and each logic slot

in the system. It receives power from two power supplies and

then uses selection logic to provide power to its logic and

switches and to one or two of the system controller modules

based on discretes received from external sources. The system

controllers (or external commands to the controllers) direct the

chassis powering, testing, status and operation of all other logic

modules in a SpaceVPX system using the SMI. This includes

isolating problems and powering up spare modules to replace

failed ones. The SpaceUM module is the vessel for the power

and signal switches from two power supplies and two system

controllers to the single power feed and control signals that are

radially routed to each logic module.

Each logic module contains a module manager that

responds to the SMI and is able to provide basic module status

and diagnostics. A minimum mandatory set is specified in

SpaceVPX and additional access capability is defined for both

generically specified elements and user defined extensions. In

systems with control requirements that can operate within the

bounds of the slow SMI, additional operational configuration,

status and commands may also use the SMI from the System

Controller.

The SMI managers must use and respond to either the

complex publish –- subscribe protocol defined in VITA

46.11[6] or the simpler direct access protocol (DAP) defined in

SpaceVPX. The latter was created to support simpler hardware

implementations then possible with VITA 46.11. A simple

state machine driven SMI is possible using the DAP that may

be easily implemented as part of an ASIC or FPGA on the

logic module.

Figure 3 shows the System Controller’s central position of

managing the internals of a SpaceVPX system. Note that

compared to SMI, SpaceWire presents significant scalability

and flexibility for increasing amounts of command and data

handling throughout the system.

Taken together, the fault tolerant extensions introduced in

SpaceVPX enable systems to be built that are single point fault

tolerant. Of course for small applications, single string

SpaceVPX systems may be built without the need for the

duplicate elements, power and signal source switching or

cross-strapping.

D. Heritage

In the past decade many space backplane systems relied on

a PCI Bus using the CompactPCI® form factor and

standard.[7] Thus, moving to the pure fabric approach in

SpaceVPX could require all new modules. OpenVPX

attempted to create a PCI backplane definition (VITA 46.2),

but most military and commercial applications had already

moved to fabrics on backplanes. Thus only PMC (IEEE

1386.1[8]) was defined as an on board daughter card standard

for OpenVPX. SpaceVPX updated the OpenVPX work for the

typical space usage (32-bit) of CompactPCI. The layouts and

orientations of CompactPCI (cPCI) and VPX modules are

opposite [9]. Thus in order to enable backplanes to route the

cPCI bus from VPX modules to cPCI modules, the connector

section P5/J5 was defined for the 32 bit mapping of PCI. This

routed directly across to the P1/J1 connector on a cPCI module.

Surveys of space users found limited interest in a 64 bit bus so

only the 32 bit version was standardized. SpaceVPX did

publish a suggested pinout for the additional pins on user

defined pins in P4/J4, but the committee did not expect anyone

to use that since the higher speed fabrics would be much more

scalable than a 64 bit cPCI bus.

System
Controller

A

System
Controller

B

SpaceWire

R
o

u
te

r

R
o

u
te

r

SpaceWire A
to all Modules

SpaceWire B
to all Modules

SpaceUM
A

SpaceUM
B

SMI & Clocks

SMI & Clocks

Power

Power

SMI & Clocks
To 1-8 Modules

SMI & Clocks
To 1-8 Modules

Power A and B

Power A and B

Power & Sys Controller Selects
(fault tolerant)

SpaceWire to other boxes

SpaceWire to other boxes

Optional data plane connections

Optional data plane connections

 Figure 3 – System Controller Location in SpaceVPX

67

With the 32 bit PCI definition on P5, any payload, system

controller or peripheral may serve as a PCI Bridge or

participate on the PCI Bus. This will encourage heritage cPCI

modules to first be inserted as a heritage module and then in

subsequent systems be re-released in the SpaceVPX form

factor with changes required only to add the utility and control

plane signals. CompactPCI® is a bus and fully compliant

modules do not support cold sparing. Thus any group of

modules with a PCI Bus needs to be treated as a group for

sparing. Redundancy requires that a separate set of modules

have a second PCI Bus to be single point fault tolerant. The

working group believes this will eventually phase out the use

of cPCI in SpaceVPX; however the longevity of MIL-STD-

1553 illustrates how long this may take in space systems.

E. OpenVPX Infrastructure

OpenVPX enjoys multiple suppliers and many applications.

Modules, backplanes and chassis are available from multiple

vendors that may be used for prototyping, debugging,

stimulating and/or testing SpaceVPX modules and systems.

The working group went to great lengths to make sure that

SpaceVPX developers could leverage OpenVPX infrastructure

[10] to reduce non-recurring costs in the development of

systems. For example, the SYS_CON and SYS_CONP signals

of SpaceVPX were carefully defined to work with the

OpenVPX standard definitions and any known usage of these

OpenVPX signal positions.

Mappings between SpaceVPX and OpenVPX profiles have

been created and studied throughout the effort to develop

SpaceVPX modules with the maximum cross-use between

modules and backplanes between the two standards.

IV. SPACEWIRE IN SPACEVPX

As described above, SpaceWire is the medium speed

performance fabric in SpaceVPX systems. Using an extension

such as RMAP, SpaceWire is well-suited for control plane

operations as well as basic data handling and data streams.

VPX connectors are rated commercially for up to 10 GHz and

should support up to 6.25 GHz depending on backplane length.

This should envelope the needs of the SpaceWire running up to

600 MHz on these connectors as well as the standard external 9

pin connectors off the top of a module.

A. System Controller

Refer back to Figure 3. Only slots with SYS_CON and

SYS_CONP set to the proper states may be a system controller.

The slot definitions are defined so that a single card design can

function as a System Controller, Payload or Peripheral slot

depending on what is active. A Payload or Peripheral function

may use and route additional Control Plane ports for

transferring data through the Control Plane to supplement the

data plane connections.

The System Controller will depend on SpaceWire for

connections to all modules after they are powered and active

(via the Utility plane) without interfering with data transfers on

the data plane. This can be used to configure modules by

moving large blocks of code or tables of parameters or gather

larger amounts of telemetry in real time than is possible on the

400 KHz SMI or to transfer medium amounts of data between

the System Controller and specific modules. The control plane

router/switch is defined on the System Controller in SpaceVPX

but this can be split into two modules if needed as long as

appropriate control plane cross-strapping between controller

and control plane switch modules is employed.

B. Control Plane

The System Controller will have a control plane

(SpaceWire link) to each SpaceVPX module in the box. Two

links are provided between the SpaceVPX controllers and two

external connections are included for extending the control

functions between SpaceVPX boxes. Each System Controller

slot has defined sufficient SpaceWire ports to meet the above

in a typical system. User Defined signals may be used to add

additional ports. Unused control plane ports are typically

reserved on a module for maximum interoperability.

V. SPACEVPX SYSTEMS

SpaceVPX has been designed to apply across a large group

of spacecraft applications. Anywhere a backplane is useful,

SpaceVPX should be able to provide the interconnecting form

factor for a spaceborne box, using the needed fabric subset for

processing performance.

A. Large Payloads/Systems

The focus of the working group has been on boxes with 6U

modules. These naturally may result in larger payload systems

than the limited connectivity a 3U module can provide. Figure

4 shows a typical large system.

Data Input

Data Input

Data Input

Data Output

Data Output

Data Output

G
P

P
 / SysC

n
tlr

G
P

P
 / SysC

n
tlr

D
SP

D
SP

R
C

C
 / FP

G
A

R
C

C
 / FP

G
A

Sto
rage

Sto
rage

Sto
rage

Sto
rage

Sto
rage

Data Switch

Data Switch

Power

Power

SpaceUM

SpaceUM

SpaceUM

H
eritage I/O

H
eritage I/O

Figure 4 – Large System Module Block Diagram

Data (indicated by blue arrows) arrives from the analog

world through input modules, may be stored in and retrieved

from memory modules, processed on board in various types of

processing modules and then exits the system on output

modules. Each of these is typically a payload or a peripheral

module. Each module type typically has at least one spare for

fault tolerance as determined by reliability calculations. Two

of the processing modules will be designated System

68

Controllers in a SpaceVPX system and one of these at a time is

in control of the system as explained earlier. Data connections

between modules are typically through a pair of redundant

Data Plane Switches or a peer to peer mesh or some

combination of the two. (Switches are shown). Dual power

supplies and one to four SpaceUM modules (each supporting

up to 8 logic modules) round out the makeup of a typical

SpaceVPX system.

B. Small Payloads/Systems

Smaller payloads and systems typically combine some of

the payload functions onto a smaller set of cards. For instance

a reconfigurable computer (RCC) module may also have input

RF or optical data functions or a storage module may also have

a communications link to an external sync. Data Planes are

typically greatly reduced which lowers the ports needed on

switches or even eliminates data plane switches in favor of

meshes. At the extreme, or to handle some of the input or

output data, the SpaceWire links in the control plane may be

used. Figure 5 shows a typical smaller system. The small

system may be created out of either 6U or 3U modules

depending on the function density on each module. Depending

on data needs, either RapidIO or SpaceWire will be used for

data movement.

Data Input/RCC

Storage / Data
Output

G
P

P
 / SysC

n
tlr

G
P

P
 / SysC

n
tlr

Power

Power

SpaceUM

mesh
Data Input/RCC Storage / Data

Output

Figure 5 – Small System Module Block Diagram

VI. SPACEVPX BUILDING BLOCKS

BAE Systems created one of the first radiation-hardened

SpaceWire ASICs in 2004 [11]. This ASIC provided a bridge

between two PCI busses and a SpaceWire router with four

SpaceWire ports. This ASIC was used in multiple locations

within the NASA Lunar Reconnaissance Orbiter (LRO) [12].

Based on this part, BAE Systems created a dual PHY single

port SpaceWire Endpoint (now named the RADNETSPW-

EP™) in 2011 [13] and the Golden Gate ASIC (now

designated the RADNETSPW-BR4™) in 2012 [14]. This

latter device combined into a single 150nm ASIC the original

SpaceWire ASIC with the RAD750 bridge ASIC and the PCI

Peripheral Interface ASIC containing 1553 and FIFO

interfaces. Each of these two newer devices contain RMAP

support in their connections from SpaceWire to the rest of each

ASIC and an embedded microcontroller making remote load

and remote access possible without initialization.

A. Latest Network ASICs

NGSIS standards were started because multiple

organizations were on the cusp of moving to new fabric

networks and wanted to standardize. BAE Systems is currently

one of those and in the process of designing several new

network ASICs.

The RAD55xx™ family of processors[15] feature from one

to four 1.3 GOP CPU cores supported by four RapidIO ports of

four 5 Gbaud lanes, sixteen SpaceWire links with a router, four

I2C interfaces, two DDR3 ports and a host of other System on

a chip (SOC) functions and interfaces.

The RADNETSRIO-EP™ bridges a dual PHY single port 5

Gbaud 4 lane RapidIO port to four SpaceWire links with a

router, four I2C interfaces, a redundant MIL-STD-1553

interface, two dual PHY XAUI ports, two DDR3 memory ports

and other SOC functions and interfaces. Five embedded

microcontrollers supported by 256 KB of embedded memory

are available to move the data between interfaces.

The RADNET1848-PS™ implements a 12 to 18 port

RapidIO non-blocking crossbar switch across 48 lanes of 5

Gbaud RapidIO and significant network diagnostic registers.

The RADNET1616-XP™ provides a SERDES cross point

switch that may be used for port sniffing, redundant ports or a

small switch using its independent 16 input and 16 output

SERDES lanes.

All of these ASICs are being implemented in RH45™,

BAE Systems’ 45 nm radiation hardened by design SOI

technology.

B. Example Systems

Figures 6 and 7 show the systems in Fig 4 and Fig 5

annotated for where these components may be used to create

SpaceVPX modules. This is representative of how new

network ASICs or high performance FPGAs may be applied to

creating SpaceVPX modules and systems.

Data Input

Data Input

Data Input

Data Output

Data Output

Data Output

G
P

P
 / SysC

n
tlr

G
P

P
 / SysC

n
tlr

D
SP

D
SP

R
C

C
 / FP

G
A

R
C

C
 / FP

G
A

Sto
rage

Sto
rage

Sto
rage

Sto
rage

Sto
rage

Data Switch

Data Switch

Power

Power

SpaceUM

SpaceUM

SpaceUM

A A A A A

B

B

C C A AC C

A

A

A

A

A

A

E E

H
eritage I/O

E

H
eritage I/O

E D D

A=RADNETSRIO-EP
B=RADNET1848-PS
C=RAD55xx
D=RADNET1616-XP
E=RADNETSPW-4BR

B

B

D D

D

D

D D

D

D

Figure 6 – Example Large Payload utilizing BAE Systems

ASICs as building blocks

69

RapidIO endpoints (A) provide the SpaceVPX fabric

connections to any of the typical payload functions –

processing, input, output and storage. Packet switches (B)

make up the data switch modules. RAD55xx (C) processors

provide a scalable high performance processing module and

system controller as well as SpaceWire control plane switch.

Crosspoint switches (D) enable redundant ports to be added.

Existing bridge ASICs (E) connect heritage cards to the

SpaceVPX system.

Power

Power

SpaceUM

A=RADNETSRIO-EP
E=RADNETSPW-4BR
F=RADNETSPW-EP

Data Input/RCC

Storage / Data
Output

G
P

P
 / SysC

n
tlr

G
P

P
 / SysC

n
tlr

Power

Power

SpaceUM

mesh
Data Input/RCC Storage / Data

Output

E E

F
A

F
A

Figure 7 – Example Small Payload utilizing BAE Systems

ASICs as building blocks.

The small payload is illustrated with SpaceWire interfaces

being used for both control and data planes. Existing endpoints

(F) and bridges (E) are used to provide the SpaceWire

interfaces for the payload functions. If additional performance

or interfaces are needed, the RapidIO Endpoint (A) can also be

used.

VII. FUTURE DIRECTION

A. SpaceVPX

SpaceVPX or VITA 78 just completed a second working

group ballot with only one no vote out of 17 and that was

mainly to make sure the many broken links in that version were

closed. The next step will be either a trial use standard or

move toward full ANSI standard status. Several organizations

are known to be developing modules that follow the current

standard which will help validate many capabilities. Future

focus of the group will be towards the 3U scenarios, power

converters, optical in conjunction with VITA 79 and

integrating some features back into VITA65 for OpenVPX

users interested in more fault tolerant systems.

B. NGSIS

In 2014, NGSIS will be wrapping up initial SpaceVPX and

RapidIO extensions with potential follow-ons. During the past

year, there have been several other complementary standards

efforts (e.g. SUMO, ESA)[16] that are attempting to define

other areas of spacecraft to standardize. NGSIS members are

active in defining the proper roles for NGSIS standards in

conjunction with these efforts. The upcoming standards

changes for SpaceWire will need to be evaluated for possible

compatibility changes needed in NGSIS standards to maximize

common solutions and interoperable networks.

C. Payoff

As SpaceVPX modules begin to appear in 2015 that utilize

the new network ASICs being developed, scalable solutions

will be possible across the three interconnect fabrics defined in

SpaceVPX along with heritage interfaces such as PCI.

Interoperability will be important both between different

module types (switches and payloads) and the same modules

(different payloads). As these products become available from

multiple space vendors, best of breed systems can be

constructed. Prototypes, test cards and generic backplanes and

chassis may be purchased or adapted from OpenVPX modules,

backplanes and chassis, cutting the NRE needed and leveraging

the larger infrastructure of the OpenVPX marketplace.

The real payoff will come when systems that use the

SpaceVPX modules are ready for an upgrade and modules that

meet the SpaceVPX standards for existing modules or spare

module slots may be inserted to create more powerful systems

without having to go through a full interface definition effort

again. This is attractive to both integrators who define the

system needs and suppliers who will be able to apply their

solutions developed for one system to other systems without

the typical NRE required for insertion. BAE Systems is and

will leverage its varied experience in spaceborne electronics

standards along with its new and existing network ASICs to be

part of this new paradigm for spacecraft systems.

REFERENCES

[1] Charles Patrick Collier, Joseph Marshall, Richard Berger,

Michael Enoch, Scott Goedeke, Next Generation Space

Interconnect Standard (NGSIS): A Modular Open Standards

Approach for High Performance Interconnects for Space, AIAA

Reinventing Space 2013 Conference, Los Angeles, CA,

September 2013.

[2] Marshall, J. R., Berger, R. W. and Bear, M. J., “Space Data Bus

Technologies Evolve to Network Fabrics”, GOMACTech 2012,

Las Vegas, Nevada, March, 2012.

[3] RapidIO Trade Association, Austin, TX, www.rapidio.org.

[4] VITA Standards Organization, Fountain Hills, AZ,

www.vita.com

[5] Mechanical Specifications for Microcomputers Using

REDI Conduction Cooling Applied to VITA VPX,

ANSI/VITA 48.2, VITA Standards Organization, Fountain

Hills, AZ, July 2010.

[6] System Management on VPX, VITA 46.11 Trial Use

Version, VITA Standards Organization, Fountain Hills, AZ,

September, 2013.

[7] Marshall, J. R., Stanley, D and Robertson, J. E., “Matching

Processor Performance to Mission Application Needs”, 2011,

Infotech@Aerospace Conference, St. Louis, MO, 2011.

[8] IEEE Standard Physical and Environmental Layers for PCI

Mezzanine Cards (PMC), IEEE 1386.1, IEEE Computer

Society, New York, NY, June 2001.

[9] CompactPCI Specification, PICMG 2.0 Release 3.0, PCI

Industrial Manufacturing Group, Wakefield, MA, October,

1999.

70

[10] VPX Marketing Alliance, www.vita.com/vpx.

[11] Marshall, J. R., Berger, R. W. and Rakow, G. P., “A One-Chip

Hardened Solution for High Speed SpaceWire System

Implementations”, 1st International SpaceWire Conference,

Dundee, Scotland, September,

[12] Berger, R. W., et. al., “RAD750 SpaceWire-Enabled Flight

Computer for Lunar Reconnaissance Orbiter”, Proceedings of

1st International SpaceWire Conference, Dundee, Scotland,

September, 2007.

[13] Marshall, J., et. al., “Leveraging SpaceWire Network

Prototyping to Create Flexible SpaceWire Components and

Support Software”, Proceedings of the 4th International

SpaceWire Conference, San Antonio, TX, November, 2011.

[14] Marshall, J. R., “Evolution and Applications of System on a

Chip SpaceWire Components for Spaceborne Missions”, 2nd

International SpaceWire Conference, Nara, Japan, 2008.

[15] Richard Berger, Richard Ferguson, Jane Gilliam, Michael

Graziano, Mary Hanley, Marla Lassa, Joe Marshall, Hugh

Miller, Dave Moser, Dale Rickard, Dan Stanley, Joe Stevenson,

Standards Development of a radiation-hardened system-on-chip

multicore Power Architecture processor , GOMACTech 2014,

Charleston, SC, April 2014.

71

 Test & Verification (Long)

72

iSAFT-PVS: Recording, Simulation & Traffic

Generation at Full Network Load
Test & Verification, Long Paper

Antonis Tavoularis, Vassilis Vlagkoulis, Nikos

Pogkas and Vangelis Kollias

TELETEL S.A.

Athens, Greece

A.Tavoularis@teletel.eu, V.Vlagkoulis@teletel.eu,

N.Pogkas@teletel.eu, V.Kollias@teletel.eu

Kostas Marinis

On-board Computers and Data Handling Section

European Space Agency/ESTEC

Noordwijk, The Netherlands

Kostas.Marinis@esa.int

Abstract — Over the past years several test tools have been

developed for verification and validation activities for on-board

components and networks. Up until now there is no tool that can

be used for all on-board networks and EGSE providers have to

combine from different COTS providers and custom

developments for the fulfillment of the testing requirements.

TELETEL under ESA’s and ASTRIUM Toulouse’s

consultancy developed the iSAFT-PVS which is an integrated

powerful HW/SW environment for the simulation, validation &

monitoring of satellite/spacecraft on-board data networks

supporting simultaneously a wide range of protocols (RMAP,

CPTP, TM/TC, CANopen, etc.) and network interfaces

(SpaceWire, ECSS-1553, ECSS-CAN) offering the reliability

features required for space test benches and IRIG throughout all

interfaces for common and accurate time-stamping.

The paper presents the SpaceWire instances of PVS, Recording

and Simulation, its reliability features and performances. The

paper presents an overview of the iSAFT system, the iSAFT

Recorder which provides the user with the capability to record

traffic on multiple networks/links, set triggers and filters etc.,

and the iSAFT Simulator, with Traffic Generation capabilities,

which allows triggered transmission and programmable link

saturation under local or CCS remote control. The performances

of the two instances, which are presented herein, have been taken

during long-run stress tests (full link traffic over several

SpaceWire links) and reveal that iSAFT can be used at full link

utilization for either Recording or Simulation. From the

measurements it is evident that iSAFT can not only be used for

Recording and Simulation of C&C flaws which present

infrequent data bursts, but also for payload flaws with rates

which are significantly higher and also for scenarios in which

time-accurate transmissions are required in order to accurately

simulate the instruments’ behaviours.

Index Terms— Relevant indexing terms: SpaceWire, 1553,

CAN, IRIG, FMECA, Recorder, Simulation, Traffic Generation

I. INTRODUCTION

iSAFT is an integrated powerful HW/SW environment for

the simulation, validation & monitoring of satellite/spacecraft

on-board data networks supporting simultaneously a wide

range of protocols (RMAP, CPTP, ECSS-1553, CANopen,

etc.) and network interfaces (SpaceWire, MIL-STD-1553,

CAN). It is based on over 20 years of TELETEL’s experience

in the area of protocol validation in the telecommunications

and aeronautical sectors, and it has been fully re-engineered in

cooperation of TELETEL with ESA & ASTRIUM Toulouse,

to comply with space on-board validation requirements (ECSS,

EGSE, AIT, AIV, etc.). iSAFT has already been used in

several ESA studies to validate devices (e.g. SCoC3) or

prototype, validate and assess new developments (ECSS-1553,

SpW-T, SpW-D, SpW Interrupts Distribution, N-MaSS).

iSAFT is highly modular and expandable to support new

network interfaces & protocols and it is based on the powerful

iSAFT graphical tool chain (Protocol Analyser / Recorder,

TestRunner, Device Simulator, Traffic Generator, etc.).

iSAFT can be used for the validation of units used in

specific scientific missions which generate large volumes of

data, like the GAIA Video Processing Unit, and for which

validation can become very demanding. For such missions the

requirements for both recording and the simulation may exceed

the performances of many systems and it may be required to

parallelize test equipment thus creating complex EGSE

architectures and generating SW synchronization issues. This

paper presents the functional and performance characteristics

of two instances of the iSAFT system, the iSAFT Recorder and

iSAFT Simulator including its Traffic Generation engine. The

main objective of the work presented in this paper was carried

out in the frame of ESTEC Contract no.

4000105444/12/NL/CBI [titled “Protocol Validation System

(PVS) activity”] and the results prove that, for both recording

and simulation, iSAFT can be trusted even in missions with

very high performance requirements.

II. ISAFT OVERVIEW

iSAFT is an advanced, integrated, high performing, modern

platform for the simulation, validation & monitoring of a wide

range of satellite/spacecraft on-board communication

protocols and data networks. Its plethora of features makes it

suitable for use in many different areas such as:

73

• Rapid Prototyping/Evaluation: Implementation of new

protocols, experimentation with various protocol

features (parameterization of protocol variables,

exclusion/inclusion of protocol optional functions,

combination of multiple protocols, etc.)

• Device Simulation: Economic & portable replacement

of a device in the testbed (SSMM, RTU, RMAP

responder, etc.)

• Functional/Conformance Testing: Execution of

nominal tests to ensure that a device (System Under

Test) is operating in compliance with the applicable

ECSS standards. Error injection at various protocol

layers to validate the response of the devices/networks

in erroneous conditions

• Traffic Generation: Periodic and Bulk traffic injection

at higher & lower protocol layers for performance

evaluation and network dimensioning

• Protocol Analysis/Recording: Message decoding &

recording, filters, start-stop triggers, intelligent error

detection, export of results, real-time statistics

Fig. 1. The iSAFT Server based platform (2U)

iSAFT comes in different configurations which cover

different performance/reliability/cost requirements. An

example configuration is the one shown in Fig. 1. , which is a

2U rack mount system with Xeon E5-2403 processors. The

system can be configured with single or dual processors, SSD

of at least 256 GBytes expandable to 2 TB, archive disk of at

least 2 TB, 4 GbE ports for connection to EGSE CCS, SCOE

LANs and 6 PCIe slots in which the network interfaces are

installed. Several configurations are possible, customized to the

requirements of the system under test i.e. it can be configured

with SpaceWire, 1553, CAN interfaces (shown in Fig. 2.) or

pure SpaceWire with support for up to 20 SpaceWire ports etc.

The system integrates CCSDS remote interface for remote

commanding by the Central Checkout System (CCS), whereas

support of the EDEN protocol is under development.

Each of the SpaceWire boards has eight SpW ports, each of

the 1553 boards support up to four 1553 channels and each of

the CAN boards supports up to four CAN channels. Internal

failures are blocked and are not propagated to the flight

equipment, thus constituting iSAFT safe for connection to

flight equipment. The SpaceWire and 1553 have already

passed through FMEA analysis and installed in primes

testbeds, whereas for the CAN interface FMEA is under

progress.

Common time-stamping across all interfaces/boards is

supported through the iSAFT IRIG-B port. iSAFT uses a single

IRIG connector for connection to external IRIG sources and

propagates the IRIG signal in all installed cards internally with

nanoseconds delay/skew. In addition, it can also be configured

as an IRIG source for cases in which an external source is not

available. When an external IRIG source is used, the system

regenerates the IRIG stream with a few nanoseconds delay and

provides it to the IRIG connector allowing cascaded iSAFT

systems, or third-party external equipment to be connected to

the IRIG chain in daisy-chain thus eliminating the need for

IRIG splitters/distributors.

Fig. 2. The iSAFT SpaceWire, 1553 and CAN interfaces

The SpaceWire board supports up to eight SpaceWire ports,

with independently programmable Link Speeds up to 400

Mbps (200 Mbps for recording in the current version) with a

resolution of 30 Kbps and has Monitoring, Simulation, Traffic

Generation and error injection capabilities. An option for

RMAP Target Simulation is available, with programmable

memory map and programmable response time down to less

than one microsecond, used for emulation of devices

implementing RMAP in Hardware. The board integrates an

IRIG generator and an IRIG receiver with resolution and

accuracy down to 8 nanoseconds.

The 1553 board supports up to four 1553 channels, with

transformer bus coupling, and offers Monitoring, Simulation,

Traffic generation and error injection capabilities. Different

versions of the board exist supporting dual functionality (BC or

RT with simultaneous BM functionality), full functionality

(BC, RT and BM simultaneously), options for variable bus

voltage and an extension supporting SAE tests is also available.

The board integrates an IRIG receiver with down to 20

nanoseconds accuracy.

The CAN board supports up to four electrically isolated

CAN channels with independently programmable baud rates

from 10 Kbps to 1 Mbps and has Monitoring, Simulation and

Traffic Generation capabilities. The board has a hardware

scheduled transmission queue used for transmission of

messages requiring minimized jitter (e.g. ECSS-CAN SYNC

object), supports auto-queued answers in hardware and

supports error injection at CAN level. It integrates an IRIG

receiver with down to 63 nanoseconds accuracy.

A. iSAFT Recorder

iSAFT Protocol Analyser/Recorder is based on the iSAFT

graphical tool chain (Runtime engine, iSAFT Console, offline

analysis with the Wireshark Protocol Analyzer, recordings

management). It captures and records large volumes of traffic

74

from multiple SpaceWire links, MIL-STD-1553 and/or CAN

buses and offers off-line analysis of multi-gigabyte traffic logs.

iSAFT supports chronological merging of recorded traffic (e.g.

from both SpaceWire and 1553), event-trace trigger &

selective tracing (filtering) support and offers plug-ins and real-

time statistics for various protocols. It integrates a set of

graphical tools for local/remote control, data recording,

managing, searching and filtering the recordings and also

interfaces with EGSE Central Checkout Systems. Export of

traffic recordings to XML, PostScript®, CSV, or plain text and

user selected protocol fields per packet are supported. In

addition, an open APIs is available for 3rd-party applications to

support customizations/adaptations to user needs.

For the case of SpaceWire the iSAFT recorder supports

either packet level or character level monitoring per port

allowing troubleshooting at system or at protocol level.

Fig. 3. iSAFT recorder MILBUS and SpaceWire statistics views

In order to support advanced recording functionalities,

recording for each interface can either begin on the press of the

start button by the user or, per port independent, start and stop

trigger conditions can be set-up. Specifically, the following

start/stop trigger conditions are supported:

• SpaceWire:

ο Packet Level monitoring: absolute/relative IRIG

time, any/programmable Signaling Codes (Time-

Codes, Interrupt Requests, Interrupt

Acknowledgments, etc.), programmable NCHAR,

programmable packet pattern, parity error

ο Character Level Monitoring: absolute/relative

IRIG time, NULL, FCT, any/programmable

NCHAR, EoP/EEP, any/programmable Signaling

Code, parity error

• MIL-BUS: specific word (with mask), parity, bit

encoding, SYNC, word count, gap between data

words, no response, wrong status, spurious data errors

and external trigger

• CAN: Date/Remote/Error frames, COB-ID (with

mask)

Fig. 4. The iSAFT protocol analyzer GUI

Similarly, the system allows filtering of traffic to be

captured in order to decrease the amount of captured data and

extend the recording time. The following filters are supported:

• SpaceWire:

ο Packet Level monitoring: traffic between

Signaling-Codes, programmable packet pattern

(normal or inverted) with the capability to ignore

path address bytes in order to support traffic

capture on links between switches, valid/error

packets, programmable logical address/Protocol

ID (extended PID also supported)

ο Character Level Monitoring: Traffic between

Signaling Codes, NULL, FCT, NCHAR,

Signaling Codes, valid/error characters

• MIL-BUS: Remote terminals, Sub-addresses

75

• CAN: Date/Remote/Error frames, COB-ID (with

mask)

Captured traffic from multiple interfaces can be merged

and displayed in a single protocol analyzer chronologically

ordered, as shown in Figure 3, allowing common view of

multiple interfaces thus enabling analysis of device

performances. Standard or custom protocol decoders can be

installed in the system allowing decoding of protocol fields

such as RMAP, CCSDS, ECSS-1553, ECSS CAN etc.

B. iSAFT Simulator

iSAFT provides the ability for prototyping on-board data

network devices allowing simulation of a network element thus

enabling S/C integration tests before the availability of Flight

models.

The iSAFT simulator allows for rapid prototyping of new

functionalities allowing for experimentation with various

device features and variations including parameterization of

variables, exclusion/inclusion of device optional functions,

combination of multiple protocols, etc. It enables simulation of

specific satellite/spacecraft platform interfaces (as power,

command, telemetry and communication) to different Payload

Instruments. It provides a local interface as well as an open

API for easy integration with 3rd party simulation software and

a TCP/IP based remote control interface for integration to

LAN-based environments.

Regarding SpaceWire, transmissions can either be

asynchronous or on user-programmable trigger conditions per

packet. The supported trigger conditions in the current version

are full or partial IRIG time, programmable Signaling Code

with programmable offset, simultaneous over selectable ports,

external trigger signal with programmable offset (e.g. PPS),

programmable delay from previous packet and disconnect on

another port. Exploitation of these capabilities allows the user

to reproduce previously captured traffic in time-accurate

fashion with sub-microsecond accuracy, thus reproducing

scenarios that lead to the appearance of failures.

In addition, iSAFT simulator provides a Traffic Generation

engine supporting multiple periodic channels or bulk traffic

injection for link saturation allowing performance evaluation at

device or network levels.

SDRAM

P1

P2

ADDR A:

Packet 1

ADDR B:

Packet 2

Next Packet = ADDR B

Repetitions = 1, 2, …, N

P3

ADDR C:

Packet 3

HEADER (Tx Condition,

Injected Errors, …)

PAYLOAD

S
W
 C
o
m
m
a
n
d
s

Q
u
eu
e

ADDR = A

ADDR = C

DMA Engine SDRAM Controller

P1 P2 P2 P3

N Times

Traffic Generation Engine

S
p
W
 P
a
ck
et
s

Q
u
eu
e

P1

P2

P2

T
ra
n
sm
it
te
d
 P
a
ck
et
s

1

2

3

Transmission

Descriptor

On Chip Bus

SW

Commands

Fig. 5. The iSAFT Traffic Generation Engine operation

The bulk Traffic Generation engine, is based on

transmission of linked lists of packets or packet sequences,

allows the creation of single or repetitive sequences as shown

in Fig. 5. The SW downloads the packets to be transmitted in

the on-board SDRAM, having already programmed the packet

headers accordingly to point to the next packet in the sequence

and the number of repetitions for each packet/packet sequence.

In the example shown in Fig. 5. the SW downloads a

transmission descriptor used to fetch the first packet of the

linked list sequence in the transmission queue (step 1), which

in this case is Packet P1. As soon as the packet is fetched, the

pointer to the next packet is examined (if any) and the next

packet is automatically fetched for transmission, which in this

example is packet P2 (step 2), at the same time at which Packet

P1 is being transmitted (step 3). Packet P2 shall be transmitted

N times, so it is fetched from the memory N times in the

transmission queue. If no other packets exist in the link list

transmission stops if there is no transmission descriptor in the

SW commands queue. Each packet descriptor has additional

control information such as the transmission trigger condition,

error to be injected etc. For example, the user can select to start

the transmission of a packet sequence upon the detection of a

PPS and configure the subsequent packets to be transmitted on

specific time-codes or have specific and different time-gaps

among them. The combination of per packet independent

triggers with Traffic Generation provides time-accurate device

simulation capability.

III. ISAFT PERFORMANCES

All results presented herein were performed on a iSAFT 2U

platform (shown in Fig. 1.) with a single Xeon E5-2403

processor, 256 GB SSD and 2TB archive disk. As the 1553 and

CAN interfaces are low speed interfaces, their impact on the

performance of the system is minimal and therefore it is only

the SpaceWire performance which determines the overall

system performance for both monitoring and simulation. To

this respect in order to discover the performance limits of the

system, tests with the SpaceWire interface were performed. In

all the tests a single eight ports SpaceWire board was used and

thus the system was capable of capturing traffic on four

SpaceWire links or simulating up to eight SpaceWire devices.

A. iSAFT Recorder Performances

The first test was performed on the iSAFT Recorder. An

external SpaceWire Traffic Generator was configured in traffic

generation mode, continuously transmitting SpaceWire packets

at 100 and 200 Mbps, without NULLs between the packets. As

each captured packet is appended control information (packet

length, start/end IRIG time-stamps etc.), for presentation to the

user through the WireShark analyser, this constitutes the packet

overhead which becomes more significant as the packet size

decreases. It is therefore expected that with decreasing packet

size, the required throughput to store the captured packets

along with the control information on the platform memory

will exceed systems performance. At this point the capture

memory becomes full and recording stops in order not to

overwrite already captured traffic. This is the rationale of the

76

tests presented here in, in which the packets starting from 1

Kbytes were continuously decreased until a “Buffer Full”

condition appeared on the iSAFT GUI. The test results are

shown in Fig. 6. from which we see a minimum packet size of

78 Bytes at 100 Mbps and 184 for 200 Mbps. This corresponds

to 971463 and 830737 packets per second at 100 and 200 Mbps

respectively.

Fig. 6. iSAFT recorder performance. Packets per second vs. packet size on 8

SpW ports

The slight difference in packets per second between the two

measurements can be explained by taking into account the

payload of each measurement. Although the overhead for the

iSAFT SW is same for both link speeds, since only the packet

headers are processed by the SW, the performance difference

can be explained by the fact that at 200 Mbps the throughput

required to transfer the packet payload doubles, thus doubling

the system bandwidth requirements.

The system limits, correspond to non-realistic scenarios,

since small packets are used for C&C and are never transmitted

in bulk mode. Bulk data corresponding to mission payload (e.g.

images) are transmitted in large SpaceWire packets for which

the overall iSAFT performance is more than adequate and

therefore the reader can safely assume that iSAFT recorder is

capable of capturing any mixture of realistic traffic over eight

SpaceWire ports.

Ongoing tests that are being performed on a 16-ports

Recorder have shown that up to 15 fully utilized ports can be

captured at 200 Mbps with the current iSAFT version, resulting

in an overall data throughput of more than 2,2 Gbps, whereas

for 100 Mbps link speeds traffic from 16 fully utilized ports

can be captured.

B. iSAFT Simulator Performance

The second set of tests was performed on the iSAFT

Simulator. The purpose of the tests was to assess the

performance of asynchronous transmission and reception.

Specifically, the following measurements were made:

• Transmission Latency: The time from the point the

transmitting application on iSAFT calls the transmit

function to the time, the first packet NCHAR appears

on the SpW link

• Reception Latency: The time from the point the entire

packet reaches the destination port to the point this is

available at the receiving user buffer

Long run tests were performed with test applications

transmitting millions of packets in order to assess system

stability. The scenario involved synchronization of all

equipment through IRIG in order to provide common time-

stamping and ensure the measurements accuracy. An IRIG

source was connected to the PCs hosting the transmitting and

receiving applications.

Fig. 7. Remote control measurements test set-up

The transmitting application was retrieving the IRIG time

right before packet transmission. Upon arrival of the first

packet byte at the receiving system the packet was assigned a

“start time-stamp” by the HW. The difference between the two

time-stamps constituted the Tx transmission latency.

Similarly, in order to measure the Rx latency the receiving

application was invoking the receive call and upon the call

return it was reading the IRIG time from its local IRIG

receiver. Subtracting the packet’s “end time-stamp” from this

time corresponded to the Rx latency.

TABLE I. THE ISAFT SIMULATOR LOCAL OPERATION PERFORMANCE

Packet Size Tx Latency (us) Rx Latency (us)

1K 10.73 9.15

2K 12.79 9.15

4K 14.77 9.27

64K 73.65 9.88

The results shown in TABLE I. show that the latencies are

reasonable with a transmission latency of less than 100

microseconds for 64Kbytes packet. For the receive path, the

latency is minimal and independent of the packet’s size due to

iSAFT’s architecture.

C. iSAFT Traffic Generation Performances

The last test run was performed in order to assess the

performance of the Traffic Generation engine of the iSAFT

Simulator. Two different test-sets were performed:

77

• In the first one, the same packet was being transmitted

continuously in repetitive mode

• In the second, the traffic generation engine of the

iSAFT Simulator was configured to transmit linked-list

packet sequences

In both test-sets the receiver was configured in two

different modes:

• HW sinking, in which packets are not uploaded to the

platform memory but are immediately discarded by the

HW

• Normal operation in which packets are uploaded to the

system memory through a simple test application.

The first mode reveals the performance of the Traffic

Generation engine, whereas the second mode reveals the

overall iSAFT Simulator performance under stress. Stand-

alone tests of the receiver are to follow.

All tests were performed at three different link speeds, 100,

200 and 300 Mbps and the purpose was to find the engine’s

maximum performance by decreasing the packet size down to

the point at which NULLs are inserted in the link. The links

were captured by the iSAFT Recorder in order to observe the

presence of NULLs through the Recorder’s real time statistics.

The results of all tests are shown in TABLE II. Fig. 8.

shows only the results of the HW sinking mode tests of the

receiver, i.e. the performance of the traffic generation engine.

TABLE II. THE ISAFT SIMULATOR TRAFFIC GENERATION PERFORMANCE

SpW

ports

Minimum Packet

length

(Single packet in each

sequence)

Minimum Packet

length

(Two-Packets

sequence)
100

Mbps

200

Mbps

300

Mbps

100

Mbps

200

Mbps

300

Mbps

Hardware

Sinking of

received

packets

1
8

bytes

16

bytes

25

bytes

4

bytes

9

bytes

15

bytes

2
16

bytes

31

bytes

48

bytes

8

bytes

17

bytes

26

bytes

4
31

bytes

66

bytes

104

bytes

17

bytes

35

bytes

56

bytes

8
66

bytes

140

bytes

256

bytes

35

bytes

82

bytes

149

bytes

Normal

packet

reception

1
30

bytes

60

bytes

94

bytes

26

bytes

52

bytes

83

bytes

2
57

bytes

121

bytes

197

bytes

50

bytes

113

bytes

173

bytes

4
121

bytes

290

bytes

1184

bytes

107

bytes

287

bytes

913

bytes

8
289

bytes
- -

287

bytes
- -

Three observations can be made on the graph of Fig. 8.

The first observation is that for repetitive transmissions of a

single packet the performance is significantly lower than the

respective performance of a two packets sequence. The second

observation is that for a given SpW link speed, the packets per

second does not have strong dependence on the number of

SpW ports. The third observation is that as the number of ports

are increased the total number of packets drops.

The first observation can easily be explained by taking into

account that each DMA transaction has an overhead for bus

arbitration and fetch of control information. As a two packets

sequence is fetched in a single DMA transaction this overhead

becomes less significant as it consumes a smaller amount of

time per packet and therefore the performance of the system is

increased.

Fig. 8. Packets per Second vs. number of ports

As the link rate is increased the time to serve successive

requests of the same SpW port decreases accordingly. Given

that the DMA was programmed for round-robin operation, less

time was left for successive requests of the same SpW port as

the link rate increased almost linearly. This resulted in a packet

size per port which increased almost linearly as the number of

active ports increased (as shown in TABLE II. , thus resulting

in an almost constant “packets per second” for all active ports

thus explaining the second observation.

Nevertheless we observe a deviation from a straight line of

constant overall performance. This happens because the DMA

is serving more channels and time is lost in arbitration and

serving other channels before fetching the next packet from the

memory for the same port which explains the last observation.

From the diagram it becomes obvious that the Traffic

Generation engine covers the requirements of all known

systems since it is capable of obtaining a maximum throughput

of more than 2 million packets per second. Saturation occurs at

points which do not correspond to realistic scenarios, since

high data rates are associated with science data which use large

packets only.

IV. CONCLUSIONS

Both recording and simulation of flight devices can be very

demanding for specific cases, like for example performance

validation of Mass Memory Units or validation of mission

equipment related to sky images acquisition and SAR. From

the results presented herein it becomes obvious that the iSAFT

is capable of simulating multiple flight devices that transmit

data at very high throughputs and can also support time-

accurate traffic shaping thus enabling microsecond-accurate

simulation of a device’s behaviour. The system also supports

full-throughput 24/7 recording over multiple SpaceWire ports

fulfilling the performance requirements for demanding

scientific missions like the GAIA Video Processing Unit or the

EUCLID Fine Guidance Sensor in which the throughput

becomes challenging for many existing systems.

78

REFERENCES

[1] http://teletel.eu/isaft-protocol-validation-platform/

[2] http://teletel.eu/isaft-spacewire-mil-std-1553-can-

recorder/

[3] Supporting development testbed – Protocol Validation System,

7th ESA Workshop on Avionics, Data, Control and Software

Systems – ADCSS 2013.

[4] Evaluation, Assessment and Hardware prototyping of the

SpaceWire-D protocol, DASIA 2013, 14- 16 May 2013, Porto

Portugal.

[5] PVS Project Overview, 19th SpaceWire Working Group, 2-3

October 2012, Paris France.

79

Wednesday 24 September

80

 Networks & Protocols (Short)

81

The evaluation of SpaceWire-R draft specification

through the connectivity test using SpaceCube2
SpaceWire Networks and Protocols, Short Paper

Kaori Iwase, Hiroki Hihara

NEC TOSHIBA Space Systems, Ltd.

10, Nisshin-cho 1-chome, Fuchu, Tokyo, 183-8551, Japan

k-iwase@wr.jp.nec.com, h-hihara@bc.jp.nec.com

Osamu Watanabe, Takahiko Tanaka

Space systems division,

NEC Corporation

10, Nisshin-cho 1-chome, Fuchu, Tokyo, 183-8501, Japan

o-watanabe@ak.jp.nec.com, t-tanaka@dy.jp.nec.com

Takahiro Yamada

Institute of Space and Astronautical Science (ISAS),

Japan Aerospace Exploration Agency (JAXA),

3-1-1 Yoshinodai, Sagamihara, Chuo-ku, Kanagawa

229-8510, Japan

 tyamada@pub.isas.jaxa.jp

Takayuki Yuasa

RIKEN The Institute for Physics and Chemical Research

2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Takayuki_yuasa@riken.jp

Takayuki Tozawa, Toru Tamura

Embedded Systems Division, NEC Solution Innovators, Ltd.

2-2-41 Eki-mae, Kashiwazaki, Niigata 945-0055, Japan

tozawa-takayuki@mxv.nes.nec.co.jp,

tamura@mxm.nes.nec.co.jp

Abstract— SpaceWire-R is a protocol that provides onboard

applications with reliable high-speed data transfer services over

SpaceWire links especially for mission data transmission between

sensors and data recorders. Independent implementations on

different hardware with reference to the draft specification have

been succeeded in interoperability test, which resulted in

consolidating the protocol. The final specification document has

been under preparation by JAXA. The present paper describes a

result of interoperability test and evaluation of SpaceWire-R

performed from 2013 to 2014.

Index Terms— SpaceWire, Networking, Point-to-point link,

SpaceWire-R.

I. INTRODUCTION

Japan Aerospace Exploration Agency/Institute of Space

and Astronautical Science (JAXA/ISAS) is consolidating the

final specification of SpaceWire-R, which is intended to be

used in mission data transmission between sensors and data

recorders that require high-speed and reliable data transfer over

SpaceWire links, where the transmission is carried out

independently with SpaceWire network in the satellite bus. The

protocol is also expected to be used between high speed optical

sensors and solid state data recorders on upcoming scientific

satellite projects.

The present paper describes a result of interoperability test

and evaluation of SpaceWire-R performed from 2013 to 2014.

SpaceWire-R is a protocol that provides onboard applications

with reliable data transfer services over SpaceWire networks.

The primary objective of SpaceWire-R is to transfer data

reliably from a sending node to a receiving node over a

SpaceWire network. To ahieve this, SpaceWire-R provides

specifications on multiplexing of multiple communication

channels, segmentation of packets, retransmission in case of

packet loss, flow control, heartbeat, and redundancy control.

The protocol specification has been available among the

SpaceWire Working Group members since 2012, and

discussion of protocol ID assignment has been talked over in

21st Working Group meeting.

Through the interoperability test, basic functions of

SpaceWire-R has been confirmed to work expectedly, and the

two implementations succeeded to continue transferring data

even with error injection owing to the retry mechanism in the

protocol. Flow control and heart beat mechanisms were also

confirmed to work. Based on the test result, some

modifications have been incorporated to the protocol

specification, and the final specification document has been

under preparation by JAXA.

II. THE PURPOSE OF INTEROPERABILITY TEST

The test was the second interoperability test between JAXA

and NEC/NTSpace, and it was supposed to be the last

evaluation step in order to consolidate the SpaceWire-R

specification. The purpose of the test is to evaluate new

functions added to the draft specification as a result of the

82

mailto:k-iwase@wr.jp.nec.com
mailto:o-watanabe@ak.jp.nec.com
mailto:t-tanaka@dy.jp.nec.com
mailto:tyamada@pub.isas.jaxa.jp
mailto:tozawa-takayuki@mxv.nes.nec.co.jp
mailto:tamura@mxm.nes.nec.co.jp

previous evaluation, and to confirm SpaceWire-R draft

specification through the implementation on real hardware

with SpaceWire interface

The new functions added to the previous draft specification

are heart beat and flow control. They are categorized as

optional mechanisms on SpaceWire-R.

Heart beat is a confirmation mechanism for a sending node

and a receiving node when there is no data to send or receive

whether the link between two nodes is kept and the both nodes

are still alive. A timer is to be provided on a node in order to

specify how long the node will be able to wait after sending a

heart beat packet until it receives the heart beat

acknowledgment packet from the other node. When the sender

of the heart beat packet doesn't receive the acknowledgment

corresponds to the heart beat within the specified limitation

for the counter, the sender detects time out and cease the

transaction cycle.

Flow control is a mechanism for a receiving node to tell a

sending node how much the buffer capacity remains for

receiving data units in order to suppress the sending node to

send excessive data unit beyond the capacity of the buffer in

the receiving node. The number of data units that receiving

node can receive is shown as Maximum Acceptable Sequence

Number (MASN), which is contained in a data

acknowledgment packet or a flow control packet.

We evaluated the specification through three steps. The first

step is to confirm the basic function described in the

specification. The second step is to confirm continuous

transmission between the sending node and the receiving node

with error injection. And thirdly, the new functions have been

confirmed, which are heart beat and flow control mechanism

as described above.

III. TEST CONFIGURATION AND CONTENTS

Configuration of the test is shown in Fig.1. In order to

perform the interoperability test, JAXA/ISAS and NEC/NEC

Toshiba Space Systems (NTSpace) implemented the

SpaceWire-R protocol as two independent software stacks on

different hardware based on the draft specification. One was

software for an ordinary Personal Computer (PC) with UNIX-

based OS and Intel CPU. For convenience, we call this

SpaceWire-GigabitEther(SpW-GbE) which is a conversion

interface used between SpaceWire and GigabitEther. The

other one was a SpaceCube2 (SpC2) on which a TRON based

real-time OS is running. Its central processing unit (CPU) was

commercial level with devices which was the same type as a

flight qualified one. SpC2 has one 64bit microprocessor and

one SpaceWire router in itself. The processing cycle of the

microprocessor is 33MHz. The router has 6 external

SpaceWire ports and the link rate of each port is 50MHz. The

software stack for SpC2 is shown in Fig2.

SpW-GbE and SpC2 are connected each other with a

SpaceWire cable.

Three test procedures were performed in other to consolidate

the final draft version of SpaceWire-R specification.

A. Test case 1: Sending/Receiving data

Test case 1 was to confirm the basic functions. A sending

node sends the data packet and then checks whether a

receiving node receives the packet and responds with an

acknowledgment packet. If the receiving node sends the

acknowledgment packet properly, a sending node is to be

checked if it receives the acknowledgment packet properly.

The test was performed for both directions between the two

nodes in order to check two types of data transfer A and B as

follows,

A. a sending node is the SpW-GbE, and a receiving node is

the SpC2.

B. a sending node is the SpC2, and a receiving node is the

SpW-GbE. These two data transfer tests are shown in Fig.3

and Fig.4, respectively.

The result of test case 1 is shown in Table.1 No.1 and No.2.

The test was successfully done. Each packet which was

expected to be received on each node was received properly.

B. Test case 2 :Error injection

Test case 2 was error injection. We made a receiving node

stops to send an acknowledgment packet one time out of ten

during data packet transactions intentionally. The purpose of

this test was to confirm continuous transmission with correct

responses between the sending node and the receiving node

even in this situation.

In order to simulate the error case, the receiving node was

programmed to suppress acknowledge response sometimes

intentionally. The receiving node was programmed to suppress

sending acknowledge response once per ten transactions in

this case. And then it is checked whether a sending node

resends the data packet. When a sending node resends the data

packet, a receiving node is checked whether it receives the

data packet and sends the data acknowledgment packet

properly. When a receiving node sends a data

acknowledgment packet properly, it is checked whether a

sending node receives the data acknowledgment packet. The

test was performed in both directions between the two nodes

in order to check two types of data transfer A and B as

follows.

A. a sending node is the SpW-GbE, and a receiving node is

the SpC2.

B. a sending node is the SpC2, and a receiving node is the

SpW-GbE.

Test configuration for case A and case B of test case 2 are

shown in Fig.5 and Fig.6, respectively.

The result of test case 2 is shown in Tab.1 No.3 and No.4.

The test was successfully done, and it was confirmed that the

transmission between two nodes returned to normal sequence

through the retry mechanism after the error injection. And

both nodes acted how we expected and each packet was

received as expected on each node.

83

C. Test case 3 : Two new functions

Test case 3 was to confirm heart beat mechanism and flow

control mechanism.

1) Test case 3-1 : Heart beat mechanism

Two patterns of tests were performed in order to evaluate the

heart beat mechanism. They were the normal pattern and the

off nominal pattern.

As for the normal pattern, a sending node sends heart beat

packets normally. The sending node sends a heart beat packet

to a receiving node, receiving node is checked whether it

receives the heart beat packet and sends a heart beat

acknowledgment packet. If the receiving node sends the heart

beat acknowledgment packet properly, the sending node is

checked whether it receives the heart beat acknowledgment

packet properly. We used a SpW-GbE as a sending node, and

a SpC2 as a receiving node, for the test of normal pattern as

shown in Fig.7 .

The result of the normal heart beat test is shown in Table.1

No.5. It was successfully done with each packet received as

expected on each node, and it was confirmed to be received

properly.

Off nominal pattern is that a receiving node is not set to send

a heart beat acknowledgment packet. The sending node sends

a heart beat packet and the receiving node receives the heart

beat packet, whereas the receiving node does not send a heart

beat acknowledgment packet this time. In consequence the

sending node is checked whether it moves into terminate

transmission state after the sending node sends several heart

beat packets. We used a SpC2 as a sending node, and a SpW-

GbE as a receiving node, for the test of off nominal pattern as

shown in Fig.8.

The result of off nominal heart beat test is shown in Table.1

No.6. It was successfully done with each node acted as we

expected. We set the timer to 5seconds at that time, and the

heart beat packet time interval was set to 1second. After the

sending node sent four heart beat packets, it judged timeout

and terminated the transmission transaciton.

2) Flow control mechanism

The final test was to confirm flow control mechanism. A

sending node sends a data packet with a smaller sequence

number than the MASN held by a receiving node. Then

sequence number of a next sending data becomes equal to the

MASN of a receiving node, the sending node stops to send a

data packet. After the sending node stops sending a data

packet, the receiving node sends a flow control packet which

contains larger MASN number. A sending node is checked

whether it receives the flow control packet and sends a flow

control acknowledgment packet. If the sending node sends the

flow control acknowledgment packet properly, then the

receiving node is checked whether it receives the flow control

acknowledgment packet properly. The sending node is also

checked whether it restarts sending data packets. If the

sending node restarts to send data packet successfully, then

the receiving node is checked whether it receives the data

packet and sends the data acknowledgment packet. In the end

the sending node is checked whether it receives the data

acknowledgment packet or not. We used a SpW-GbE as a

sending node and a SpC2 as a receiving node, for the test of

flow control as shown in Fig.9.

The result of the flow control test is shown in Table.1 No.7.

It was successfully done with each node acted as we expected,

and each packet which expected to be received at each node

was confirmed to be received properly.

Figure1. The configuration of the evaluation test

Figure2. Implementation of SpC2 for SpaceWire-R

Figure3. Test case 1 – Case A

Figure4. Test case 1 – Case B

Figure5. Test case 2 – Case A

SpaceCube2

SpaceWire-to-GigabitEther

SpaceWire

Cable

84

Figure6.Test case 2 – Case B

Figure7. Test case 3-1 – Heart beat normal case

Figure8. Test case 3-1 – Heart beat off nominal case

Figure9. Test case 3-2 – Flow control

Table1. Result of interoperability test
 Test items

result No. Packet

direction
Expected action

1

A)SpC2→Sp

W-GbE

SpC2: Data packet send

SpW-GbE: Data packet receive

SpW-GbE: Data Ack packet send
SpC2: Data Ack packet receive

Pass

Pass

Pass
Pass

2

B)SpW-
GbE→SpC2

SpW-GbE: Data packet send

SpC2: Data packet receive
SpC2: Data Ack packet send

SpW-GbE: Data Ack packet receive

Pass

Pass
Pass

Pass

3

A)SpC2→Sp

W-GbE

SpC2: Data packet send

SpW-GbE: Data packet receive

SpW-GbE: don’t send Data Ack packet
SpC2: Data packet resend

SpW-GbE: Data packet receive

SpW-GbE: Data Ack packet send
SpC2: Data Ack packet receive

Pass

Pass

Pass
Pass

Pass

Pass
Pass

4

B)SpW-
GbE→SpC2

SpW-GbE: Data packet send

SpC2: Data packet receive
SpC2: don’t send Data Ack packet

SpW-GbE: Data packet resend

SpC2: Data packet receive
SpC2: Data Ack packet send

SpW-GbE: Data Ack packet receive

Pass

Pass
Pass

Pass

Pass
Pass

Pass

5
normal)
SpW-GbE

→SpC2

SpW-GbE: Heart beat packet send

SpC2: Heart beat packet receive

SpC2: Heart beat Ack packet send
SpW-GbE: Heart beat Ack packet receive

Pass

Pass

Pass
Pass

6

unusual)
SpC2→

SpW-GbE

SpC2: Heart beat packet send
SpW-GbE: don’t send Heart beat Ack packet

SpC2: Heart beat packet send

SpW-GbE: don’t send Heart beat Ack packet
SpC2: Heart beat packet send

SpW-GbE: don’t send Heart beat Ack packet

SpC2: Heart beat packet send
SpW-GbE: don’t send Heart beat Ack packet

SpC2: Close

Pass
Pass

Pass

Pass
Pass

Pass

Pass
Pass

Pass

7
Data packet:

SpW-GbE

→SpC2

Flow control

SpW-GbE: Data packet send
SpC2: Data packet receive

SpC2: Data Ack packet send

SpW-GbE: don’t send data packet
SpC2: Flow control packet send

SpW-GbE: Flow control packet receive

Pass
Pass

Pass

Pass
Pass

Pass

 Test items

result No. Packet

direction
Expected action

packet:

SpC2→
SpW-GbE

SpW-GbE: Flow control Ack packet send

SpC2: Flow control Ack packet receive
SpW-GbE: Data packet send

SpC2:Data packet receive

SpC2: Data Ack packet send
SpW-GbE: Data Ack packet receive

Pass

Pass
Pass

Pass

Pass
Pass

IV. TEST RESULT

All test cases have been completed successfully. The

transmission rate for test case 1 was 400kbps at 50MHz link

rate. At test case 2, the test was held in 10MHz link rate and

the transmission rate was 8kbps, where it was 80kbps at same

link rate with no error injection. Error rate injected in the test

case 2 was 10%, and the transmission rate decreased in 90%.

The result was corresponds to the analysis performed in

advance.

We confirmed all of the test procedures and results as

expected. No modification was identified with the draft

version of SpaceWire-R specification. In consequence we

confirmed that the specification of SpaceWire-R had been

consolidated.

V. CONCLUSION

We evaluated the SpaceWire-R draft specification through

the test using real hardware on which SpaceWire-R protocol is

implemented. The evaluation tests of SpaceWire-R draft

specification using a SpW-GbE and a SpC2 were completed

successfully, and the specification has been confirmed through

the three test procedures as follows. First, the basic function

has been confirmed. Second, continuous data transmission

against error injection has been confirmed. Third, the new

functions, which are heart beat mechanism and flow control

mechanism, have been confirmed.

In accordance with the result of the evaluation, no more

modification was identified as required. As a result,

SpaceWire-R specification has been establised.

ACKNOWLEDGMENT

We would like to thank Dr. Richard D. Hunt of Sandia

National Laboratories and Dr. William H. Anderson of

NASA/GSFC for their RDDP related advice.

REFERENCES

T. Yamada,, “SpaceWire-R SCDHA 151-0.3”, Institute of Space

and Astronautical Science, Japan Aerospace Exploration

Agency.

85

 Automated SpaceWire Network Administration
SpaceWire Networks and Protocols, Short Paper

Khramenkova Ksenia

SUAI

Saint-Petersburg, Russia

ksenia.khramenkova@guap.ru

Abstract— Creation and launching a spacecraft are very

expensive measure; it needs a great accuracy and attention to

details. A spacecraft board network includes: system of the

navigation, orientation and stabilization, special target devices

giving a different payload. Success of work whole spacecraft and

the realization its tasks and functions is depending on speed,

quality and correctness. It is necessary not only to initialize the

huge number of devices during the its interaction. The generation

the output log-files and reconfiguration the each device also are

the very important tasks. The adjustment of every network

device is necessary and very significant because the correctness of

all network functioning depends on that. In addition, the error

situations can occur in network, then we need to have the

opportunity to process them, recover the system efficiency with

minimal loss of information.

The special software created for the configuration,

administration and monitoring the device status is the essential

component of a creation every network. This software provides

for proper setting and supporting of each network device an

ability to work, decreases the error appearance and falling out an

network element or part of the network and, of course, essentially

reduces time of tuning of all network.
At this paper the software adjusting SpaceWire network by

required type without human participation and granting results

as output files is described.

Index Terms — SpaceWire network, Plug-and-Play,

administration, configuration.

I. INTRODUCTION

Generally the actual networks consist of a huge number of

devices (nodes and switches) located on different distance of

each other. For organization its interaction it is necessary to

execute the primary configuration in compliance with a

structure of physical links and logical channels between

applications, which owe exist in the system.

During the time of network functioning it is necessary to

have the capability to monitor the state of network

components and system work modes, support the network

work correctness and accuracy its settings.

Even if the network consists of a little number of devices,

the manual executing primary configuration also is not

recommended, because human-operator mistakes can lead to

unpredictable results. For huge networks, to which the modern

networks belong, the manual configuration is impossible

because it will be executed unacceptably long.

During the system functioning some devices or links

between them can fail, as a result of that failures the network

settings can be distorted. The monitoring of network states and

correctness of network settings is necessary for detection the

failures and correction of consequences of failures throughout

all time of functioning. These actions have to execute

automatically.

Based on the explained ideas the software allowing to

execute discovering and network setup was created. The

responsibility for correct adjustment the main registers of

switch and node is settled on this software. Also the

notification the network operator about a network setup

results.

This technique is intended for administration of distributed

SpaceWire network [1]. For execution of process of

administration and setup network system components the

RMAP protocol is used [2]. This protocol represents one of

transport layer protocols which can function on the SpaceWire

network. This protocol is intended for access to address space

of nodes of a network and here is used for remote configuring

of devices with SpaceWire interfaces.

II. THE GENERALIZED ALGORITHM

First of all it is necessary to select network connection

point for the manager of a network.

In order that time of configuring and status inquiry of a

network was minimum, and also there was minimum the

volume of traffic generated in case of status inquiry of a

network, expediently that a node - the network administrator

was located at some "center" of a network. Node-

Administrator in a network is connected to communications

system through special official port, it doesn't require use the

main ports on the basis of which the network is built.

The choice of network connection point of a node of a

network on which functions of administration of a network

will be executed, shall be carried out by the engineer

performing tuning of a network, taking into account structure

of a network and taking into account types of network points

(a node – the network administrator can be connected only to

nodes of those types for which in library possibility of such

connection is set). After the network connection point the

engineer performing tuning of a network is selected, shall

connect to it a node on which beforehand it shall be set by an

administration software.

86

It is supposed that on all switches in network a software is

functioning, which execute the following functions:

 connection establishment an all required ports;

 setup the registers of the adaptive routing group;

 support of path addressing;

 processing the RMAP request packets and formation

a responses on them.

The process of configuring includes two stages:

 check that all communication links required in

system are connected, set a transmission rate on them,

check after setup rates, that connection on all required

links is still set;

 if the first stage was executed successfully (on all

required links connection is set, transmission rate

corresponds required), filling the adaptive routing

registers an routing table of all switches.

Configuration is carried out by RMAP commands packets

which the network manager delivers to switches and terminal

nodes. Distribution command packets is realized in ascending

order of length of the path address. At first the configuring of

the switches/nodes directly connected to the network manager

is executed, further – configuring of the switches/nodes

connected to them, and so until the configuring of all available

devices of the network are executed.

The administration process following it includes two

stages:

 check that on all required communication links in

system the connection is established and required

transmission rate is set;

 check the contents of registers of the adaptive routing

registers and routing tables.

In the course of network administration during its state

processing the check of a status of devices is executed in the

same order as in train of initial setup of system configuration.

III. THE DESCRIPTION OF ORIGINAL SETUP OF A NETWORK

The primary network setup provides installation all

parameters of configuring of terminal nodes and switches in

SpaceWire network according to a required network

configuration.

The process performing the original setup consists of the

following stages:

 check that all communication links required in

system are connected, set a transmission rate on them,

check after setup rates, that connection on all required

links is still set;

 if the first stage was executed successfully (on all

required links connection was set, transmission rate

corresponds required), filling the adaptive routing

registers an routing table of all switches;

 if the first stage is not executed successfully, these is

a rearrangement of settings and scheme of a network

structure.

All process of administration is carried out by RMAP

packets. Distribution command packets is realized in

ascending order of length of the path address.

After completion of operation of setup process the log file

will be created which will give to the human operator

opportunity to look at results of primary network setup. If

errors were revealed, the operator should take necessary

measures, for example, check communication links on which

connection was not set, or test devices.

IV. THE DESCRIPTION OF SOFTWARE OPERATION IN CASE OF

STANDARD NETWORK FUNCTIONING

After execution of network configuring at our disposal are

list of paths to devices and list of found devices.

The program creates a packet for reading the register of

connections. In the course of administration the device status

checking is executes in the same order as in the course of

configuring. If data accepted from device correspond required,

the program creates a packet for reading transiting speed value

on the specified ports. The derived data also are compared to

what are specified in the input file. If any connection is gone,

the software makes attempt to recover it and to set required

speed, the number of attempts is restricted. If it works well, in

case of switch administration there is a transition on second

administration step, otherwise the device is admitted as

inoperable and deleted from both lists by software of network

administration.

The described step is necessary only for switches. On this

step the program executes check a correctness of setup a

routing table and adaptive group registers. At first the packet

for reading a routing table is created. From an answer packet

we accept data and we compare to what shall be written. If data

don't match, a defined number of attempts to recover data,

which were written by a software on the configuration stage, is

executed. Further the software creates a packet for reading the

adaptive group registers and process check retrieved data. If

data don't match again, a defined number of attempts to recover

data, which were written by a software on the configuration

stage, is executed. Results are written to the output file.

V. BASIC DATA FOR NETWORK SETUP

Because the network structure is known in advance, but is

not considerate that some devices or communication links can

be invalid, so input data for setup is concerning to each

network element.

All ports within each terminal node and switch have unique

number (these numbers match physical numbers of ports on

devices). These numbers are used for identification of

communications links in the table of communications and for

formation the path addresses.

Owing to that in the initial status nodes of a network have

not logical/regional addresses, during configuring and

administration path addressing in the SpaceWire network is

used. In case of path addressing the destination address

represents sequence of numbers of output ports of switches

through which shall pass this packet. When using path

addressing the main part of formation of a way of a packet in a

network lays down on administration node, switches need to

direct only a packet with input on the output port, thus any

87

registers of setup of modes of routing, a routing table in the

switch aren't used.

In an absence situation in the routing switch of incorrect

setup of a routing table the exchange of packets between

devices when using logical addressing will be erratic. Such

situation often takes place in nodes switches in start state, after

switching on. Errors in the table can result and power failures.

In order to avoid erratic situations during Administration of a

network traveling addressing as it represents a set of output

ports of switches through which shall pass a packet to reach an

assignment node is used. The routing table thus isn't involved.

The network structure specification is set on the basis of the

table in which unique numbers of connected nodes and ports

connected by communication links between this node are

specified.

For each terminal node:

 the list of ports, where shall be set connection, is set;

 for each port the required transmission rate is set;

For each switch:

 the list of ports, where shall be set connection, is set;

 for each port the required transmission rate is set;

 values for adaptive group routing registers are

specified;

 the contents for routing table are set.

All basic data are provided in the form of one file having a

XML format.

The output data represent:

 the list of communication links on which there is

connection, speeds at which it was succeeded to set

connection;

 if on all required communication links there is

connection, for all switches fields for adaptive group

routing registers and routing table are created.

An output data represent one file in xml format. This file

includes information on what setup is implemented according

to input data and what is not implemented. The output file can

be analyzed by the network administrator. If in network there

are some failures, administrator can concentrate on them.

A. Format of an input file

This file is partitioned into the following main sections:

 network_structure has the following structure. To

every line of this table specifying structure of a

network, there corresponds network_connection

subsection (the number of subsections corresponds to

number of lines in the table). Each such subsection

has the unique identifier corresponding to a unique

identifier of a specific communication line, is set in

the form of parameter. Further all communication

lines are described. As the communication lines

bidirectional, for it can't be defined a concept of the

beginning and end. Therefore designation of network

connection points is used. Network connection points

describe number of the device and port number on

which the communication links is connected;

 master_node defines the characteristic of the device

which executes configuration functions and network

administrations. This device has the unique number,

for setup he needs a number of attempts to set a value

for any parameter for any device of a network, the

COM port name which will be used for interaction

with a network and its speed.;

 switch_parameters consists of subsections of switch in

which the specification of parameters of each switch

which is a part of system is executed. The quantity of

subsections of switch is equal to number of switches

in system. In switch subsection in the form of

parameters the identifier of a node and number of

ports are set. For the separate switch parameters for

setup is:

- unique device number;

- the list of port numbers specifying on existence

connection or absence connection on each of them

and in case of connection existence, speed for

transmitting speed;

- the description of adaptive group routing

registers, separately for each register;

- the routing table description, row number

specifying and value which needs to be written;

 terminal_nodes_parameters consists of subsections of

terminal_node in which the specification of

parameters of each terminal node which is a part of

system is executed. The quantity of subsections of

terminal_node is equal to quantity of terminal nodes

in system. In terminal_node subsection in the form of

parameters the identifier of a node and number of

ports are set. For each terminal node input parameters

is:

- unique device number;

- the port list specifying on existence or

absence of connection on each of them, in case of

existence, a speed value.

In addition to an XML input file it is necessary to correctly

specify temporal settings for network administration:

 parameter specifying a period after which it is

necessary to realize administration;

 parameter specifying total quantity of cycles of

administration.

B. Format of an output XML file

Output data are:

 the list of communication lines on which there is a

connection, speeds at which it was succeeded to set

connection;

 if on all required communication links there is

connection, for all switches fields for adaptive group

routing registers and routing table are created.

 file includes information on what setup is implemented

according to input data and what is not implemented;

 the output file includes two sections:

- switch_parameters – section in which are

specified parameters of switches;

- terminal_nodes_parameters – section in which

are specified parameters of terminal nodes.

88

VI. CONCLUSION

Administration of devices of a distributed network is made

both in a standalone mode, and as a part of an exploited

complex. This algorithm provides automatic detection of the

current configuration of a network. The developed software

allows to trace attaching and detaching (an output from

structure and a failure) network devices. Allows to set up

quickly operation modes and to trace statuses of devices,

provides collection, information display about network

condition.

The operator of a network can look at results of operation

in the output file. If it contains devices for which it wasn't

succeeded to set required parameters, the operator can make

the relevant decisions for deleting the arisen problem.

REFERENCES

[1] ESA (European Space Agency), standard ECSS-E-50-12A,

“Space engineering. SpaceWire – Links, nodes, routers and

networks. European cooperation for space standardization”,

ESA Publications Division ESTEC, Noordwijk, The

Netherlands, 2003

[2] ECSS-E-ST-50-52C. Space engineering. SpaceWire - Remote

memory access protocol. Noordwijk, The ESA-ESTEC

Requirements and Standards Division, 5 February 2010, 109 p.

89

Impacts of Faults on a SpaceWire Network
Session: SpaceWire Networks and Protocols, Short Paper

Michiya Hayama, Yosuke Yokoyama, and Riko Yagiu

Information Technology R&D Center,

Mitsubishi Electric Corporation,

5-1-1, Ofuna, Kamakura, Kanagawa, 247-8501, Japan

Hayama.Michiya@db.MitsubishiElectric.co.jp,

Yokoyama.Yosuke@ea.MitsubishiElectric.co.jp,

Yagiu.Riko@eb.MitsubishiElectric.co.jp

Isao Odagi, and Hiroto Namikoshi

Kamakura Works,

Mitsubishi Electric Corporation,

325, Kamimachiya, Kamakura, Kanagawa, 247-8520, Japan

Odagi.Isao@cb.MitsubishiElectric.co.jp,

Namikoshi.Hiroto@bk.MitsubishiElectric.co.jp

Abstract—SpaceWire is a standard for a communication

interface in a satellite. It reduces a wiring cost for building a

network. However, it becomes the complicated topology when we

design the network architecture that considered Peer to Peer, a

redundancy, etc. Furthermore, a component can share a line with

the other components. Therefore, traffics generated by a

component will effect to the other traffics. It is difficult to

estimate traffics on a network. Additionally, estimating impacts

on SpaceWire network by errors related to internal registers and

buffers are difficult because SpaceWire has more complex

protocol than that of the other communication interfaces such as

MIL-STD-1553b. We developed a simulator based on NS-3 to

simulate VHDL models with virtual network. We divide a

SpaceWire network into function blocks (internal registers,

buffers, communication lines etc), and evaluate impacts on each

function block by faults. In this paper, we describe simulation

results and propose necessary quality of each function block for

fault tolerance system with SpaceWire.

Index Terms— SpaceWire, Network, Simulator, VHDL, Faults

Detection

I. INTRODUCTION

SpaceWire has been used for internal communication

interfaces in satellites [1-3] because it achieves high-speed data

communication and flexible network topology. The main target

satellite system is an unmanned and once the satellite is orbited,

it is extremely difficult to maintain it manually. These systems

have FDIR (Fault Detection, Isolation and Recovery)

mechanism that detects faults and recoveries the systems

automatically.

It is important to understand detail effects of faults and

evaluate effectiveness of fault detection and countermeasures

for faults in advance. Depending on this background, effects of

faults on a SpaceWire network and countermeasures against

faults are presented [4-9].

Generally, implementation bugs, Single Event Upsets

(SEU) and Single Event Transients (SET) cause faults on

SpaceWire nodes and routers. In [4,5], effects of SEU/SET on

SpaceWire IP (Intellectual Property) is analysed using HDL

simulator. However, estimating consequence from failure parts

to the effects for network is difficult, because they inject faults

TABLE I. CHARACTERRISTICS OF THE SIMULATORS

Parameter OPNET[10] HDL Simulator[11] Proposal[12]

Simulation

Time
Fast Slow Middle

Accuracy
Character

Level

Logic

Level
Mixed

Open

Source
No

depends on the

simulator
Yes

at random.

Regarding countermeasures against faults in SpaceWire, it

is proposed methods to construct redundant network with

various constraint conditions automatically [4] and switch to

the alternative route by fault detection with exchanging keep-

alive messages [5].

Therefore, we developed a simulator that is able to handle

HDL models with virtualized networks in order to evaluate

effects of faults on a SpaceWire network and effectiveness of

FDIR accurately [12]. Furthermore, we simulate behaviors of

existing SpaceWire IPs with a redundant network using the

simulator. The results of evaluation show relations (between

failure parts and effects on a network) and a delay of a

redundant operation. We also found that there are some cases

which cause delays to switch route in redundant network due to

undetected faults for a long time and it depends on

implementations and traffic conditions. In addition, we propose

requirements for SpaceWire implementations based on the

results.

II. OVERVIEW OF THE SIMULATOR

Simulators for SpaceWire have been reported in [10-11].

To evaluate for the effect on SpaceWire networks, simulation

models should be close as possible to actual environment. The

simulator [10] based on the network simulator (OPNET) has

problems for the point of accuracy. Simulating whole system

with HDL simulator achieves high simulation accuracy [11].

However, the simulator requres large amount of calculation. In

this paper, we report our simulator which works as a mixed-

mode simulator composed with the network simulator (NS-3)

90

Fig. 1. Evaluation Network

TABLE II. NODE MODELS FOR EVALUATIONS

Models HDL Model A HDL Model B Default Model

Description Free

Spacewire IP

Open-source

SpaceWire IP

Core

Ideal Model

Language VHDL VHDL C++

FIFO 128 bytes 64 bytes 1024 bytes

Clock 10 MHz Rx:166 MHz

Tx:100 MHz
－

Max Credit 7 7 4

and the VHDL simulator (FreeHDL) [12].

The simulator is able to simulate large scale systems

efficiently. Table I shows a comparison characteristics among

simulators.

III. EVALUATION MODELS

Figure 1 shows the target network model to evaluate that is

configured with 3 nodes and 2 routers. Various HDL models

are applied to Node 33. We inject a bit-error into internal

registers and evaluate effects to the network. For evaluate the

switching redundant routes time, we implemented redundant

functionalities described in Section C in each node and router.

A. Simulation Senario and Analyze the Simulation

We executed simulation 200 times per combinations of

model (Model A and B) in Table II, register to inject an error in

Table III and condition in Table V according to the scenario as

bellow; After termination (Step 3), we compared transmitted

packets with received packets and evaluated number of

incorrect packets.

1) Reset Nodes and Make Traffics

Reset all nodes and routers after 20 µs from the timing to

start simulation and each node starts to transmit packets.

2) Inject a Bit-Error to Node33

Injects a bit-error into an internal register of Node33 after

10ms from the timing to start simulation.

3) Terminate and Analyse the Simulation

Terminate the simulation after 100 ms from the timing to

start simulation.

TABLE III. FUNCTION BLOCKS IN SPACEWIRE NODE MODELS

No. Block Function

1 State Machine State Machine (FSM)

2 Transmitter Read Pointer of FIFO

3 Write Pointer of FIFO

4 Transmit Credit Counter

5 Receiver Read Pointer of FIFO

6 Write Pointer of FIFO

7 Receive Credit Counter

TABLE IV. ALTERNATIVE INTERFACE MAP

Node IF 0 IF 1 IF 2 IF 3

Node32 IF 1

Node33 IF 1

Node34 IF 1

Router128 IF 3 IF 3 IF 3

Router129

Fig. 2. Alternative Route after Fault Detection on Link1

B. Node Models

Table II shows simulation models. We use 2 types of HDL

models for evaluation. The first model (HDL Model A) is

released by CESR. The second model (HDL Model B) is

developed in the open-source SpaceWire project. Each model

is developed as an open-source model. The target bit-errors are

injected into registers shown in Table III.

C. Fault Tolerant Methods

The method of fault detection and switching routes

redundant network consists of following steps (1-3). We shows

an example using transmit timeout on Interface0 of Node33

with Figure 2.

1) Packet Transmit Timeout

Each node resets a link, if the node does not detect

transmission of EOP or EEP after a given time from the first

data character transmission.

2) Packet Receive Timeout

Each node resets a link, if the node does not detect

reception of EOP or EEP after a given time from the first data

character reception.

91

TABLE V. EVALUATION CONDITION

Parameter Condition A Condition B

Number of Trials 200 (each HDL model and

traffic condition)

Transmit Timeout 1 ms

Receive Timeout 1 ms

Transmission Data 25 bytes + EOP

Traffic

Condition

Node33 to 32

(Constant Period)

800 pkt/s 1200 pkt/s

Node32 to 33

(Poisson Arrival)

400 pkt/s

(Average)

600 pkt/s

(Average)

Node34 to 32

(Poisson Arrival)

800 pkt/s

(Average)

1200 pkt/s

(Average)

Node32 to 34

(Poisson Arrival)

400 pkt/s

(Average)

600 pkt/s

(Average)

0

1

2

3

4

5

30

90

150

N
u

m
b

er
 o

f
in

co
rr

ec
t

p
ac

k
et

s

Node34 to 32
Node32 to 34
Node33 to 32
Node32 to 33

Model A

800 pkt/s

32 74

Model B

1200 pkt/s

32 74

Model B

800 pkt/s

32 74

Model A

1200 pkt/s

32 74N
o

.

Fig. 3. Classify Incorrect Packets according to Source and Destination

Address

3) Redundant Routing

Each node and router switches the routes to the alternatives

according to Table IV if it detects link reset. This process runs

only once.

When a transmit timeout occurs on Interface0 of Node33,

each link with Interface0 of Node33 and Interface1 of

Router128 is reset according to the Step1. Then, Node33 and

Router128 update routing tables according to Step3 with Table

IV. Alternative interfaces of Interface0 of Node33 and

Interface1 of Router128 are defined as Interface1 and

Interface3 respectively in Table IV. Node33 rewrites fields

related to Interface0 as Interface1. And, Router128 rewrites

fields related to Interface1 as Interface3. Finally, the route

between Node33 and Router128 updates as Figure 2.

Fig. 4. Function Block Diagrams of FIFOs in HDL Model A and B

Fig. 5. Effects of an Error for Enqueued Packets in Model A and B

IV. EVALUATION RESULTS

We simulated the models according to Section III and

evaluated number of incorrect packets and distributions of

transmission times of incorrect packets. Table V shows

simulation conditions. We ran the simulation with each HDL

model (HDL Model A and B in Table II) and each traffic

condition (Condition A and B in Table V). Each node

generates packets with Poisson distribution except Node33.

Node33 generates packets with constant period.

A. Effect of a Traffic Condition

Figure 3 shows the average number of incorrect packets

when errors occur on internal registers No.2, 3, 4, or 7. Figure

11 shows all of the results. We found from Figure 3 that Model

A caused more incorrect packets than Model B. In Condition B

(1200 pkt/s), faults on Node33 had a major effect on packets

transmitted from Node34.

We analyzed Model A and B in order to find the cause of

the difference of number of incorrect packets. As a result of the

92

t=0.83ms

Rx0

Tx0

Rx0

Tx0

Rx1

Tx1

Rx0

Tx0
Node33

Router

128

Node32

Packet A

Packet B

Fig. 6. Character Traces with HDL Model A (1200 pkt/s) and Injected Fault Type No.4

0

2

4

6

8

10

0 20 40 60 80 100

N
u

m
b

er
 o

f
in

co
rr

ec
t

p
ac

k
et

s

Time [ms]

No.2
No.4
No.7
No.3

Fig. 7. Distributions and Number of Incorrect Packets with HDL Model A

and 800 pkt/s on Node33

0

2

4

6

8

10

0 20 40 60 80 100

N
u

m
b

er
 o

f
in

co
rr

ec
t

p
ac

k
et

s

Time [ms]

No.2
No.4
No.7
No.3

Fig. 8. Distributions and Number of Incorrect Packets with HDL Model B

and 800 pkt/s on Node33

analysis, the structure of a FIFO in a transmitter and a

configuration of transmit/receive timeouts caused the

difference. The diagrams of FIFO in each model are shown in

Figure 4. And effects of an error on enqueued packets in the

FIFO are shown in Figure 5.

In Model B, as shown in Figure 5(b), all characters located

between read address and write address are transmitted even if

an error occurs because the number of characters stored in

FIFO is calculated by subtracting read address from write

address. On the other hand, in Model A, a part of characters

located between read address and write address may not be

transmited because the number of characters stored in FIFO

does not change if an error occurs on read/write address

registers, as shown in Figure 5(a).

If an EOP is not transmitted due to the error on read/write

address registers, this can cause link occupation on SpaceWire

network. Figure 6 shows character traces when a miss of a

transmission of EOPs was occurred. We found from Figure 6

Fig. 9. An Operation of The Improvement of a Fault Detection

that Node 33 transmitted PacketA without EOP and continued

to transmit NULLs for a long time. In addition, Node 33 could

not detect the fault because the following PacketB was

transmitted from Node 33 in 1ms. Finally, it caused occupation

of the link between Router 128 and Node 32.

B. Delay of Fault Detection

Figure 7-8 shows distributions of transmission times of

incorrect packets. We found that it takes 0-40ms to detect an

error of register No.4 (Transmit Credit Counter). The delay of a

fault detection is understood as follows. The register in Node

33 records the amount of receiver space in Router 128. Router

128 can detect the fault only when transmitted characters

exceed receiver space in Router 128 due to the error. Therefore,

the fault detection delayed for a long time.

C. Improvement of Fault Detection

According to Section III-A, when a packet transmission

interval is shorter than a transmission timeout time, there is a

possibility that Model A affects traffics of surrounding nodes

because a fault detection does not work in some cases. In order

to improve a fault detection capability of Model A, we

implement the following method in the FIFO of the model.

Figure 9(a)(b) show an operation of the improved FIFO. When

a character is read, the FIFO writes an ESC character to the

same address. The written ESC characters are transmitted when

an error occurs in read/write address registers. This enables to

93

Node34 to 32
Node32 to 34
Node33 to 32
Node32 to 33

0

1

2

3

4

5

30

90

150
N

u
m

b
er

 o
f

in
co

rr
ec

t
p

ac
k

et
s

Model A*

1200 pkt/s

32 74

Model A

800 pkt/s

32 74

Model A*

800 pkt/s

32 74

Model A

1200 pkt/s

32 74N
o

.

Fig. 10. A Comparison of Incorrect Packets between Model A without the

Improvement and Model A with the Improvement

detect an error. (SpaceWire treat continued ESCs as an error.)

We run the simulation using the improved model with the

same conditions as Section III. Figure 10 shows the average

number of incorrect packets in 200 times simulations per each

condition. Model A* shows the improved model. Incorrect

packets decreased when an error occurred in the internal

register No.3 (a read address register in the transmitter). When

an error occurred in the internal register No.4, incorrect packets

decreased by one quater, but we found misses of a fault

detection. The misses are understood that the fault detection

functionality detected only errors of read address register, as

shown in Figure 9(c).

V. CONCLUSION

In this paper, we evaluated impacts of faults on a

SpaceWire network and capabilities of redundant operations

using existing HDL models. For the evaluation, we reported

the simulator composed of the network simulator and VHDL

simulator in order to simulate the models accurately and

efficientry. The evaluation results indicate that an error in

read/write address registers causes missing EOPs. Missing

EOPs causes blocking traffics transmited by surrounding nodes.

Futuremore, we found that detecting errors in Trasmit Credit

Counter is delayed for a long time.

According to these analysis, we think FIFOs in SpaceWire

IPs should be implemented avoiding mismatch between a

address registers and a data counter. Also, a transmission

timeout should be configured shorter than a packet

transmission period.

APPENDIX

Figure 11 shows all of the evaluation results (internal

registers No.1-7) in Section III.

0

1

2

3

4

5

30

90

150

N
u

m
b

er
 o

f
in

co
rr

ec
t

p
ac

k
et

s

Node34 to 32
Node32 to 34
Node33 to 32
Node32 to 33

1 2 3 4 5 6 7N
o

.

Model A

800 pkt/s

Model B

1200 pkt/s

Model B

800 pkt/s

Model A

1200 pkt/s

1 2 3 4 5 6 7 1 2 3 4 5 6 71 2 3 4 5 6 7

Fig. 11. All of the Evaluation Results (internal registers No.1-7) in Section III

REFERENCES

[1] Hiroki Hihara et. al., “Intelligent Navigation System with

SpaceWire for Asteroid Sample Return Mission

HAYABUSA2,” Proc. of ISC 2013, pp.308-311, Jun. 2013.

[2] Satoko Kawakami et. al., “Deterministic Implementation of

SpaceWire on Data Recorder and Payload Interface Units”, Proc.

of ISC 2011, pp.189-192, 8-10 Nov. 2011.

[3] T. Takashima et. al., “Space-Wire Applications for the MMO

Spacecraft in BepiColombo Mission,” Proc. of ISC 2007, 17-19

Sep. 2007.

[4] Jimmy Tarrillo et. al., “Designing and Analyzing a SpaceWire

Router IP for Soft Errors Detection,” Proc. of LATW 2011, 27-

30 Mar. 2011.

[5] Jimmy Tarrillo et. al., “Improving Error Detection Capability of

a SpaceWire Router IP,” Proc. of RADECS 2011, pp.501-506,

19-23 Sep. 2011.

[6] Alexey Syschikov et. al., “Toolset for SpaceWire Networks

Design and Configuration,” Proc. of ISC 2013, pp.149-153, 10-

14 Jun. 2013.

[7] Muhammad Fayyaz et. al., “Fault Tolerant SpaceWire Routing

Topology and Protocol,” Proc. of ISC 2010, 22-24 Jun. 2010.

[8] Christopher T. Dailey, “SpaceWire Network Packet Error

Handling,” Proc. of ISC 2011, pp.56-62, 8-10 Nov. 2011.

[9] Rakow G.P. et. al., “SpaceWire Physical Level Redundancy

Mechanism,” Proc. of SMC-IT 2006, 17-21 Jul. 2006.

[10] Brice Dellandrea et. al., “MOST: Modeling of SpaceWire

Traffic,” Proc. of ISC 2013, pp.281-285, 10-14 Jun. 2013.

[11] Artur Eganyan et. al., “SpaceWire Network Simulator,” Proc. of

ISC 2010, 22-14 Jun. 2010.

[12] Michiya Hayama et. al., “A Development of Network

Evaluation Tool using SpaceWire Simulator (in Japanese),” 57th

Space Sciences and Technology Conference, 9-10 Oct. 2013.

94

Spaceborne Unified Data&Information Network
SpaceWire Networks and Protocols, Short Paper

Wang Zhen

No.1 Dep.

Shanghai Institute of Satellite Engineering

Shanghai, China

simonlover121@163.com

Lu Guoping

Science and Technology Dep.

Shanghai Institute of Satellite Engineering

Shanghai, China

Lugp509@163.com

Abstract—This paper gives an application of SpaceWire

Network on transferring spaceborne data & information. The on-

board data is classified as payload data and platform

management data. Accordingly, the on-board network is divided

into payload data subnet and platform data subnet that are used

to deliver payload data and platform management data

respectively. Two different high-level protocol stacks are selected

for the two subnets to satisfy the different transmission demands

of payload data and platform management data.

Key Words—SpaceWire, RVTP, time-triggered, retransmission.

I. INTRODUCTION

As an advanced high-speed network, SpaceWire is aimed at

being used as the sole on-board network in satellites[2],

carrying different types of on-board data, which mainly include

payload data, control data, status information of on-board

equipments, clock synchronization information and so on. This

paper analyzes their characteristics and transmission demands.

Then it classifies on-board data as payload data and platform

management data. Payload data have a high throughput and

require the availability of a sustained, high bandwidth to be

operational. Platform management data have a low throughput

but require high reliability and have very strict time constraints.

In order to satisfy the demands of payload data and platform

management data, the on-board SpaceWire network is divided

into two subnets in structure and function, that is high-speed

payload data subnet and high reliable platform data subnet, and

two different high-level protocol stacks are selected for them.

Payload data are delivered by RVTP (Remote Virtual-channel

Transfer Protocol)[1] in payload data subnet, while platform

management data are delivered by RMAP protocol[5] in

platform data subnet. Moreover, retransmission and time-

triggered transmission strategy are used to provide QoS for

platform management data.

II. ON-BOARD DATA CLASSIFICATION

The aim of building spaceborne unified data network using

SpaceWire is to transfer the on-board data efficiently. The on-

board data are all kinds of digital information exchanged

between on-board devices, including payload data, control data,

housekeeping data, time synchronization data and so on.

According to their characteristics, these data are classified as

two types: platform management data and payload data.

Platform management data mainly consists of control data,

housekeeping data and time synchronization data, which have a

low throughput, require high reliability and have very strict

time constraints. Payload data have a high throughput and

require the availability of a sustained, high bandwidth to be

operational.

In order to satisfy the transmission demands of payload data

and platform management data, the on-board SpaceWire

network is divided into two subnets in structure and function,

that is high-speed payload data subnet and high reliable

platform data subnet. Accordingly two different high-level

protocol stacks are selected for the two different subnets.

III. THE DESIGN OF SPACE-BORNE UNIFIED DATA NETWORK

The design of spaceborne unified data network includes two

parts: the network structure design and the network

communication protocol design. The network structure

provides hardware platform for the data transmission, while the

network communication protocol defines the data

encapsulation format and regulates the data transmission

scheme to ensure the on-board data can be transmitted

efficiently and reliably.

A. The design of network structure

The schematic diagram of the spaceborne unified data

network constructed using SpaceWire is illustrated in Fig.1.

The network structure consists of the SpaceWire router

network and a number of SpaceWire nodes. SpaceWire nodes

are the sources and destinations of data, which are all kinds of

on-board devices or subsystems that are connected to the

SpaceWire router network by SpaceWire interfaces. The

SpaceWire router network provides a communication bridge

for on-board devices or subsystems. The management unit

controls the operation of the whole network, configures the

network parameters and monitors the operation status of the

network.

95

Fig. 1. The schematic diagram of the space-borne unified

data network

A detailed network structure is illustrated in Fig.2. The

SpaceWire router network comprises three SpaceWire routers

which are interconnected by SpaceWire links. In order to

increase the fault tolerance of the network, each router is dual

redundant, i.e. prime and redundant. A number of SpaceWire

nodes including the data management computer, processor,

attitude and orbit control computer (AOCC) and the power

supply controllers are connected to the SpaceWire router

network by SpaceWire interfaces and SpaceWire links. The

data management computer acts as the network management

unit, which controls the operation of the platform management

subnet, configures the network parameters and monitors the

operation status of the network. The SpaceWire nodes are dual

redundant as well as the routers so as to improve the reliability.

The network can be extended according to practical application

requirements.

Fig. 2. The diagrammatic sketch of the space-borne unified

data network

The spaceborne unified data network shown in Fig.2 is

divided into payload data subnet and platform data subnet. The

processor is the functional core of the payload data subnet,

which is responsible for collecting all the payload data and

transferring to ground through downlink after data processing.

The data management computer is the functional core of the

platform data subnet, which controls the transmission of status

data, housekeeping data, time synchronization data and so on,

and distributes the control information to the node-devices.

B. The design of network communication protocols

The on-board data transmitted in the space-borne unified

data network are classified as payload data and platform

management data. The former has a low throughput, very strict

time constraints, and requires high reliability, while the latter

has a high throughput and requires the availability of a

sustained, high bandwidth to be operational. Two different

high-level protocol stacks are selected for the two types of data

so as to satisfy their different characteristic.

1) Payload data subnet protocol design

The payload data have a high throughput, high speed and

high requirement of bandwidth. SpaceWire is a high-speed on-

board network with data transmission speed ranging from 2

Mbps to 400 Mbps and the network bandwidth can be

improved with the increase of the numbers of SpaceWire links

and routers. The payload data subnet protocol stack is shown in

Fig.3.

User Application

SpaceWire

RVTP

Fig. 3. Payload data subnet protocol stack

Combined SpaceWire PID and AOS data link layer, the

RVTP (Remote Virtual-channel Transfer Protocol)

encapsulates a CCSDS AOS Virtual Channel Frame into a

SpaceWire packet[3] [4].

There are three main innovations of RVTP shown as

follows:

 The RVTP is based on Virtual Channel which is firstly

proposed.

 The RVTP packets are with fixed length which makes

the data transfer delay predicable in a SpaceWire

network.

 The RVTP provides FDIR function at the target node to

facilitate fault location and recovery autonomously.

The complete format of the RVTP packet is shown in Fig.4.

Target Logical Adress

……

Protocol Identifier Channel ID (MS)

VC Frame Count (MS) VC Frame Count (LS) Signaling Field

B_PDU Bitstream Data

(First byte)
B_PDU Bitstream Data B_PDU Bitstream Data

B_PDU Bitstream Data …… …… B_PDU Bitstream Data

EOP

VC Frame Count

Target SpW Adress

Channel ID (LS)

B_PDU Header (MS) B_PDU Header (LS)Frame Insert Zone (MS) Frame Insert Zone (LS)

B_PDU Bitstream Data

Target SpW Adress

First byte transmitted

B_PDU Bitstream Data
B_PDU Bitstream Data

(Last byte)

Last byte transmitted

Fig. 4. RVTP packet format

a) Target SpaceWire Address field: The Target

SpaceWire Address field shall comprise zero or more data

96

characters forming the SpaceWire address which is used to

route the RVTP packet to the target.

b) Target Logical Address field: The Target Logical

Address field shall be an 8-bit field that contains a logical

address of the target.

c) Protocol Identifier field: The Protocol Identifier field

shall be an 8-bit field that contains the Protocol Identifier

complied with the provisions of the related ECSS standards

[4].

d) Channel ID field: The Channel ID shall be a 16-bit

field that contains Frame Version Number, Spacecraft

ID(SCID), Virtual Channel ID(VCID).

e) VC Transfer Frame Count field: The Virtual Channel

Transfer Frame Count shall be a 24-bit field which contains a

sequential binary count (modulo-16,777,216) of each Transfer

Frame transmitted within a specific Virtual Channel.

f) Signaling field: The Signaling shall be an 8-bit field

that contains Replay Flag, Virtual Channel Frame Count

Cycle Use Flag, Reserved Spares, Virtual Channel Frame

Count Cycle.

g) Frame Insert Zone field: The Frame Insert Zone shall

be a 16-bit field that can be used to insert some special

information according to user application, such as time, secret

key.

h) B_PDU Header Field: The B_PDU Header shall be a

16-bit field that contains Reserved Spare and Bitsream Data

Pointer.

i) B_PDU Bitstream Data Field: The B_PDU Bitstream

Data Field shall be a fixed-length that follows, without gap,

the B_PDU Header.

j) EOP character: The end of the RVTP packet shall be

indicated by an EOP character.

2) Platform data subnet protocol design

Platform data subnet protocol stack is shown in Fig.5. Since

platform data require high reliability and have very strict time

constraints, some necessary classes of QoS are provided in the

protocol stack.

User Application

Source Data Packet

format

Retransmission Scheme

RMAP

Time-triggered

transmission

SpaceWire

Fig. 5. Platform data subnet protocol stack

a) Retransmission Scheme

Although SpaceWire defines error detection, reporting and

recovery techniques, it defines no means of recovering any data

that are lost or that arrived at its destination in error. Since

payload data have a high reliability requirements,

retransmission scheme is necessary which provides recovery

mechanisms when error occurs. If the data packet is missing, it

should be retransmitted either through the same path or through

a redundant path.

b) RMAP

To implement the retransmission scheme, there shall be a

mechanism to let the source node know whether or not the

destination node has received the data sent by the source node.

RMAP is selected in the protocol stack, which has the

capability for reception acknowledgement.

c) Time-triggered transmission scheme

Constructed by interconnection routers, SpaceWire network

has asynchronous, multi-source characteristics. When data is

transmitted in SpaceWire network, transmission delay may be

uncertain due to the network obstruction. In order to make the

data between network nodes interact with a reasonable and

orderly manner, and to ensure the certainty of transmission

delay, the spaceborne unified data&information network

requires an unified transmission timing scheduling for various

types of data. This time scheduling can be achieved by time

triggered transport mechanism whose basic work principle is:

the communication cycle of the network is divided into series

of time slices, and each node transmits its data within a

specified time slice to avoid or minimize data transmission

conflicts.

d) The flow of the platform data subnet

 the platform data generated in the source node are firstly

encapsulated in the Source Packet format as defined by the user

and then are encapsulated into the RMAP packet. Before

transferring, the source node shall keep a copy of the RMAP

packet. When the RMAP packet arrives at the destination node

an acknowledgement is sent back to the source node. When the

source node receives the acknowledgement which shows that

the data have been transmitted correctly, it can free the buffer

containing the copy. If the acknowledgement shows that some

error has occurred in the received data, or no acknowledgement

is received within a time-out period due to either the RMAP

packet or the acknowledgement being lost, the RMAP packet

can be retransmitted to recover from the error. Platform data

flows from different source nodes are scheduled according to

the time-triggered transmission scheme.

IV. CONCLUSION

This paper has analyzed the characteristics of on-board data

and classified them as payload data and platform management

data. They are delivered in different subnets by two different

high-level protocol stacks so that both of their requirements

can be satisfied.

REFERENCES

[1] Wang Zhen, Dong Yaohai, The Remote Virtual-Channel

Transfer Protocol, unpublished

[2] ECSS-E-ST-50-12A, Space Engineering - SpaceWire - Links,

nodes, routers and networks. 24 January 2003.

97

[3] CCSDS 732.0-B-2, AOS Space Data Link Protocol. Blue Book.

July 2006.

[4] ECSS-E-ST-50-51C, Space Engineering - SpaceWire protocol

identification. 5 February 2010

[5] ECSS-E-ST-50-52C, Space Engineering - SpaceWire Remote

memory access protocol. 5 February 2010

98

SPACEMAN: A SpaceWire Network Management

Tool
SpaceWire Networks and Protocols, Short Paper

Witold Hołubowicz

Adam Mickiewicz University

Poznań, Poland

holub@amu.edu.pl

Piotr Lancmański, Krzysztof Romanowski

ITTI Sp. z o.o.

Poznań, Poland

{Piotr.Lancmanski, Krzysztof.Romanowski}@itti.com.pl

Vangelis D. Kollias, Nikos Pogkas

TELETEL SA

Athens, Greece

{V.Kollias, N.Pogkas}@teletel.eu

Abstract—The recently developed SpaceWire Plug-and-Play

protocol offers a number of possibilities in network management,

including standard methods of discovery and verification. This

paper presents a network management prototype tool which uses

the Plug-and-Play mechanisms to produce a topology and

configuration database with an XML representation of a

SpaceWire network, using an XML profile that is currently

under definition by ESA. That repository can then be used to

produce a graphical visualization of the network. The

mechanisms which make network discovery possible can also be

used to perform active network management, where the network

engineer modifies the network topology and node configuration

beginning with the graphical network view. The tool is currently

being developed in the SPACEMAN project. The architecture

and implementation details are presented, as well as validation

and demonstration setup.

Index Terms—SpaceWire, network management, Plug-and-

Play.

I. INTRODUCTION

The increasing complexity and functionality of

SpaceWire [1] networks results in the growing burden of

managing them. On the other hand, there is demand for

shortening development times, with a vision of missions being

launched in days or weeks. This calls for a common

framework, in the sense of protocols and tools, which could

streamline integrating equipment from diverse vendors.

The Plug-and-Play protocol, which has been developed for

several years, offers facilities useful for network management,

including standard methods of network discovery and

verification. Recently it has entered the draft standard

phase [2]. The standardization efforts are paralleled by

breadboarding, testing, and validating the protocol [3],

activities indispensable for final adoption of the standard,

which in turn is necessary for market to offer Plug-and-Play

compliant systems.

The SPACEMAN project, launched this year with funding

from ESA and involvement of ITTI and TELETEL, aims at

developing a prototype network management tool based on the

Plug-and-Play mechanisms, the observations and conclusions

from practical implementation of the protocol being as

important as the functionality of the prototype.

This paper presents the SPACEMAN network management

tool as seen at an early stage of the project. The objectives and

basic requirements are outlined, followed by a view of the

architecture of the tool and preliminary implementation

information. Finally, a setup planned for validation of the tool

is discussed.

II. OBJECTIVES

With the general objective of enhancing and facilitating the

process of administration of SpaceWire networks, the basic

capabilities required of the tool are automatic discovery of

network topology including identification of nodes, routers,

and links through implementation of the network discovery

protocol based on the Plug-and-Play protocol specification, as

well as representation of the topology and configuration data as

XML SpaceWire network profiles. Essential user interface

facilities include visualization of the network topology in real

time with Plug-and-Play devices connecting/disconnecting

to/from the network dynamically, and graphical SpaceWire

network modelling.

In particular, a number of specific functional and non-

functional requirements have been identified. The functional

requirements can generally be grouped according to the main

tasks the tool is going to support:

 Device and network discovery. The tool, when

connected to a SpaceWire network, has to find

99

information (configuration parameter values) on all the

SpaceWire devices it can reach, as well as on the

topology of their interconnections, whether or not there

are any loops in the topology of the network. Since the

Plug-and-Play protocol is of primary interest in the

project, the range of information sought is determined

by what can be delivered by the network management

service as specified in section 5.3 of the draft protocol

specification [2].

 Device configuration. It will be possible for the tool to

set all configuration parameters specified in the draft

specification as writeable. This does not mean that

there cannot occur an adverse effect of such a write,

e.g. if wrong routing table content is been written. It

should be noted that the process of device discovery

involves assignment of the device ID parameter to the

device discovered, so these two categories are strongly

related.

 Monitoring. As much as possible, the state of the

network – the devices and the links – should be

monitored and any changes reported. As there is no

mechanism in Plug-and-Play that would automate that,

this will require employing some form of polling.

However, devices directly connected to the

SPACEMAN tool can also be monitored by capturing

their traffic entering the tool.

 Device commanding. The tool has to provide a

possibility to send specific command packets on user

request to any device it can reach.

Regarding the nonfunctional requirements, it could be

noted that the tool is expected to be capable of repeating the

discovery process and acquiring the values of the fields

specified in the draft specification at least once per second.

III. ARCHITECTURE

The current state of the network is the key object of interest

in management activity, thus the central entity of the tool is the

model of the network. The network is mapped on a graph,

with elements of the following types:

 Router. This represents a device called router or

routing switch or switch (the terminology expected to

be subject to changes due to standardization

efforts [4]). It is a vertex of the graph, with a limited

number of edges (generally up to 31, following the

SpaceWire standard [1]). A router can forward packets.

 Node. This corresponds to a device that cannot forward

packets, even if it has more than one edge. It is the

node rather than the end-point (a component of node,

cf. [4]) that has been adopted as the real world

corresponding device, since it can have a higher layer

of protocols, including the Plug-and-Play network

management service, and also it collects all its end-

points under a single vertex. Note, however, that this is

not the only possibility (cf. [4]), and that the resulting

vertex of the graph is forbidden from participating in

any path (unless it is the source or destination).

 Link. This represents a cable connection between two

devices (whether routers or nodes). This is an edge in

the graph. Putting aside the area of simplex SpaceWire,

a connection requires signals travelling in both

directions, so undirected graph has been adopted. This

does not preclude assigning non-symmetrical attribute

values at the level of vertices on both sides of the edge.

A directed graph could alternatively be adopted, with

each link represented as two edges in the graph.

The graph (whether directed or undirected) needs to permit

multiple edges between vertices (e.g. if there are multiple

connections between routers) as well as cycles.

Discovering the network involves searching the graph.

Although this is a well-established area, observing how the

discovery proceeds is of particular interest, especially if more

than one network management tool is allowed to perform

discovery on the same network at the same time. Therefore the

view of the network model (including a slowed down

animation of its being created) is the second major architectural

entity.

The third one is an XML importer and exporter. Since the

work on standardizing an XML network profile is ongoing, the

tool will adopt a profile temporarily, which will be changed if

necessary. The importer will include a validator against an

XSD schema.

Finally, the most important condition for the tool to do any

practical work is communication with the SpaceWire network.

This requires a physical connection – SpaceWire interfaces –

as well as a logical communication on the appropriate level, i.e.

the level of the Plug-and-Play protocol. The two components

are being provided by TELETEL in the form of the iSAFT

Protocol Validation System [5,6] and Plug-and-Play API

(Application Programming Interface), which provide the

SPACEMAN software with physical access to the network and

with Plug-and-Play protocol interface to it, respectively. The

iSAFT platform is equipped with four SpaceWire ports,

making it possible to access the network at four different ports

or to try management by more than one instance of the tool.

The iSAFT SpaceWire ports can also be used to monitor

selected points in the network continuously, with packets

captured and shown in real time or off-line.

IV. IMPLEMENTATION

The functional blocks to implement the main functions of

the tool are shown in Fig. 1. The core software of SPACEMAN

is being developed primarily in C++ with the intent to be

portable in the sense of possible to recompile and run both on

Windows and Linux platforms, and also in the sense of running

either on the iSAFT platform itself, or on a separate computer,

connecting to the iSAFT over the (Ethernet) network. The PnP

API will run on the iSAFT platform in any case.

The iSAFT will be connected to the SpaceWire network via

a 10X SpaceWire router [7].

The development work is in progress. Figure 2 shows

output from the graphical renderer block – views of several

models produced by the network model generator block. The

model generator is dedicated to produce graph-based network

100

remote
PC

XML
files

log
files

iSAFT PVS

SpW device 1

SpW device 2

SpW device 3

SpW link2

SpW link3

4-port
SpW

interface
board

PVS PnP API

SpW device 4

SpW device 2

SpW device 3 SpW device 3

SpW link2

SpW link1

SpW network

packet capture
subsystem

SpW node emulator

emulation
configurator

SpW node emulators

emulation
configurator

 API calls:
local

or over
Ethernet

SPACEMAN NMT

scripting
automation

communications
subsystem

user interface

GUI

text

graphical
renderer

network
discovery
subsystem

network
configuration
subsystem

graphical
topology editor

Collocated with PVS or hosted separately

network
models

network
diagram layout

designer

network
model

generator

time-based
polling monitor

XML network
description

export
(generator)

XML network
description

import
(parser, validator

& interpreter)

database

test packet
generation

Fig. 1. Primary functional blocks of the SPACEMAN tool.

101

Fig. 2. Example network models generated by SPACEMAN.

models based on either interactive design by the user or – as

in this case – on parameterized predefined generic models.

Squares denote routers, circles – nodes, and it can be seen

from the last model that a node can have more than one link.

V. VALIDATION

Proper validation of the tool and the implementation of

the Plug-and-Play protocol require connecting to a Plug-and-

Play compliant network. However, at the time of writing

there are no compliant routers or nodes available in the

project. As a remedy, additional software elements are being

developed.

Though the 10X router is not Plug-and-Play compliant, it

does provide a range of configuration information sufficient

to facilitate device identification and network discovery. It

also does permit setting configuration, including e.g. the

routing table. This functionality can be accessed via the

RMAP protocol [8]. An implementation of the RMAP API

for the iSAFT does exist, and the SPACEMAN tool will

implement access to the router via a driver, as a device-

specific layer mentioned in the Plug-and-Play draft

specification.

In the absence of Plug-and-Play nodes, a node emulator

will be developed, which will respond to Plug-and-Play

messages as specified by the protocol. The emulator will

connect via the iSAFT PnP API to one of the SpaceWire

hardware ports of the iSAFT. With four physical ports, up to

three instances of the emulator can be run simultaneously,

emulating a network of three nodes and one eight-port

router, the router being physical.

VI. CONCLUSION

The SPACEMAN network management tool is a

prototype implementation aiming at showing the possibilities

of the Plug-and-Play protocol in SpaceWire network

management. This paper described the objectives,

requirements, and architecture of the tool from an early stage

perspective. Full demonstration of the tool is expected in the

first half of 2015.

ACKNOWLEDGMENT

This work is being funded by the European Space

Agency under contract no. 4000109438/13/NL/Cbi.

REFERENCES

[1] European Cooperation for Space Standardization, “Space

engineering – SpaceWire – Links, nodes, routers and

networks,” ECSS-E-ST-50-12C, 31 July 2008.

[2] European Cooperation for Space Standardization, “Space

engineering – SpaceWire – Plug-and-play protocol,” ECSS-E-

ST-50-54C (draft), 22 March 2013.

[3] D. Jameux, “Towards SpaceWire Plug-and-Play ECSS

standard,” Proc. of the 4th Int. SpaceWire Conference, San

Antonio 2011, pp. 33-40.

[4] D. Jameux, A. Tavoularis, “SpaceWire standard revision,”

Proc. of the 5th Int. SpaceWire Conference, Gothenburg 2013,

pp. 248-256.

[5] A. Tavoularis, V. Kollias, K. Marinis, “iSAFT Protocol

Validation Platform for on-board data networks,” DASIA

Conference, Warsaw, 2014.

[6] http://teletel.eu/isaft-spacewire-mil-std-1553-simulator/

[7] C. McClements, S. Parkes, G. Kempf, “SpW-10X SpaceWire

Router User Manual,” 30 April 2008.

[8] European Cooperation for Space Standardization, “Space

engineering – SpaceWire – Remote memory access protocol,”

ECSS-E-ST-50-52C, 5 February 2010.

102

Protocol Design for Wireless Extension of Embedded

Networks: Overview of Requirements and Challenges
SpaceWire networks and protocols, Short Paper

Ekaterina Balandina, Yuriy Sheynin

St. Petersburg University of Aerospace Instrumentation

Saint-Petersburg, Russia

ekaterina.balandina@fruct.org, sheynin@aanet.ru

Yevgeni Koucheryavy, Sergey Balandin

Tampere University of Technology

Tampere, Finland

yk@cs.tut.fi, sergey.balandin@fruct.org

Abstract — The available standards of protocols for embedded

networks, e.g., SpaceWire have been designed with the

consideration of wired link connections. But in practice there are

many use cases and applications that would be better to address

by a wireless connection. For example, it might be useful to

install temperature or some other sensor at the edge of satellite’s

solar panel, so that the core nodes of the embedded network can

regularly receive information from them. But providing access to

such sensors by means of traditional wired links is a complex

technological task. Moreover use of wired link in this scenario

would be very expensive and not reliable.

In this paper we make an overview of use cases that drive

demand for wireless extension of the embedded networks. The

paper summarizes studies on general requirements and key

challenges related to deployment of the wireless extension to the

embedded networks. The main focus of the study is on collecting

and analyzing requirements and restrictions that affecting design

of the datalink and network layers of the embedded networks’

protocols. As a reference technology for this study we selected

SpaceWire standard. The paper defines a scope of the

corresponding problem domain and proposes ways to address the

identified problems. The paper is a product of a technology

exploration project, which is target to result in a list of

recommendation for the wireless extension of the SpaceWire

protocol and propose a set of questions plus the general scope

definition of the initial tasks for a working subgroup on designing

wireless protocol extension of SpaceWire.

Index Terms — Wireless, SpaceWire, Embedded Networks,

Networking, Spacecraft Electronics.

I. INTRODUCTION

Development of the wireless telecommunication in the

beginning of the 20th century transformed the corresponding

technologies into the preferable mean of communications that

replaced traditional wired channels in many areas. Wireless

links enable mobility and usually have lower maintenance cost,

plus the damaged risks, due to nature forces and human factor

are much smaller. Of course wireless connection can be also

damaged by natural or artificial noise and interference, but

wireless networks are more dynamic, so they could be more

easily reconfigured and repaired and especially important that

such management could be done also distantly by use of

management wireless connection.

The new boost of the wireless technologies started with

exploration of space and launch of first satellites. The only

possible way of communication between earth and satellites is

by means of wireless technologies. There are a lot of wireless

technologies that can be used and combined for wireless

channels in spacecrafts. For example NASA project “Optical

Communications and Sensor Demonstration (OCSD)” is

focusing on the spacecraft-to-earth/earth-to-spacecraft

communications and represents a usage of asymmetric

communications: optical beam for transmission of large

amounts of data to the Earth and radio-frequency system to

receive some commands from the Earth [1].

But even though wireless communications are most natural

for external communications of the satellites, we still do not

see ready solutions of wireless standard for onboard systems.

In our project we are targeting for a solution for small-satellite

missions when it is crucial to collect and send all relevant

information, while using minimum of internal resources,

especially energy.

Recently we have seen rise of interest to idea of using

wireless links for onboard networks on the spacecrafts. There

are many forces that fuel this trend, e.g., as spacecraft onboard

systems are large and very complex. Often need of installing

new cable connections makes it very difficult to change end-

system location and impose restrictions on the weight. This

means that limited amount of space onboard and great number

of cables made it impossible to reconfigure some constructions

and put to alternative place some of it elements [2]. Benefits of

using wireless networks in space help to overcome these

imperfections but there is also number of challenges that they

are going to face with. So in this paper we summarize research

papers on modern trends in design of the spacecraft onboard

networks.

The selected research area is rather new and there are only

a few teams doing research, development and prototyping of

wireless communication systems for spacecrafts. For example,

already in 2009 Delft University of Technology (Netherlands)

has tested fully autonomous sun sensor consisted of a sun

sensor, solar battery and wireless data link [3].

There are also studies in the field of inter-satellite

communications. Missions of small spacecrafts face with

103

challenges like power scarcity, attitude stability, limitations of

total mass and volume. Question that researcher are trying to

solve is selection of such communication technology that is

ready to face with all limitations of the hardware and can

function in the space environment and meet the requirements

of both inter satellite and space-to-ground data links. As it is

finalized in [4] the need is in the reduction of the

communication costs through adopting common infrastructure

for these purposes.

The rest of paper is organized as follows. In second section

we summarize the target benefits foreseen from use of

developing wireless technologies for onboard systems of the

unmanned spacecrafts. The third section summarizes

environmental characteristics that define the requirements that

shall be met by the sensor nodes in order to have them part of

wireless sensor network. The fourth section gives and overview

and introduction to Integrated Modular Avionics standard. The

fifth section describes currently used example of wireless

sensor network for health monitoring of astronauts. After that

we summarize suggestions of the consultative committee for

space data systems (CCSDS). In the end of paper we provide

the main conclusions and the list of used literature.

II. BENEFITS FOR ONBOARD SYSTEM OF THE SPACECRAFTS

THAT WILL BE BROUGHT BY USE OF WIRELESS TECHNOLOGIES

As was mentioned before, availability of wireless links will

bring a lot of benefits to the onboard informational systems of

the spacecraft. For example, decreasing amount of wires and

reducing launch mass of the spacecraft that will lead to the

following benefits:

 Decreasing cost of the spacecrafts design as according

to current data the mass-to-cost ratio is more than

€100,000 per kilo including launch cost. At the same

time mass of cables is accounted for 20 to 35% of the

total spacecraft mass [5].

 High design flexibility of wireless connections over

wired and the cost of design of end-to-end wireless

paths is double or triple cheaper than similar design

costs for wired path [6].

 Links sustainability, which is ensured by redundancy

of wired connections requires to in average double

number and triple distance of cables, while for wireless

network the required redundancy is for transmitters

and receivers, which results in much smaller increase

of weight.

Also adaptability in the sense that most of the resources that

can be reused on different stages of the mission shall be

designed to allow repurpose them. One more case is that

wireless technologies make possible to use the multipath

redundant spacecraft system because of almost free cross-

strapping. As a result development of wireless network

segments for onboard information system opens new horizons

for development of new types of applications for spacecrafts

and satellites.

III. ENVIRONMENTAL CHARACTERISTICS THAT DEFINE

REQUIREMENTS FOR THE WIRELESS SENSOR NODES

Tatiana Vladimirova and et al. describe environmental

problems with which motes will face while working in the

open space or onboard the spacecraft [7]. A number of

environmental risks determine the operability and survivability

of fragile wireless nodes:

 Mechanical (shock, vibration, acceleration): Brittle

electronic elements are not suitable for applications

where extreme shock, vibration, and/or acceleration

exist.

 Atmospheric (corrosion, debris, vacuum): Corrosion is

a big challenge for low-Earth orbit (LEO),

industrial/chemical and biomedical applications.

 Thermal (extremes, limited heat transfer): Thermal

extremes and cycling are sharpen in a vacuum, as

thermal radiation is the only possible method for heat

transfer between space and a mote.

 Energetic (radiation, including charged particles):

Intensive radiation conditions are experienced in space.

High-energy charged particles are the reason of single-

event effects (SEEs). A total dose hardness of 5-10

Krad (SiO2) is preferable for organization of a multi-

year mission in LEO. Single-event hardness is also

preferable, though to define hardness levels through

testing is very expensive and is usually expected and

mitigated through software and hardware design

redundancy.

 Dynamic (free-fall orbit, high velocity mobility,

attitude disturbance torques): Orbital velocity in LEO

is approximately 7.5 km/s. Natural, but undesirable

perturbations change the orbit over time. This factor

must be completely realized, and key parameters for

example communication range can be selected

properly. The freefall environment also presents

unique challenges. The dominant effect is when

objects in orbit “float” and change orientation or

“attitude” influenced by perturbations from solar

pressure, gravity gradients, magnetic fields, and

aerodynamic drag. This is not a problem if the sensor

technology does not have pointing requirements.

However, if attitude control is required, solutions are

quite difficult at this scale.

IV. INTEGRATED MODULAR AVIONICS STANDARD

Wireless communications enhancement for data exchange

between modules of onboard system of spacecraft is quite

prominent, especially as extension proposals for Ancillary

Sensor Network (ASN) and Integrated Modular Avionics

(IMA). IMA is real-time computer network airborne systems.

These networks consist of a number of computing modules

capable of supporting numerous applications of differing

criticality levels. IMA concept relies on functional isolation

between operating system partitions to limit propagation of

failures within avionics software. Plus it is needed to simplify

software validation and verification (V&V). IMA replaces

point-to-point cabling with a “virtual backplane” data

104

communications network. The network connects software-

configurable computing modules that can adapt to changes in

operating modes or respond to an avionics system fault. There

is a potential path between any of these modules, with the

software and network defining the active Virtual Links to

support effective partitioning. In the event of failures, the

system can quickly reconfigure its software functions (in pre-

determined ways), resulting in a very robust system.

In continuation, Airbus Avionics Full-Duplex Ethernet

(AFDX) [8] and ARINC 664 Aircraft Data Network Part 7

were defined as time-deterministic network standards. Their

main goal is to maturate technology for use in commercial

products to increase acceptance and adoption by the aerospace

industry. Aeronautical Radio Incorporated (ARINC) [9] is a

standard Real Time Operating System (RTOS) interface for

partitioning computer resources in the time and space domains.

ARINC 653 standard also specifies Application Program

Interfaces (APIs) for abstraction of the application layer from

the underlying hardware and software service. It allows to the

host to have several applications of different software levels on

the same hardware in the context of Integrated Modular

Avionics architecture. One of the services provided by ARNIC

is Satellite Navigation and Air Traffic Control and Landing

Systems (SATNAV and ATCALS). There is a formal mapping

of ARINC 429 to AFDX and a similar mapping can be done

for MIL-STD 1553B and similar protocols [10]. This makes it

easier to port legacy software code to AFDX environments and

help to benefit flight-certification efforts. Any AFDX end-

station port interface can source several virtual links (VLs) and

can at the same time receive other VLs, if it is required by the

application. A lot of physical cables needed for ARINC 429 are

replaced by a single network cable plant containing the same

circuits and implemented in time-division multiplexed VLs.

This helps to save weight, volume, and wiring complexity. In

real-time control systems freshness of information much more

important than integrity that is why errors are rejected rather

than corrected.

V. EXAMPLES OF USE CASES: WIRELESS SENSOR NETWORK

FOR HEALTH MONITORING ON PILOTED SPACECRAFTS

The Intelligent Systems Division at NASA Ames Research

Center has been developing WSN technology for useing

aboard spacecraft for Integrated System Health (ISHM)

monitoring of structures funded by the NASA Engineering and

Safety Center and Exploration Technology Development and

Demonstration Program. Mesh-enabled WSNs provide

appropriate failure tolerance and SPA provides dynamic fault

management responsible for low-power, low-cost ancillary

sensing solutions for spacecraft. Proposed in [11] architecture

and technical opportunity of creating wireless failure-tolerant

sensor networks is based on integration of Zigbee and SPA

technology together into SPA-Z architecture. Zigbee provides

effective management of WSNs using its own proprietary

internal methods.

Monitoring health parameters and support of life systems is

discussed in [12, 7] as one example of usage of small devices

with resource limitations and wirelessly connected. Authors of

[7] called them mote which is an abbreviation for ‘remote’

node and refers to the individual units of sensing in a wireless

sensor network. Three types of commercial sensors were

tested: TelosB motes from Crossbow [13], BTNode from Art

of Technology [14] and High Powered Modules (HPM) from

Jennic [15]. Each maintenance or out of work device or data

channel can lead to the unchangeable consequences and ending

of the mission. But as space industry is very expansive it is

quite crucial to avoid such situations. That is why in the next

paper we will focus particularly on restrictions that are

important to take into account while adopting wireless

technologies to the spacecraft environment: power level of

transmission, jamming of wireless signal, and physical

location. These factors are even more important assuming

system work in the exploding environment, RF exposure levels

in excess of governmental limits, and electromagnetic

compatibility [16].

Also authors of [7] are concerned with the application of

standard wireless protocols for communication inside the

satellite (intra-satellite communication and data gathering) and

communication between satellites (inter-satellite

communication). Despite the fact that standard wireless

commercial off-the-shelf (COTS) protocols are widely used

terrestrially they are not so popular in the space application

domain. Also authors of [7] stated that there is the possibility

of using ZigBee-Pro systems for maximum 1.6 Km range at

250 Kbps for sensor networking in inter-satellite applications

could also be considered. There are several sources of radiation

onboard the spacecraft: natural sources and radiation from

electronic devices of the spacecraft. Internal frequencies and

bandwidths of on-board equipment vary from a few hundred

Hz to several GHz. Electromagnetic interference can lead to

failures of the electronic devices on board spacecraft or even

permanent damage that have to be maintained. If sensor nodes

don’t have shielding it makes them very sensitive to EMI.

Two communication standards—ARINC 429 and MIL-

STD 1553B—have dominated in commercial and military

aviation [9]. The MIL-STD 1553B is used mostly in military

aircraft for flight-critical control and control of various mission

systems. Both are half-duplex communication standards.

ARINC 429 connects LRUs via a point-to-point cabling

scheme; MIL-STD 1553B connects multiple devices via a

common bus. These standards are currently used in production

aircraft and spacecraft. There are some deficiencies in

performance of these standards which has led to development

and adoption of extended and modified versions suitable for

modern aircrafts [9].

VI. SUGGESTIONS OF THE CONSULTATIVE COMMITTEE FOR

SPACE DATA SYSTEMS (CCSDS)

The Consultative Committee for Space Data Systems

(CCSDS) is an international platform for development of

communication standards for spaceflights. Currently CCSDS

unites scientists from 26 countries whose goal is to combine

interoperability enhancement, development costs and risks

reduction. CCSDS has several different types of regular

publications which are categorized into several groups

105

according to the following colors: Blue - Recommended

Standards; Magenta - Recommended Practices; Green -

Informational Reports; Orange – Experimental; Yellow –

Record; Silver - Historical.

Recently the committee issued the Magenta book [16] with

recommendations on design of the low-level protocols for

wireless networks in the monitoring and control systems

onboard of the spacecrafts. The main goal is to make possible

for various sensors (produced by different vendors and with

different high level application on top of it) to enter the star

topology network and connect to the gateway. This book

describes two approaches: single-hop contention-based access

and single-hop scheduled access. Both approaches can be

applied to the star-topology network. However, peer-to-peer

exchange of data scenario in mesh networks is not in the scope

of this article. One more consideration is that in the book it is

assumed that the gateway of the PAN is able to communicate

with the backbone network. The book doesn’t describe this

functionality as it is usually implemented on the network layer

of the OSI which is out of the scope of the document. For the

same reason acknowledgement and retransmission

functionality are not mentioned in the book. Authors describe

CSMA-CA and TDMA as two possible medium access

schemes both have prons and cons but accent is made on

TDMA usage as interference avoidance schemes such as

frequency hopping are much more easily implemented in a

TDMA. Maintaining connectivity in a mesh network topology

is also easily implemented in TDMA (as it supports multi-hop

relay traffic with battery powered nodes on a low duty cycle

(long sleep period, short active period). Standards which it is

recommended to follow are IEEE 802.15.4-2011 for single-hop

contention-based communications and ISA100.11a-2011 for

single-hop scheduled medium access communications.

Recommendations that are listed in the book include

restrictions on wireless technology which include risks

associated with the selected radio frequency band, transmission

power level, and physical location. There are some factors that

should be taken into account:

1) Operation in explosive environments;

2) RF exposure levels in excess of governmental limits;

3) Electromagnetic Compatibility (EMC).

CONCLUSION

The main goal of current pre-phase of our project was to

study and prepare an overview of research and development

activities on wireless sensor networks for spacecrafts. As a

result we identified the key players in the field and mayor

projects and standards that have been developed and are under

development. In particular we collected and analyzed

requirements and restrictions that affect design of the datalink

and network layers of the embedded networks’ protocols for

the SpaceWire protocol stack. Also we prepared own list of

recommendations for further development and identified

partners for cooperation on further project development. The

work will be continued and progress reported in the next paper.

ACKNOWLEDGMENT

The paper is done as a kick-off of field studies of Ekaterina

Balandina in the dual degree doctoral program of Tampere

University of Technology and Saint-Petersburg University of

Aerospace Instrumentations.

REFERENCES

[1] “Optical Communications and Sensor Demonstration (OCSD)”

May 2013, Available On-line

[http://www.nasa.gov/directorates/spacetech/small_spacecraft/o

csd_project.html#.U5h6kXLV_VF].

[2] http://cenic2011.cenic.org/program/slides/cenic-2011-zigbee-

sensor-net_foster.pdf

[3] Will H Zheng, John T Armstrong, “Wireless Intra-Spacecraft

Communication: the Benefits and the Challenges”, 2010

NASA/ESA Conference on Adaptive Hardware and Systems.

[4] Richard Alena, Yosuke Nakamura, Nicolas Faber, David Mauro,

“Heterogeneous Spacecraft Networks: Wireless Network

Technology Assessment”, IEEE Aerospace Conference, 2014.

[5] David Jameux, Christian Fraboul, “Introduction to unmanned

spacecraft on-board communications: evolution of timeliness

needs”, Proceedings of the 2nd International Workshop on

Worst-Case Traversal Time, 2012.

[6] “Flight-tested technologies”, July 2009, Available On-line

[http://www.esa.int/Our_Activities/Technology/Flight-

tested_technologies].

[7] Tanya Vladimirova, Christopher P. Bridges, George Prassinos,

Xiaofeng Wu, Kawsu Sidibeh, David J. Barnhart, Abdul-Halim

Jallad, Jean R. Paul, Vaios Lappas, Adam Baker, Kevin

Maynard and Rodger Magness, “Characterising Wireless Sensor

Motes for Space Applications”, Second NASA/ESA Conference

on Adaptive Hardware and Systems(AHS 2007), 2007.

[8] Shabaz I Kazi, “Architecting of Avionics Full Duplex Ethernet

(AFDX) Aerospace Communication Network”, InternatIonal

Journal of ElectronIcs & CommunIcatIon Technology, Vol. 4,

Issue 4, pp 73-77, 2013.

[9] Richard Alena, John Ossenfort IV, Kenneth Laws, Andre

Goforth, Fernando Figueroa, “Communications for Integrated

Modular Avionics”, IEEE Aerospace Conference, 2007.

[10] ARINC 664 Part 7 Standard, “Aircraft Data Network Part 7.

“Avionics Full Duplex Switched Ethernet (AFDX) Network,”

Appendix B, 2005.

[11] Richard Alena, John Ossenfort, Thom Stone, and Jarren

Baldwin, “Wireless Space Plug-and-Play Architecture (SPA-

Z)”, IEEE Aerospace Conference, 2014.

[12] Richard Alena, Fernando Figueroa, John Ossenfort “Intelligent

Wireless Sensor Networks for Spacecraft Health Monitoring”,

2012.

[13] Crossbow Technology Inc., http://www.xbow.com/Products

BTNodes - A Distributed Environment for Prototyping.

[14] Ad Hoc Networks, http://www.btnode.ethz.ch

[15] Jennic Homepage, http://www.jennic.com

[16] Magenta Book: The Consultative Committee for Space Data

Systems, Recommendation for Space Data System Practices,

Spacecraft Onboard Interface System — Low Data-rate

Wireless Communications for Spacecraft Monitoring and

Control, May 2013, Available On-line

[http://public.ccsds.org/publications/archive/882x0m1.pdf]

106

http://www.btnode.ethz.ch/
http://www.jennic.com/

 Components (Long)

107

GR718 – Radiation-Tolerant 18x SpaceWire Router

Based on the DARE 180 nm Library

SpaceWire Components, Long Paper

Jonas Ekergarn, Sandi Habinc, Fredrik Ringhage,

Fredrik Sturesson, Martin Simlastik

Aeroflex Gaisler AB

Kungsgatan 12, SE-411 19 Gothenburg, Sweden

info@gaisler.com

Steven Redant, Kurt Stinkens, Geert Thys, Jagadeesa

Das Arul Mahesh

IMEC

Kapeldreef 75, 3001 Leuven, Belgium

info@imec.be

Martin Suess

European Space Agency

Keplerlaan 1, 2220AG Noordwijk ZH, The Netherlands

martin.suess@esa.int

Abstract— GR718 is a radiation tolerant 18 port standalone

SpaceWire router component that has been developed by

Aeroflex Gaisler together with IMEC (BE), in an activity

initiated by the European Space Agency under ESTEC

contract 4000105402/12/NL/Cbi.No. Out of the 18 SpaceWire

ports, 16 use on-chip LVDS transceivers, and two use LVTTL

signaling. Included also is the mandatory configuration port,

as well as an internal port for system level testing. All ports are

capable of operating in 200 Mbit/s. UART and JTAG

interfaces, that gives access to the on-chip AMBA AHB bus,

are provided for configuration and debugging. SPI and GPIO

interfaces are accessible through the configuration port, which

allows SPI devices to be accessed and general purpose

signaling to be performed through RMAP commands. In

addition to the mandatory features in the current ECSS

SpaceWire standard, GR718 supports group adaptive routing

for path addresses, and packet distribution. It also includes

support for the incoming SpaceWire standard revision 1

(ECSS-E-ST-50-12C Rev.1), the SpaceWire-D protocol, and

the SpaceWire Plug-and-Play protocol currently being

developed for ECSS. The technology used is UMC 180 nm,

using the DARE library from IMEC, and the package is a 256

pin CQFP. A development board for evaluation and software

development has been manufactured as well.

Index Terms—SpaceWire, Networking, Spacecraft

Electronics

I. INTRODUCTION

Both ESA and several companies in the space industry

have indicated 16 as the most viable number of SpaceWire

ports for routers in the near future. Aeroflex Gaisler's

intentions with the GR718 development was to provide this

key component with a new 18 port SpaceWire router ASIC.

The design is based on the GRSPWROUTER

configurable SpaceWire router IP core. The IP core supports

from 2 to 31 ports of three different types: SpaceWire,

AMBA and FIFO. The SpaceWire ports

 implements an encoder-decoder compliant to ECSS-E-ST-

50-12C [1] and provides an external SpaceWire interface.

FIFO ports provide 9-bit parallel interfaces with control

signals in each direction (read/write), which can be used to

interface external units or to cascade two or more routers

without any glue logic. The AMBA ports interface to an

AMBA AHB bus using DMA on the bus. All three port

types connect to the switch matrix of the IP core using

identical FIFO based interfaces. There is no way to

distinguish the three ports on the SpaceWire packet level and

upwards. The configurability provided by the IP core makes

it usable in many different applications. It has already been

used in several standard rad-hard components on Actel

RTAX2000SL and RTProASIC3 FPGAs, and is also used in

the Next Generation Micro Processor (NGMP) system-on-

chip activity funded by the European Space Agency.

During the development phase, two configurations of the

IP core were identified as potential candidates for the final

ASIC: one with 16 SpaceWire ports with on-chip LVDS

transceivers, and two additional ports, either SpaceWire

LVTTL ports or FIFO ports; and the other with 16

SpaceWire ports and two internal AMBA ports connected to

a PCI interface. Both configurations were evaluated in detail

to determine which one would eventually be used for

manufacturing.

108

mailto:info@gaisler.com
mailto:info@imec.be
mailto:martin.suess@esa.int

The final choice fell on the configuration with 16 LVDS

SpaceWire ports and two LVTTL SpaceWire ports, where

the only difference between the two different SpaceWire port

types is the I/O type of the pads.

Fig. 1. GRSPWROUTER IP core overview

The choice to include two additional SpaceWire ports

instead of two FIFO ports was motivated by the pin count of

the selected package, as well as the fact that more and more

processor devices have built-in SpaceWire ports (with

LVTTL signaling), and therefore parallel FIFO ports would

not be readily used without the need for an FPGA device

between the router and the processor. It is also not that

difficult to include SpaceWire links in FPGAs, considering

the large variety of SpaceWire IP cores available.

One of the applications of the GRSPWROUTER IP

core's FIFO ports is to cascade one or more routers without

any glue logic. However, the SpaceWire ports will work

equally good for this purpose. In most cases cascading would

be done on a printed circuit board, and it is well understood

how to route SpaceWire signals on such a board. The FIFO

interfaces are most useful when connecting directly to

external processors and memories. To use a SpaceWire link

instead will require the insertion of glue-logic providing a

complete SpaceWire codec, which would typically be done

using a FPGA, which increases design complexity

considerably. It is however anticipated that the need to

interface to external processors using parallel interfaces will

decrease in the future since most processors will be equipped

with SpaceWire interfaces.

Other considerations that were taken into account during

the design phase were such as whether or not to include

support for the incoming revision 1 of the SpaceWire

standard (ECSS-E-ST-50-12C Rev. 1), and the new

SpaceWire-D and SpaceWire Plug-and-Play protocols. The

problem has been the lack of a firm schedule for finalization

of these standards. In fact, none of the standards were

completed at the time of tape-out. However, Aeroflex

Gaisler is actively involved in the work of finalizing the

revision 1 of the SpaceWire standard, and has also been

reviewing and discussing the two other protocols with the

developers. In this way the risk of implementing something

that will later change in the protocols have been mitigated.

II. GR718 FUNCTIONAL OVERVIEW

The full GR718 architecture includes the following

modules: SpaceWire Router, SPI Controller, UART

Interface, JTAG Interface, General Purpose I/O Interface,

SpaceWire In-System Test (SIST), System Level Test

Configuration, AMBA AHB controller and AMBA APB

controller.

The SpaceWire router implements a SpaceWire routing

switch as defined in ECSS-E-ST-50-12C. Among the

features supported by the router are: group adaptive routing,

packet distribution, system time-distribution, distributed

interrupts, port timers to recover from deadlock situations,

and SpaceWire-D packet truncation based time-slot

violations.

A total of 20 ports is provided, where port 0 is the

mandatory configuration port, ports 1-18 are SpaceWire

ports, and port 19 is a custom port called the SIST port. Each

SpaceWire port contains a SpaceWire codec, and provides

an external SpaceWire interface. The SIST port provides a

FIFO interface which is internally connected to a SpaceWire

In-System Test module (described later). The configuration

port provides a target for the Remote Memory Access

Protocol (RMAP) defined by ECSS-E-ST-50-52C [2], and

an AMBA AHB slave interface, both used for accessing

internal configuration and status registers. The configuration

port also provides a SpaceWire Plug-and-Play interface,

allowing device identification. The ports allowed for

configuration accesses can be restricted if needed, using

several configuration options.

For diagnostic and test purposes, UART and JTAG

interfaces are provided. These low pin count interfaces are

suitable in the small package but at the same time have

sufficient bandwidth. Both the UART and JTAG interfaces

act as masters on the internal AMBA AHB bus and gives

access to the complete set of registers.

The SPI and General purpose I/O interfaces are

accessible through the router's configuration port, which

allows SPI devices to be accessed, and general purpose

signaling to be performed directly through RMAP

commands, or through the UART and JTAG interfaces.

An auxiliary time- / interrupt-code interface is present,

for sending and receiving time- / interrupt-codes through

external pins. Parts of the interface use dedicated pins, while

the rest are multiplexed on the general purpose I/O pins.

109

III. PACKET ROUTING FEATURES

The router's switch matrix can connect any input port to

any output port. Access to each output port is arbitrated

using a round-robin arbitration scheme based on the address

of the incoming packet. A single routing-table is used for the

whole router, where access to the table is arbitrated using a

round-robin scheme based on the input port number. Both

addresses and input port can be assigned either high or low

priority.

Fig. 2. GR718 overview

All the addressing modes, such as path, logical, and

regional logical addressing are supported. Group adaptive

routing is fully supported, meaning that both path and logical

addresses can be individually configured to use one or more

output ports. A unique feature is the support for packet

distribution, which can be used to implement multicast and

broadcast addressing. Also packet distribution can be

enabled for any address.

Each router port is equipped with a timer which can be

individually enabled/disabled. The timer can be used to

recover from potential deadlock situations resulting from

either a stalling source node or stalling destination node.

IV. SPACEWIRE STANDARD REVISION 1 SUPPORT

An upcoming revision 1 of the SpaceWire standard is

planned for the near future. The new revision will contain

some changes that affected the GR718 development. Some

of the new additions may result in some old devices not

being forward compatible. The final details of the updates

have not been decided yet and there is no date set for when

this will be ready, so there was a considerable risk in

implementing these new features before the standard was

finalized.

Three changes were identified as having a technical

impact on the GR718 development. The first one is the

addition of timers in routers. The GRSPWROUTER IP core

already contained programmable packet timers for each port,

which meant that no changes were required. However, an

addition to the functionality was made in order to be able to

distinguish between overrun and underrun timeouts.

The second change is a modification of the link interface

FSM. Two requirements have been identified that potentially

can cause the SpaceWire codec to make unwanted

transitions. These are unlikely corner cases and very few if

any problems have been seen in practice. This modification

will probably not affect backward compatibility with older

SpaceWire codecs, so the risk of including this modification

in GR718 was estimated to be very low.

The final and most complicated change is the addition of

distributed interrupts. The distributed interrupt scheme

introduces two new control codes, called interrupt-code and

interrupt-acknowledge-code, which uses one of the reserved

control bit combinations of Time-Codes. It must therefore be

made sure that they cannot interfere with the normal Time-

Code facilities. All existing devices might not be forward

compatible with revision 1 compliant devices due to the

interrupt- / interrupt-acknowledge-codes.

The distributed interrupt scheme was identified as the

part of revision 1 that caused the highest implementation risk

if included in GR718. Therefore the router was made flexible

enough to allow ports' handling of the new control codes to

be configured individually. In this way the router can be used

as a device that enables old and new equipment to be used in

the same SpaceWire network.

The distributed interrupt scheme is defined by [3], and

GR718 supports all the requirements put on routers, as well

as some optional features to minimize the effects of errors

such as a babbling idiot. Due to the uncertainty regarding

some details in the specification, GR718 was given a high

degree of configurability how to handle the distribution of

interrupt- / interrupt-acknowledge-codes.

V. SPACEWIRE-D SUPPORT

There is a new protocol emerging called SpaceWire-D,

where D stands for deterministic [4]. This is anticipated to be

widely used in the future to provide deterministic and low-

latency transfer of control and command information while

still preserving the high bandwidth of SpaceWire. It basically

consists of a time-slotting table replicated in each unit (node

or router) in the SpaceWire network. Therefore a router

110

needs to have support for SpaceWire-D if it is used in a

network utilizing that protocol.

GR718 implements support for SpaceWire-D by

monitoring packet transfers. In the case of a packet being

transferred while a Time-Code is received, the packet is

truncated and an EEP is inserted at the end of the packet. The

truncation can be individually enabled/disabled per port, and

there is a programmable Time-Code filter per port as well.

The filter allows for each port to have different Time-Code

values or ranges that truncates packets. The programmable

filters also allows distributed interrupt-codes to truncate

packets.

GR718 implements status bits that inform software if a

packet has been truncated due to a received Time-Code.

There is also an option to automatically send an interrupt-

code when the truncation occur.

VI. SPACEWIRE PLUG-AND-PLAY SUPPORT

SpaceWire Plug-and-Play is an upcoming standard that

allows SpaceWire routers and nodes in a network to be

identified and configured, and is defined by [5]. The standard

uses RMAP commands and replies for communication, but

with a different protocol ID.

GR718 includes basic support for SpaceWire Plug-and-

Play, which covers device identification and support for

network discovery. Extended capabilities, such as routing

table configuration, and port configuration through

SpaceWire Plug-and-Play, was not included due to the fact

that the standard was not considered mature enough at the

time of implementation. The SpaceWire Plug-and-Play

functionality can be disabled by means of a configuration

pin.

VII. SPACEWIRE IN-SYSTEM TEST

A built-in self-test is provided for the verification of the

SpaceWire router and codec functionality. The SpaceWire

In-System Test (SIST) protocol provides a means for

verifying larger part of the designs' functionality without the

need to generate high speed test patterns and observe results

at high frequencies.

The internal SIST module is connected to the router via a

dedicated FIFO port. The external side of the SIST module is

connected to the AMBA APB bus, which is only accessible

through the JTAG and UART (debug-) interfaces. Thus it is

not possible to configure the SIST module via a SpaceWire

link.

The SIST module can generate and send SpaceWire

packets via the internal FIFO port. It can also receive

SpaceWire packets via the FIFO port and check there

contents. The packets are generated deterministically and can

therefore also be easily checked on reception.

The packet format is similar to the commands defined for

the RMAP protocol (ECSS-E-ST-50-52C):

 SpW Address (0 to 31 bytes)

 Logical Address (1 byte)

 Protocol ID (1 byte)

 Transaction Identifier (2 bytes) (i.e. seed)

 Data Length (3 bytes)

 Header CRC (1 byte as per ECSS-E-ST-50-52C,

covering header from Logical Address, inclusive)

 Data (0 to 16 MiB-1) (data is a pseudo-random

generated bit string based on the seed)

 Data CRC (1 byte as per ECSS-E-ST-50-52C, covering

all Data bytes)

 End-Of-Packet

Packets of up to 2
24

 bytes can be generated and checked.

Sequences of up to 2
16

 packets can be generated, or auto

repeat can be enabled. The data is generated by means of a

16-bit wide LFSR, with a programmable polynomial. The

stated of the LFSR (a.k.a. seed) at the beginning of the data

in the packet is transmitted as part of the packet header,

allowing each packet to be checked independently. The seed

can also be used to detect dropped packets. The length of the

packet data field is sent in the packet header. The only

managed parameter is the polynomial; everything else can be

derived from the packet header.

Packets are automatically generated in an initiator, the

contents of a packet is deterministic. Packets are

automatically checked in a target when received, providing

statistics. The initiator and target are normally the same end-

point in a SpaceWire network, but may be different.

The SIST module also allows direct data read and write

to the internal FIFO port, as well as sending and receiving

signaling codes (time-codes and distributed interrupts).

The packet follows the format defined by SpaceWire

protocol identification – ECSS‐E‐ST‐50‐51C [6]

format. The address bytes can be used for path addressing or

regional logical addressing in a SpaceWire network.

The SIST functionality is protected by means of a

protected general on/off register (protection done by

expected fixed pattern in data). It is not accessible through

SpaceWire RMAP or SpaceWire PnP accesses to

configuration port 0. The SIST module can also be clock-

gated to save power (default at reset) via JTAG and UART

interfaces.

VIII. POWER-SAVING FEATURES

GR718 incorporates the following power saving

functions:

 Disabling of unused on-chip LVDS receivers/transmitter

 Disabling of unused off-chip LVDS

receivers/transmitter or repeater devices

 Clock-gating of unused SpaceWire ports

The existing power-down functionality provided for the

LVDS I/O cells in the DARE+ library is being utilized.

111

Signals for disabling the off-chip LVDS devices are

shared with the external pins provided for general purpose

I/O. It is possible to control up to 18 external LVDS devices,

with one external pin per devices.

Fig. 3. GR718 device

IX. RESULTS

GR718 prototype devices has been manufactured in

180nm UMC CMOS technology, based on the DARE+

library from IMEC (BE). The technology is radiation hard,

with at least 300 krad(Si) TID tolerance, high SEL tolerance

and SEU hardened flip-flops. The package used is a custom

256 CGFP.

The target speed for the SpaceWire links was 200 Mbit/s.

However, during functional testing and validation the

devices has been found to operate successfully at 240 Mbit/s.

The GR718 device uses 1.8V and 3.3V supply, and the

typical power consumption is 3W when running all 18

SpaceWire ports in 200 Mbit/s.

A development board has been developed together with

Pender Electronic Design. The board comprises a custom

designed PCB in a 6U Compact PCI format, making the

board suitable for stand-alone bench top development, or if

required, to be mounted in a 6U CPCI Rack. The purpose of

this equipment is to provide developers with a convenient

hardware platform for the evaluation and development of

software for the GR718. The principle interfaces and

functions are accessible on the front and back edges of the

board, and secondary interfaces via headers on the board.

X. CONCLUSION

The overall activity has resulted in tape-out of an

advanced multi-port SpaceWire router ASIC, and the

manufacturing of a development board, all now available for

national and international space industry.

During the GR718 development Aeroflex Gaisler has

been participating and contributing in the ongoing

standardization work of the distributed interrupt scheme that

will be part of the SpaceWire standard revision 1, as well as

the upcoming SpaceWire Plug-and-Play standard. These

extra efforts are expected to pay off with an advanced multi

port SpaceWire router ASIC which enables coexisting of

older and newer equipment in the same network.

An additional unplanned task performed was the

development of a new custom package, needed in order to

improve electrical characteristics and support higher clock

frequencies.

REFERENCES

[1] ECSS - Space Engineering, SpaceWire - Links, nodes, routers

and networks,

 ECSS-E-ST-50-12C, July 2008

[2] ECSS - Space Engineering, SpaceWire - Remote memory

access protocol, ECSS-E-

ST-50-52C, February 2010

[3] Yuriy Sheynin, Distributed Interrupts in SpaceWire

Interconnections, International SpaceWire Conference, Nara,

November 2008 (outdated)

[4] SpaceWire-D - Deterministic Control and Data Delivery over

SpaceWire Networks, Draft B, April 2010, ESA Contract

Number 220774-07-NL/LvH

[5] ECSS - Space Engineering, SpaceWire Plug-and-Play

protocol, ECSS-E-ST-50-54C

 Draft, March 2013

[6] ECSS - Space Engineering, SpaceWire protocol

identification, ECSS-E-ST-50-51C,

 February 2010

112

Galvani
Spa

Abstract— The physical signaling layer
specified in ECSS-E-ST-50-12C as LVDS pe
644. LVDS is a current mode, differential in
several benefits over other types of p
particularly in the areas of noise rejection, ele
generation, and power supply decoupling. W
marginal immunity to common mode voltage d
1.2V, systems with physical separation, separ
or a non-common ground reference can
Galvanic isolation, using transformer coupli
implemented by standard Ethernet interfaces,
interface and reduce the sensitivity to commo
an increased level of reliability to the
Unfortunately, standard SpaceWire does no
such isolation. Ideally, an AC coupled interfa
bit transition density to keep the reference ne
the voltage span. The encoding of data and
scheme of SpaceWire data on a transformer
layer presents a reference offset problem since
randomized nor encoded use a leveling cod
Worse yet, with SpaceWire's clock recovery
transition density on the data line can result in
transition density on the strobe line. This p
development and execution of a galvanically i
network using a transformer isolation approa
encountered, analysis performed, and tec
implement a reliable galvanically isolated Sp
are presented and discussed.

Index Terms—SpaceWire, Galvanic isolatio
Bit-Transition Density

I. INTRODUCTION
This paper discusses the development

isolated SpaceWire interface operating at up
per second (Mbps), and the pitfalls and diffic
in that development.

Galvanic isolation can provide nois
tolerance of common mode differences betw
such it is desirable in high reliability applic
implemented without adding excessive
complexity.

To understand the issues involved with
transformer coupled SpaceWire link we fir
discussion of SpaceWire.

cally Isolated SpaceW
ceWire Components, Long Paper

Michael Epperly, Steven Torno
Space Systems and Engineering

Southwest Research Institute
San Antonio, TX, USA

mepperly@swri.edu, storno@swri.edu

for SpaceWire is
er ANSI/TIA/EIA-

nterface that offers
physical interfaces
ectromagnetic noise

While LVDS offers a
differences of about
rate power supplies

exceed this limit.
ing similar to that

can AC couple the
on mode imparting
e overall system.
ot readily support
ace has a near 50%
ear the midpoint of
the clock recovery
r coupled physical
e its data is neither
e such as 8B/10B.

y encoding, a high
n a subsequent low
paper describes the
isolated SpaceWire
ch. The problems
chniques used to
paceWire network

on, Randomization,

of a Galvanically
p to 133 Megabits
culties encountered

e immunity and
een interfaces. As

cations if it can be
e overhead and

creating a reliable
rst present a basic

Like all standard interfaces,
broken down by layers. Th
physical layer which includes c
higher level, the signal layer,
and data/clock encoding. A
character level where control a
The next level is the exchang
establishing and controlling th
level defines how the user da
before it is handed off to the
representation of these layers is

The electrical interface p
SpaceWire is defined as Low V
per ANSI/TIA/EIA-644.

The physical interface co
signals described as Data and
return to zero (NRZ) represent
toggles its state whenever Data
time to the next (consecutive

Fig. 1. SpaceWire L

0 1 0 1 1 0

D

S

Fig. 2. SpaceWire

ire

, the SpaceWire interface can be
he definition begins with the
connectors and cables. The next

defines the electrical interface
Above the signal level is the
and data characters are defined.
ge level where the protocol for
he link is defined. The Packet
ata or "Cargo" is encapsulated
next lower level. A graphical

s provided in Fig. 1.
physical layer is defined for
Voltage Data Signalling (LVDS)

ding creates a pair of LVDS
Strobe. The Data line is a non
tation of the data and the strobe
a does not change from one bit
1s or 0s). See Fig. 2.. The

Layered Protocols

0 1 0 0 0 1 1 0

e Data and Strobe

113

minimum signalling rate of Spacewire is 2Mbps and a
maximum is not specified. In this paper, the maximum
signalling rate was limited by the performance of the hardware
to 133 Mbps.

The Character level of the protocol defines a 10-bit data
character set and a variable length control character set. The
first bit of either is a parity bit and the second bit is set (1) for a
control word and clear (0) for a data word. There is no other
encoding of the data and the strobe is created from the data as
described earlier.

The Exchange level defines the protocol sequence of
control characters to establish and maintain the link and is not
pertinent to this paper.

The Packet level provides a protocol for sending a packet
between entities on the SpaceWire Network. A packet consists
of a destination address, user data (cargo) and an EOP (End of
Packet) control character. It is within the user data that this
paper is primarily concerned.

The primary problem with galvanically isolating an
interface is that there isn't a solid Direct Current (DC) reference
point for the differential signals to use and the circuit
performance is affected by the actual data transmitted. A long

sequence of ones or zeros will cause the reference to be pulled
one direction or another and lead to bit errors. With a single
data stream, such a bias can be controlled via randomization or
other encoding techniques. Unfortunately, the nature of
SpaceWire's Character level protocol coupled with the Data
and Strobe encoding of the Physical level makes this a more
challenging endeavor.

We used a circuit recommended by Aeroflex for our
galvanic isolation circuit and tailored component selection
based on our laboratory results.

Beyond the actual galvanic isolation circuit, we did not
want to perturb the SpaceWire standard any more than
necessary and set down the rule that any additional coding
would occur within the cargo and all other protocols would
remain the same. This effectively made the encoding a
software function only and meant that we could easily update
our algorithms to improve performance.

II. GOALS AND CONSTRAINTS
There were several goals for this development effort, the

primary being the realization of a reliable and robust
galvanically isolated SpaceWire link. This meant that the

CABLE VcmLVDS LVDS

Fig. 3. Galvanic Isolation Schematic

Fig. 4. Galvanic Isolation Model

114

galvanic isolation had to be transparent. Other goals and
constraints are described below

There are commercially available tools for analyzing and
verifying a SpaceWire link so it was important to keep the
electrical interface and the lowest level protocols in place. In
particular, the clock recovery encoded between the DATA and
STROBE lines. Routers and any other intermediate hardware
also needed to be functional so no mid-level protocol changes
were acceptable.

The SpaceWire interface in this application was
implemented in an FPGA that was resource constrained and
already working so any encoding and decoding must be
performed at the "Cargo" level which, in this application,
meant in the software. This benefited the development effort
by simplifying changes and allowing a rapid turn-around of
any encoding technique to hardware.

III. GALVANIC ISOLATION CIRCUIT
Figure Fig. 3 is our galvanic isolation circuit. It is similar

in design to a circuit presented by Aeroflex at the 2008
International SpaceWire conference. The circuit is simple and
requires an isolation transformer only on one end of the
interface. The LVDS transmitter and receiver devices are the

Aeroflex UT200SpWPHY01. The transformer is an up-
screened T-330SCT from Pulse Electronics.

Initial performance without any encoding applied was as
expected. The interface would lock and establish at 133Mbps.
When the test pattern in our "cargo" was pseudo-random data
the link ran with zero bit errors. When other data patterns were
presented, the results were also as expected. With all zeros or
ones, the link would establish and transfer data until the DC
offset was sufficient to exceed the capabilities of the LVDS
receiver. Alternating ones and zero data also dropped the link
since that pattern has minimal transitions on the Strobe line. It
was not surprising that this link would required some form of
encoding technique to provide a robust and reliable link. A
simulation model was created so that different encoding
techniques could be applied and modeled. The model is shown
in Fig. 4

The UT200SpWPHY01 has a minimum +/-100mV
threshold for deciphering a signal, so the worst case signaling
of repeated 0s, or repeated 1s, fails quickly after it starts
transmitting (with min/max differential signal falling to
<50mV). To get an idea of how quickly, another simulation
was run with an initial alternating 0s and 1s pattern that then
transitions to nine 0s and one 1 after 6us. As can be seen in
Fig.5, after nine packets the signal falls below the +100mV
threshold for detecting 1s at the PHY receiver. Fig.7 shows
ideal performance.

Fig.5. Plot Showing DC Drift

X8 X7 X6 X5 X4 X3 X2 X1

+ + +

+DATA IN DATA OUT

Fig. 6. CCSDS Recommended Randomizer

Fig.7 Plot Showing Ideal Random Operation

115

The simulation shows that the circuit can operate with
margin with a sustained 30% transition density. Note that the
30% transition density must be sustained on both the DATA
and STROBE signals. We also determined that if the transition
density was 45% or better, a continuous string of 19 ones or
zeros could be tolerated (note that this pattern could only occur
on the strobe due to the parity and control bit appended to
DATA)

Additional circuit level simulations were performed to
determine the sensitivity of the galvanic isolation circuitry to
component values and the topology changes to the isolation
circuit. The following variations to the isolation circuit were
performed:

A. Removal of DC decoupling caps
Removal of caps has no effect on differential voltage;

common-mode voltage decreases (makes sense, the two
voltage dividers are now “fighting”).

B. Remove bias for center tap
No effect. This may have more to do with the specifics of

model (although it's accurate, the center tap may be to deal
with the voltage offset of a real LVDS signal)

C. Remove bias (0.5 voltage dividers)
Without the bias and keeping the caps in place, the

differential voltage is now the actual voltage (ie common mode
voltage now 0V).

Removing the bias AND the decoupling caps has no benefit
to the differential voltage levels, but shows that they're not
necessary. The common mode voltage just goes to the center
tap bias from the transformer.

D. Change bias for center tap incrementally
No effect seen on the differential signal; the DC bias

capacitors prevent any effects from propagating to the receiver.

E. Change 0.5 voltage dividers bias incrementally
Change common mode voltage of received differential

signal. This could be optimized by setting it to 1.2V instead of
1.65V, but not required.

F. Change termination resistor
The differential voltage peak-to-peak on the receiver is

directly proportional to the termination resistor, as one would
expect.

IV. RANDOMIZATION
The first technique applied to fortify the link was to use the

standard CCSDS recommended randomization as shown in
Fig. 6 using the polynomial:

h(x) = x8 + x7 + x5 + x3 + 1

The randomizer generates a pseudo random sequence that

is exclusive-OR'd with the "cargo" on a bit by bit basis. The
randomization is likewise removed at the receiving end by
again, exclusive-OR'ing the pseudo-random sequence with the
incoming cargo data. The pattern is restarted with each packet
and all lower level SpaceWire protocols are observed.

In actual real world operation the Randomizer proved to be
sufficient to maintain a reliable link since most data sets are
predictable and repeat. When analyzed for a random data set
there is a possibility for the link to drop with a particular data
set. A spreadsheet was developed to simulate the randomizer
along with the data formatter so statistics could be collected
and evaluated. With that spreadsheet it was easy to create a
data set that created a long string of ones or zeroes on either the
STROBE or the DATA.

DATA ENCODING STROBE
XITION

DATA ENCODING STROBE
XITION

0 011010 1 8 001011 2

1 101001 1 9 100011 3

2 011001 2 A 010011 2

3 110001 3 B 110010 2

4 001101 2 C 001110 3

5 101100 2 D 100110 2

6 011100 3 E 010110 1

7 110100 2 F 100101 1

Table 1. 4b/6b Code

D10 D11 D12 D13 D14 D15 D16 D17

E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E110 E111

D20 D21 D22 D23 D24 D25 D26 D27

E20 E21 E22 E23 E24 E25 E26 E27 E28 E29 E210 E211

P1 C1 E10 E11 E12 E13 E14 E15 E16 E17 P2 C2 E18 E19 E110 E111 E20 E21 E22 E23 P3 C3 E24 E25 E26 E27 E28 E29 E210 E211

Fig. 5. Modified 16b/30b Encoding

116

While the likelihood of such a patt
relatively low in a random environment, it
disqualifies the Randomizer as a potential en
for a critical application. It is worth noting t
randomizer seed by one bit eliminated the lin
that patter - but of course made it vulnerable t

V. 16B/30B DC BALANCED C
Prior work has indicated that a DC Balan

the best approach to encoding a Galv
SpaceWire Link. As with the randomizer,
be applied at the "Cargo" level. Imple
balanced code impacts usable bandwidth sin
must be added to insure sufficient transitio
code applied is a modified 4b/6b that is built
data set meaning that the packet must be an
octets (this was not a significant issue in our
16b/24b encoded data is split into three
encoded per the SpaceWire protocol result
close to a 50% overhead link.

Each nibble of the cargo is encoded
word as shown in Table 1. The alterna

are not used since they minimize
transitions. Since each nibble guara
STROBE transition, four nibble will
least 4 transitions. Four nibbles fro
bytes are each encoded creating a

The 24-bit result is split into three by
each further encoded with two add

creating a 30-bit result. See Fig. 8.
possible patterns from the 30 bit DA

those correlate to 217 possible patt
STROBE (double the DATA since the

the preceding bit to determine if it
state). A spreadsheet was built with 1
corresponding to every possible stat
and STROBE bits for on 30-bit code

tern occurring is
does exist which

ncoding technique
that a changing the
nk to sensitivity to
to another.

ODE
nced Code may be
vanically Isolated
this encoding will

ementing the DC
nce redundant data
on densities. The
t up into a 16b/24b
n even number of

r application). The
8-bit words and

s in a 16b/30b or

d with a 6-bit
ating 0/1 codes
e STROBE
ntees at least 1
l guarantee at
om two DATA
24-bit result.
ytes which are
ditional bits
There are 216

ATA result and
terns for the
e STROBE uses
t will change
131,072 entries
te of the DATA
eword. From

this spreadsheet the
consecutive ones or zero

with the average number
the resulting DC bias can

for the encoding techni
Table 2

Table 2. 16b/30b Enc
Parameter

Average DATA Transition Density
Average STROBE Transition Density
Longest Consecutive Bits DATA
Longest Consecutive Bits STROBE

The big advantage to the D

deterministic. Every possible
was analyzed. The "floating en
the beginning or end of the co
worst case floating end to ca
number of ones or zeroes
Referring to Table 1 you can
pattern performs extremely wel

There is a significant cost in
uses a form of 8b/10b encod
bandwidth hit. The modified
53%. The other layers of
efficiency even further. With
theoretical maximum data rate i

VI. 8B/20B DC B
Additional modeling and

lower efficiency 8b/20b code th
is further encoded by the Space
the Parity and Control bits. T
take advantage of known bit p
experience more transitions.
forcing the first eight data bits

Fig. 6. 8b/20b Encoding

maximum number of
os was determined along
r of ones and zeros so that
n be determined. Statistics
ique are as tabulated in

coding Performance
Value
45%
50%

3
11

DC balanced system is that it is
pattern of a 30 bit code block

nds" (strings of ones or zeroes at
de block) were appended to the

alculate the longest consecutive
possible within the "cargo".
see that the modified 16b/30b

ll.
n efficiency. SpaceWire already

ding so there is already a 20%
 drops that efficiency down to
SpaceWire protocol drop this
h our candidate 133Mbps, the
is 62 Mbps.

BALANCED CODE
testing was performed with a

hat is actually a 8b/16b code that
eWire encoder by the addition of
The 8b/16b code was created to
atterns to force the STROBE to
 This was accomplished by
to always have even parity and

117

the second eight data bits to have odd parity. With this
constraint, the code block will always begin with a 0 (starting
with the command bit) and end with a 0 (parity) forcing a
transition on the STROBE. Creation of the customer 8b/20b
code is shown in Fig. 9.

The 8b/20b code was easier to simulate since there are only
28 possibilities to examine meaning that in the "cargo" portion
of the packet, there are only 256 type of possible codeblocks.
Each DATA field codeblock was created and the maximum
number of consecutive bits and the average number of ones
calculated. The resulting strobe was then created from each of
the codeblocks and the maximum number of consecutive bits
and average number of ones calculated. Since every packet
ends and begins with a zero, it was easy to determine what the
maximum values for the STROBE were as they could not
propogate across multiple 20-bit codeblocks.

The code itself is derived from a byte by splitting it into
two nibbles that are then encoded per the 4b/6b code shown in
Table 1. Two eight bit codewords are the created form the 6-
bit codes and inserted into two SpaceWire 10-bit fields. The
first 8-bit codeword is created by appending a one in the
seventh bit and appending an even-parity bit for bit 8. The
second 8-bit codeword is created by appending a zero in the
seventh bit and an odd-parity bit for bit 8. The combination of
parity and seventh bit encoding forces additional transisitons
on the STROBE while keeping the DATA transitions at exactly
50%.

Table 3. 8b/20b Encoding Performance
Parameter Value

Average DATA Transition Density 50%
Average STROBE Transition Density 45%
Longest Consecutive Bits DATA 4
Longest Consecutive Bits STROBE 7

The 8b/20b has better performance for DC bias, but at a

much greater impact to efficiency. The efficiency is a dismal
40% but it is a bit more robust than the Randomizer or the

16b/30b encoding. The 8b/20b does not have the even number
of octet constraint that the 16b/30b encoding required.

VII. SUMMARY AND CONCLUSIONS
Galvanic isolation for SpaceWire does provide many

benefits, but without an effective encoding technique is not
practical. Simple randomization proved effective in the
laboratory environment and with random or even actual
payload data worked quite well with no data dropouts or bit
errors observed. And randomization achieved this
performance at no impact to the link efficiency. However,
there is a statistical probability that a data pattern will cause the
link to drop and in a critical spacecraft operation, this may not
be acceptable.

The modified DC-balanced code performed exactly as
expected but at a significant impact to the system bandwidth.
The codeblocks were easily realized with a lookup table and
provided to the SpaceWire interface as a sequence of two or
three bytes. Bit transition densities were sufficient and
consecutive strings short. If galvanic isolation is a necessity,
and the user can afford the impact to bandwidth (and even
number of octet restraint) the presented code will provide a
robust and reliable link

REFERENCES
[1] European Cooperation for Space Standardization, Space

engineering: SpaceWire - Links, nodes, routers and networks
(Noordwijk: ESA-ESTEC, 2008).

[2] Larson, J. (2010). Elimination of Common Mode Voltage
Requirements for LVDS used in SpaceWire. International
SpaceWire Conference (pp. 291-296). Nara: University of
Dundee.

[3] Kimmery, C. E. (2011). DC-Balanced Character Encoding for
SpaceWire. International SpaceWire Conference (pp. 269-278).
San Antonio: University of Dundee.

[4] Consultative Committee for Space Data Systems. (2003). TM
Syncrhonization and Channel Coding: Blue Book CCSDS 131.0-
B-1. Washington DC: National Aeronautics and Space
Administration.

118

Radiation-Tested Extended Common Mode LVDS

Components
SpaceWire Components

Volodymyr Burkhay, André Rocke

SPACE IC GmbH

Garbsener Landstraße 10, D-30419 Hannover, Germany

v.burkhay@space-ic.com, a.rocke@space-ic.com

Giorgio Magistrati, César Boatella Polo, Gianluca Furano,

Farid Guettache

European Space Agency

Keplerlaan 1, NL-2201 AZ Noordwijk ZH, The Netherlands

giorgio.magistrati@esa.int, cesar.boatella.polo@esa.int,

gianluca.furano@esa.int, farid.guettache@esa.int

Abstract—Extended Common Mode LVDS components from

SPACE IC have been tested for their radiation hardness. The

collected test results are introduced and discussed.

Index Terms—LVDS, extended common mode, SpaceWire

component, SOI, radiation test, TID, SEE.

I. INTRODUCTION

SPACE IC GmbH has been founded by the developers of

Extended Common Mode LVDS as a spin-off from the

Silicon-On-Insulator (SOI) technologies supplier

TELEFUNKEN Semiconductors. SPACE IC will bring space-

grade Extended Common Mode LVDS components to the

market, which are hermetic packaged and screened according

to ESCC specifications. LVDS translator IC components are

widely used for SpaceWire (SpW) applications and are

absolutely essential for aerospace equipment manufacturers.

Recently an extensive demand on radiation hard LVDS

components suitable for extended common mode applications

at high communication speed arose [1]. Those would help

solving some currently existing robustness issues.

The radiation testing started with a high dose-rate Total

Ionizing Dose (TID) test on unbiased components followed by

Single Event Effects (SEE) tests with heavy ions and laser

beam.

II. TESTED COMPONENTS

The SPACE IC extended common mode capable LVDS

components comprise LVDS receivers and drivers

manufactured using the TELEFUNKEN Semiconductors fully

isolated Silicon-On-Insulator (SOI) technology TFSMART2.

Generally SOI technologies are known to mitigate SEE due

to much smaller volume of charge collecting silicon compared

to bulk devices [2]. If the SOI devices are fully isolated, as this

is the case in TFSMART2, they are immune to latch-up thus no

single event latch-up can occur. Additionally TFSMART2

features body ties for each device type, which due to charge

diversion phenomena in SOI technology enhances the SEE

immunity [2]. Combining bipolar and 3.3V CMOS logic

devices having 0.35µm minimum feature size with high

voltage DMOS devices up to 100V on the same die, this BCD

IC manufacturing technology offers a high potential for space

applications [3]. Besides latch-up it is also inherently resistant

to such parasitic effects as substrate leakage and others thanks

to SOI, which improves the performance and makes it suitable

for high temperature range.

The extended common mode capable LVDS components

have been designed for the combination of the RS-485 receiver

input voltage range and high-speed performance and efficiency

of LVDS, providing robust but also fast communication

channels. Those ICs translate the LVDS signals to 3.3V

CMOS/TTL and vice versa with max provided data rate of

400Mbps and higher. The max data rate of such translators is

limited by the CMOS I/O circuits.

The radiation testing has been performed on two

component types: the LVDS receiver SPLVDS032 [4] and the

complementary LVDS driver SPLVDS031 [5]. The

SPLVDS031 is a 400Mbps Quad LVDS Line Driver optimized

for high-speed, low power, low noise transmission over

controlled impedance (approximately 100 Ω) transmission

media (e. g. cables, printed circuit board traces, backplanes).

The SPLVDS031 accepts four LVCMOS signals and translates

them to four LVDS signals. Its differential outputs can be

disabled and put in a high-impedance state via two enable pins.

Low 300ps (max) channel-to-channel skew and 250ps (max)

pulse skew ensure reliable communication in high-speed links

that are highly sensitive to timing error. Supply current is

23mA (max). LVDS outputs conform to the ANSI/EIA/TIA-

644-A standard. The SPLVDS032 is a 400Mbps Quad LVDS

Line Receiver that has to be used in conjunction with the

SPLVDS031. The SPLVDS032 accepts four LVDS signals and

translates them to four LVCMOS signals. Its outputs can be

disabled and put in a high-impedance state via two enable pins.

The SPLVDS032 input receiver supports wide input voltage

range of -7V to +12V for exceptional noise immunity. Supply

current is 7mA (max). LVDS inputs conform to the

ANSI/EIA/TIA-644-A standard.

119

mailto:v.burkhay@space-ic.com
mailto:a.rocke@space-ic.com
mailto:giorgio.magistrati@esa.int
mailto:cesar.boatella.polo@esa.int
mailto:gianluca.furano@esa.int
mailto:farid.guettache@esa.int

The first application for these products in space is for

SpaceWire networks, the use of SpaceWire on board a satellite

is rapidly growing from a single point-to-point link btw an

instrument characterized by a high data rate and the P/L mass

memory to the unique type of bus/network present on the

Payload part of Spacecraft in charge to transfer not only

scientific data but also housekeeping and command and control

messages issued by the OBC. Additionally examples of

Platform units as RTU connected to the OBC through a

SpaceWire link already exist.

III. RADIATION TESTS

A. Total Ionizing Dose Test

This test has been performed at the ESTEC
60

Co facility

using a high dose-rate of 4.5krad/h [3].

The ICs of each of both component types have been

divided into 6 groups: 5 irradiated groups and one control

group; each irradiated group contained 5 ICs. The 5 groups of

both components have been irradiated to the total dose of

5krad, 10krad, 20krad, 40krad and 100krad respectively and

the parameter drifts have been measured. (There was a

shipping period of 2 days between irradiation and post-

radiation measurements.) Then the ICs annealed 7 days at

room temperature and 5 hours at the temperature of 100°C,

subsequent measurements followed.

The test results are shown in Fig. 1. The drifts of all

examined parameters are shown relative to their pre-radiation

values. The data points “5krad” to “100krad” are calculated

from the mean values of the 5 different groups of ICs irradiated

to the corresponding total dose. The data points “after room

temperature anneal” and “after hot temperature anneal” belong

to the group of ICs irradiated to 100krad total dose.

TF90LVDS031

-2%

0%

2%

4%

6%

8%

10%

12%

p
re

 r
a

d
ia

ti
o

n

5
k
ra

d

1
0

k
ra

d

2
0

k
ra

d

4
0

k
ra

d

1
0

0
k
ra

d

a
ft
e

r
ro

o
m

te
m

p
e

ra
tu

re

a
n

n
e

a
l

a
ft
e

r
h

o
t

te
m

p
e

ra
tu

re

a
n

n
e

a
l

d
ri

ft

High-impedance output current

Differential output voltage

Steady-state output cm voltage

Output short circuit current

Power supply current (disabled)

Power supply current (loaded)

TF90LVDT032

-1%

0%

1%

2%

3%

4%

5%

p
re

 r
a
d
ia

tio
n

5
k
ra

d

1
0
k
ra

d

2
0
k
ra

d

4
0
k
ra

d

1
0
0
k
ra

d

a
ft
e
r

ro
o
m

te
m

p
e
ra

tu
re

a
n
n
e
a
l

a
ft
e
r

h
o
t

te
m

p
e
ra

tu
re

a
n
n
e
a
l

d
ri

ft

Output short circuit current

LVDS input termination resistor

LVDS input current @ -7 V

LVDS input current @ +12 V

Power supply current (static)

Power supply current (disabled)

Fig. 1. High dose-rate unbiased TID test results

The shown test results are looking plausible, since the

observable drift trend is constant through the total dose steps.

The data points near 0% might be more influenced by

measurement tolerances. The highest parameter drift is 10%

whereas the majority of parameters doesn’t show measureable

drifts. The SPLVDS031 parameters “Differential output

voltage” and “Steady-state output common mode voltage”

show low drifts. They indicate that the voltage reference circuit

was not significantly impacted by the radiation. The “Output

short circuit current” of SPLVDS031 shows that the drift of the

current reference circuit might be approximately 3%. The

SPLVDS031 parameter “High-impedance output current” has

wide tolerances. It shows 10% drift at 100krad total dose which

might indicate some degree of degradation in gate oxide

properties.

Finally, all tested parts keep their complete functionality

after irradiation to the given TID radiation doses, room

temperature annealing and accelerated ageing. No critical drifts

or specification limit violations have been observed.

B. Heavy Ions Single Event Effects Test

The purpose of single test for heavy ions test is to

determine the sensitivity of Single Events Phenomena (SEL,

SEU and SET for this application) against LET of incident ions

and extract the cross section saturation and LET threshold for

calculation and simulation of SEE in orbit.

The SEE test has been conducted in respect of ESA

guideline: Single Event Effects Test Method and Guidelines

ESCC Basic Specification No. 25100. The test has been

performed on two different pairs (driver-receiver pair) of

component samples with the case lid removed, the two samples

in a pair were irradiated separately and the not irradiated

sample was a part of the test equipment for the DUT. Every

component has been tested for SEL/SEU/SET. The DUT was a

part of SpaceWire communication channel and the behavior

has been observed using Link Analyzer and Digital Signal

Oscilloscope (see Fig. 2.). The test equipment used in this

configuration is able to capture failures causing data corruption

and display accurately the behavior of the SpaceWire link

during these events. The digital signal oscilloscope captures

accurately SET behavior of the devices, being both common

and differential mode distortions to the LVDS signal, as well as

transients on the CMOS logic outputs of the LVDS receiver.

SPLVDS031

SPLVDS032

120

Fig. 2. DUT under functional test in ESTEC Avionics Lab

The test has been performed at RADEF. The RADEF

facility is located in the Accelerator Laboratory at the

University of Jyväskylä (JYFL). The cyclotron used at JYFL is

a versatile, sector-focused accelerator for producing beams

from Hydrogen to Xenon. The test has been performed by

exposing to heavy ions the LVDS chain based on Space IC

SPLVDS031 (driver) an SPLVDS032 (receiver) composing a

SpaceWire transmission channel. Driver and receiver have

been irradiated separately.

During this test Xenon, Krypton, Iron and Argon ions has

been used. The component has been irradiated in air at normal

direction (normal incidence has an angle of 0°). The DUT is

positioned after 1cm from beam pipe exit. Table 1 summarizes

ion characteristics. For each irradiation run a fluence of 5x106

ions/cm2 has been reached.

TABLE I. ION TYPES USED IN THE TEST ON LVDS ICS

Ion Kinetic

Energy in
vacuum

(MeV)

Kinetic

Energy at
DUT surf

(MeV)

Air

distance
(mm)

Angle

(degree)

Range

(µm)

LET

(MeV/mg/cm
2

)

40
Ar

+12

372 295 20 0° 70 12.7

56
Fe

+15

523 408 10 0° 73 20.8

82
Kr

+22

768 570 10 0° 70 35.1

131
Xe

+35

1217 856 10 0° 65 65.2

Each device has 4 ports:

One port has been used for static test – static test mode #0:

for the driver “1” and “0” have been set at the input and the

differential output has been monitored to detect SET induced

by radiation. For the receiver the input (differential) has been

left unconnected, the output monitored for SETs.

One Port (for the driver and the receiver) has been fed with

a clock generated with a pulse generator. The output has been

monitored in order to detect variation of the duty cycle (trigger

condition: variation > 10-20%) – dynamic test mode #0.

Fig. 3. LVDS under test at RADEF

The remaining two ports have been used for transmission of

a SpaceWire signal (Data and Strobe) – Link speed 100 Mbit/s.

Data have been generated by a Star Dundee Conformance

Tester and the traffic monitored by Star Dundee Link

Analizer2. The Link Analyzer can generate a trigger for the

DSO – dynamic test mode #1.

Fig. 4. SET dynamic test mode #1

The results of the Heavy ions test campaign on LVDS are

the following.

No SEL was observed up to LET of 60 MeV/(mg/cm
2
) at

70-75°C and 3.6V bias voltage during test session with fluence

of 1*10
7
 ions/cm² for both parts.

The driver SPLVDS031 has shown some SET events only

at the higher LET 65.2 MeV/(mg/cm²) during static test mode

#0 (see Fig. 5), however neither effects on the duty cycle of the

transmitted clock (dynamic test mode #0) nor

disconnection/parity errors have been detected.

121

Fig. 5. SET on SPLVDS031

The receivers SPLVDS032 have shown SETs that have

produced disconnections/parity errors on the two ports of the

IC used for SpaceWire. SETs have been detected and cross-

section measured using Xenon, Krypton, Iron (see Fig. 6). No

SET has been observed with Argon (LET = 12.7

MeV/(mg/cm
2
)).

Fig. 6. SET on SPLVDS032

C. Laser Beam Single Event Effects Test

To evaluate the heavy ions SEE test results on SPLVDS032

a laser beam test has been additionally performed on this type

of components at MAPRAD srl (Perugia, Italy).

The test conditions were:

 Steady-state “1” (external fail-safe network)

 Solid-state laser with 915nm wavelength

 Laser spot 5-10um

 Working distance of about 12mm

 Pulses length of 1us

Fig. 7. Laser irradiation points on SPLVDS032 channel circuit

Although 30 points on the whole LVDS receiver channel

circuit have been irradiated (see Fig. 7), no visible reaction at

the output has been observed.

One possible reason for this might be, that the suspected

SET sensitive areas are covered by a thin metallic layer.

Another possible reason – the circuit might be not sensitive to

the used laser pulses.

IV. CONCLUSION

Two Extended Common Mode LVDS component types

will be made available on the market in space-grade quality.

High dose-rate unbiased TID test and SEE heavy ions and

laser beam tests have been performed with promising results.

After the TID exposure none of the component

specifications were violated and all tested parts kept their

complete functionality.

Under Single Event Effect tests no SEL sensitivity has been

observed. The LVDS driver has shown no critical SETs. The

LVDS receiver has shown SETs disturbing the data

transmitting above LET= 12.7 MeV/(mg/cm
2
), but the

communication with SpaceWire protocol was still working.

The laser beam test on the LVDS receiver didn’t show any

correlation with the heavy ion test results. An improved laser

beam test is in preparation.

The low dose-rate TID test on biased components will

follow soon.

REFERENCES

[1] J. Ilstad, “ESA’s Requirements for future LVDS devices”,

LVDS Application Workshop, Noordwijk, June 2011

[2] A. Samaras, “JUPITER Mission and Strong Environment”

Radiation Specification for System conception, JUICE Mission,

CNES, July 2012

[3] V. Burkhay, G. Ilicali, A. Rocke, “Radiation Test of

TFSMART2 Technology using Extended Common Mode

LVDS and DC-DC Converter Components”, 4th International

Workshop on Analogue and Mixed Signal Integrated Circuits

for Space Applications, Noordwijk, August 2012

[4] SPACE IC, “SPLVDS032RH Quad LVDS Line Receivers with

Extended Common Mode” Datasheet, July 2014,

http://www.space-ic.com

[5] SPACE IC, “SPLVDS031RH Quad LVDS Line Driver”

Datasheet, July 2014, http://www.space-ic.com

[6] G. Magistrati, “Laser Beam Test and SEE Test Report of

Telefunken TF6002” , ESA unclassified - for official use,

February 2013

[7] G. Magistrati, “Telefunken LVDS SEE Test Report” , ESA

unclassified - for official use, August 2013

122

Atmel’s Rad-Hard Sparc V8 Processor

200Mhz Low Power System on chip integrating state

of the art Spacewire Router

Nicolas Ganry

Atmel Aerospace, Nantes, France,

nicolas.ganry@atmel.com

Guy Mantelet

Atmel Aerospace, Nantes, France,

guy.mantelet@atmel.com

 Steve Parkes

STAR-Dundee Ltd, STAR House, 166 Nethergate, Dundee,

DD1 4EE, United Kingdom

steve.parkes@star-dundee.com

Chris McClements

STAR-Dundee Ltd, STAR House, 166 Nethergate, Dundee,

DD1 4EE, United Kingdom,

 chris.mcclements@star-dundee.com

Abstract— The AT6981 is a new generation of processor

designed for critical spaceflight applications, which combines a

high-performance SPARC® V8 radiation hard processor, with

enough on-chip memory for many aerospace applications and

state-of-the-art SpaceWire networking technology from STAR-

Dundee. The AT6981 is implemented in Atmel 90nm rad-hard

technology, enabling 200 MHz operating speed for the processor

with power consumption levels around 1W. This advanced

technology allows strong system integration in a SoC with

embedded peripherals like CAN, 1553, Ethernet, DDR and

embedded memory with 1Mbytes SRAM. The device is ITAR-

free and is developed in France by Atmel Aerospace having more

than of 30years space experience. This paper describes this new

SoC architecture and technical options considered to insure the

best performances, the minimum power consumption and high

reliability. This device will be available on the market in H2 2014

for evaluation with first flight models targeted end 2015.

Keywords—spaceflight processor, SpaceWire, system-on-chip,

networks, spacecraft onboard data-handling, radiation hard

processor

I. INTRODUCTION

There is a continuous demand for more and more processing

power on-board spacecraft to handle sophisticated instrument

control, intense data processing and compression, and real-time

attitude and orbit control. In addition, increasing autonomy of

spaceflight systems requires intelligent on-board management

of spacecraft resources. The required processing capability has

to be provided at minimal power consumption and it has to be

readily integrated into the on-board data-handling and avionics

systems. The Atmel AT6981 Castor device is a radiation-hard-

by-design processor being developed by Atmel to fulfill this

need, providing exceptional processing power per milliwatt

and integrating a comprehensive set of peripheral interfaces.

AT6981 is a SPARC® V8 rad-hard processor running at

200MHz and integrating 8 LVDS links SpaceWire router at

200Mbit/s developed in collaboration with STAR-Dundee.

Atmel present the status on this new standard space processor

during the 2014 International Spacewire conference.

II. ATMEL’S UNRIVALLED FLIGHT HERITAGE

Over the last 16 years, Atmel has been steadily building a

space microprocessor strategy based on SPARC architecture.

With worldwide sales of over 3000 flight models featuring the

Atmel TSC695E and already around 1000 flight models with

the Atmel ATF697F, Atmel’s SPARC processor roadmap has

an unrivalled flight heritage. The upcoming AT6981 rad-hard

SPARC V8 processor benefits from this solid experience.

III. AT6981 PRODUCT DESCRIPTION

The AT6981 is based on the rad-hard LEON2FT processor

and integrates all commonly-used space peripherals including

1553, CAN, SPI, UART, Ethernet & DSU (Debug Support

Unit) for debug purposes. A fully-compliant IEEE754 FPU and

a LEON2 SPARC V8 native MMU are also embedded. This

SoC integration is done in 90nm rad-hard Atmel technology

enabling at least 200 MHz operating speed for the processor

while consuming less than 1W when used in the same

configuration than AT697F. Atmel continues to offer best-in-

class power-to-performance ratios that offer more possibilities

for space applications by reducing costs, sizes and embedded

power supply.

The AT6981 embeds SpaceWire engines offering up to 8

links LVDS router. The SpaceWire links support full hardware

initiator and RMAP. Targeted implementation enables some

other advanced hardware SpaceWire functionalities such as

plug-and-play and determinist.

123

This state-of-the-art SpaceWire IP has been developed by

STAR-Dundee. The AT6981 benefits from strong design

cooperation between STAR-Dundee and Atmel to achieve an

embedded system with bandwidth of at least 200Mbit/s.

The AT6981 will be available in 256 MQFP package.

In addition to a powerful SPARC V8 processor core with a

high level of integration and performance, the AT6981 embeds

a 1-Mbyte hardened SRAM memory for PCB area savings and

fast access at full CPU speed. For external memory, SRAM

and DDR1/2 interfaces are proposed.

In order to facilitate analog-to-digital operations and

provide an even higher level of integration, the AT6981

embeds a waveform generation (PWM) dedicated unit for

analog control/command and proposes some ADC/DAC

interfaces for analog acquisitions/conversions.

The AT6981 is a rad-hard by design processor that will be

space qualified and will support:

• Total dose of 300Krads (Si) according to the MIL-

STD883 method 1019

• No Single Event Latch up below a LET threshold of 95

MeV.cm²/mg

• No Single Event Upset below a LET threshold of 10

MeV.cm²/mg and a cross section of 5 E-8 cm2/bit

• SEU error rate better than 1 E-3 error/device/day

IV. AT6981 CASTOR ARCHITECTURE

The architecture of the AT6981 Castor device is illustrated

in Fig. I.

Fig. I: AT6981 Architecture

The AT6981 Castor device is a complete system on chip, with

processor, memory and peripherals interconnected via a high

performance interconnection switch matrix. The switch matrix

at the heart of the AT6981 device connects the processor,

memory banks, SpaceWire engines and other IO functions.

Several internal RAM blocks are provided to support

concurrent memory accesses by the processor and IO

facilities.

The three SpaceWire engines, Ethernet, CAN and MILSTD

1553 interfaces are all connected as master devices to the

switch matrix allowing them to read and write to the memory

using distributed DMA capability.

Lower speed peripheral devices including SPI, TWI, UART,

timers, watchdog timers, PMW, ADC interface, DAC

interface, parallel input/output and interrupts, are connected

via an APB bus and peripheral bridge to the switch matrix.

Various forms of external memory (PROM, SRAM, SDRAM

and DDR) can be attached directly to the AT6981 devices,

providing ready of expansion of the internal memory when

required.

Each of the major components within the AT6981 Castor

device will now be described in more detail.

A. Processor

The processor is a SPARC® V8, LEON2-FT processor

with integrated floating-point unit, providing excellent

processing performance:

• > 150 MIPS (Dhrystone 2.1)

• > 40 MFLOPS (Whetstone)

The particular SPARC V8 architecture is a 32-bit

architecture using a 5-stage pipeline and eight register

windows. Tighly coupled instruction and data cache memory is

provided on chip as follows:

• 32 kbyte Multi-sets Data Cache

• 16 kbyte Multi-sets Instruction Cache.

Native MMU of the LEON2 SparcV8 architecture is

activated. The processor has an Advanced High-performance

Bus (AHB) and includes a memory management unit (MMU)

with up to 32 table entries.

The design can support an internal clock frequency of 200

MHz with a processor input/output toggling frequency of 100

MHz. The core is designed for low power operation with

exceptionally low power per MIPS.

The integrated floating-point unit supports 32 single-

precision and 64-bit double precision fully compliant to IEEE

754 floating-point standard.

The processor supports booting from both 8-bit and 40-bit

PROM interfaces, from serial PROM Flash and from

Spacewire link

This single CPU core architecture device allows an easy

and safe migration of the software from AT697F without

compromise performances. AT6981 benefits from all

development tools available for LEON core as it offers a

standard DSU interface for trace and debug.

124

B. Interconnection Switch Matrix

The AT6981 bus architecture is unique on space market.

This device takes benefit from Atmel strong IP portfolio and

powerful architecture coming from the commercial

microcontroller business where Atmel is one of the leaders

today.

The AT6981 System on Chip is built around a HMatrix bus

which is multi AHB compliant and brings some AHB

arbitration mechanisms to support multiple transfers. By this

well proven Atmel technology, conflicts management for

concurrent access is becoming much easier, even completely

transparent for the CPU core running software.

For example, you can manage in parallel all those activities

without impact the main CPU core execution:

• Run three Space Wire 200Mbit/s transfers

• Run two 1553 communication flows

• Run two high speed CAN transfers

• Run a MAC Ethernet 100Mbit/s connection

• Run SPI or TWI sessions as well

Each peripheral can be connected to any of the eight

protected memory areas and can take benefit from the 200MHz

x 32bits AHB bus bandwidth without disturbing CPU internal

operations. During full speed transfer session, processor is

never interrupted and has a fully deterministic behavior to

manage control of all operations. Switching capacity insure any

of 16 masters to be connected to any 16 slaves at maximum.

This capacity is half used on Castor device which allow some

redundancy.

Switch matrix IP used the same hardened techniques than

all other IPs with TMR and use of hardened cells.

This architecture, which provides up to 6.4 Gbit/s

bandwidth per Hmatrix links, is ready for targeted future

evolution like SpaceFibre, Gbit Ethernet and multi-core. It will

enable a smooth transition for coming product derivatives of

this high speed SPARC® V8 architecture.

C. Memory

As well as the on-chip processor cache the AT6981 Castor

device includes 1 Mbyte of radiation tolerant SRAM. The

internal memory is separated into eight banks each of 32k x 32-

bits, so that several concurrent transfers into and out of

memory can be supported by the interconnection switch

matrix.

In addition to the internal memory the AT6981 Castor

device support the direct connection of a range of external

memory devices, including PROM/Flash, SRAM, SDRAM

and DDR devices. EDAC protection for external memories is

provided as required.

The memory interface can be configured to operate as 8-bit

or 32-bit wide as AT697F. It is also possible to load a program

through spacewire link into the internal SRAM for standalone

operation, without external RAM memory.

D. Peripherals

In addition to SpaceWire, the AT6981 Castor device

includes many other commonly used data and control

interfaces used on board spacecraft. It provides:

• Redundant CAN Bus interfaces supporting version 2.0

Part B of the CAN bus specification and providing 15

channels,

• Redundant 1553 interfaces which can operate as a bus

controller or as a remote terminal,

• An Ethernet interface which can operate at 100

Mbits/s.

Each of these interfaces has its own DMA controller.

A comprehensive range of lower speed peripheral

interfaces is also provides on-chip: SPI, I2C, ADC, DAC,

UART, Timers …

The slower speed peripheral devices are connected to

an Advanced Peripheral Bus (APB) which is bridged to the

AHB interconnection switch matrix.

Attached to the APB are two Serial Peripheral Interfaces

(SPI) with a dedicated DMA controller, two Two Wire

Interfaces (otherwise known as I2C interfaces) again with a

dedicated DMA controller, and two eight-bit UARTS.

Four 32-bit timers are provided along with a 32-bit

watchdog timer. The interrupt controller provides support for

31 interrupts. 96-bits of general parallel input/output is

provided.

Analogue interfacing is supported with a pulse width

modulator (PWM) for analog control/command and parallel

interfaces for connection of Analogue to Digital Converters

(ADC) and Digital to Analogue Converters (DAC). The ADC

and DAC interface to support efficient analogue data

acquisition into memory.

External FPGA connection to AT6981 is possible through

parallel interface up to 200Mhz or through SPI link up to

100Mhz, both with capability of DMA transfer.

E. Spacewire

SpaceWire is one on the main data-handling interfaces used

on board spacecraft today [1][2]. The AT6981 Castor device

includes extensive, state-of-the-art support for SpaceWire; a

SpaceWire router with eight external SpaceWire ports and

three SpaceWire protocol handling engines designed especially

for Castor. Protocol support is provided for the SpaceWire

Remote Memory Access Protocol (RMAP) [3], the SpaceWire

plug and play protocol [4], and SpaceWire-D the deterministic

data delivery protocol [5]. Extensive time-code support is also

provided including multiple time-code counters and distributed

interrupt time-codes [6].

The SpaceWire architecture used in the AT6981 Castor

device is illustrated in Fig. III.

125

SpW

Router

Configuration

Port 0

Access

Controller

Router

Control/Status

Registers

Routing Table

Time-Code

Received

Time-Code

Controller

Interrupt

Controller

APB Interface

RMAP Target

Engine

Registers

DMA Channel

(x3)

RMAP Initiator

DMA Channel

(x3)
DMA Channel

(x3)

Protocol

Multiplexer

AHB

Interface

SpaceWire Engine 2

SpaceWire Engine 3

SpaceWire Engine 1

AHB

INTR

APB

S
p

a
ce

W
ir

e

Fig. II: SpaceWire Architecture of Castor

1) SpaceWire Router

The Castor on-chip SpaceWire router has eight SpaceWire

interfaces, three interfaces to the SpaceWire Engines and an

internal configuration port which supports configuration of the

SpaceWire router and engines using the SpaceWire RMAP

protocol. An APB interface may also be used to configure and

read status registers from SpaceWire engines, time-code

controller and SpaceWire router. The router based on proven

STAR-Dundee technology [7] supports many advanced

features such as start-on-request, disable-on-silence, and

watchdog timers on all SpaceWire ports.

2) SpaceWire Engines

The Castor device contains three SpaceWire engines which

can support the rapid processing of various SpaceWire

protocols. Comprehensive support is provided for the

SpaceWire Remote Memory Access Protocol (RMAP) which

is widely used on board spacecraft for configuration and

control [8]. Support is also provided for user defined protocols

with a multi-channel, protocol selective DMA controller. Each

SpaceWire engine contains an RMAP Target, RMAP Initiator,

DMA controller, Protocol Multiplexer and a set of

configuration and control registers.

3) RMAP Target

The RMAP Target allows Castor to act as an RMAP Target

device, receiving, reacting and responding to RMAP

commands from a remote RMAP Initiator device. When an

RMAP command is received, its header is checked and if valid,

the information it contains is used to authorise or reject the

command. Authorisation can be carried out by the Castor

processor, or by automatically checking that the RMAP

command wants to read or write from a predefined area of

memory. If the command is authorised, it is executed and data

written to or read from the specified area of memory. An

RMAP reply is then sent to the initiator of the RMAP

command, containing an acknowledgement along with any

data read from memory. A 16-byte verified write buffer is

provided to support verified write commands where the data

associated with a write command is validated using a CRC

before it is written to memory. This supports commanding of

critical activities using RMAP.

4) RMAP Initiator

The RMAP Initiator off-loads the Castor processor from

the generation of RMAP commands. The processor defines the

RMAP commands to be sent, placing the commands and any

write data in memory and reserving space in Castor memory

for any data expected to be returned in response to read

commands. The RMAP Initiator is then started and will

automatically send all of the commands and collect the replies,

informing the processor when the entire set of RMAP

transaction is complete.

5) DMA Packet Transmission

The DMA controller supports multiple concurrent transmit

channels which can be programmed to send one or more

SpaceWire packets. A packet consists of one or multiple data

chunks stored in different memory locations. This allows the

packet header to be stored in a separate location to that of the

packet data content. The DMA controller is given a list of the

chunks making up a packet and will construct the required

packet as it is being sent.

The sending of CCSDS Packet Utilizatoin Standard (PUS)

[9] packets is supported in Castor by providing a means for

computing the CRC-16 checksum in hardware.

Continuous transmission of packets is supported with a

circular buffer mechanism containing data and packet

descriptor pointers. Interrupts can be set to monitor the

progress of transmission of packets without halting the actual

operation. This makes it possible to achieve the maximum

SpaceWire data-rate with minimum CPU utilization. Errors in

one channel do not affect the operation of other channels.

6) DMA Packet Reception

A DMA receive channel receives data from the protocol

multiplexer and writes it to Castor memory. Each receive

channel is associated to a particular SpaceWire protocol or

packet type using a packet filter in the protocol multiplexer

which switches packets based on their first four bytes. Packets

which are received on the same DMA channel are stored

contiguously in memory and their packet length is stored in

packet descriptors. Reception of PUS packets is supported by

providing the hardware computation of its CRC-16. CRC-8

calculation is also supported in hardware.

Continuous reception of packets is provided with a circular

buffer mechanism that stores data and packet descriptor

126

pointers. It is possible to enforce that a packet is not split at the

end of a memory region. Interrupts can be set to monitor the

progress of packets received without halting the actual

operation. The user application or software driver frees the

space used by packets once the data received has been

processed. This procedure allows data to be received at the

maximum SpaceWire data rate with minimum CPU utilization.

When an error occurs the reception is halted and the processor

is interrupted.

7) Protocol Multiplexer

The protocol multiplexer multiplexes packets to and from

the RMAP Target, RMAP Initiator and the DMA controllers.

When appropriate it uses the SpaceWire Protocol Identifier

[10] to perform the multiplexing. Alternatively other relevant

information at the start of the packet can be used.

When sending packets, the multiplexer selects the next

packet to be sent from one of the possible sources (RMAP

Initiator, RMAP Target, three DMA transmit channels) and

waits for the end of packet before selecting the next packet to

be transmitted.

When receiving packets, the protocol de-multiplexer checks

the first four packet bytes against a configurable pattern and

mask to determine the destination of the packet; either the

RMAP target, the RMAP initiator or a specific DMA channel.

The pattern and mask are programmable by the host processor

through the APB registers. This allows multiplexing of packets

according to their SpaceWire Protocol Identifier or other

information at the start of the packet.

8) Time-Code Controller

The SpaceWire time-code controller is able to forward

received time-codes and to generate time-codes from software,

processor timer interrupt or an internal dedicated time-code

master counter. The time-code controller has a time-code

register for each of the four time-code flags, therefore allowing

independent time-code forwarding for each flag code.

The time-code controller stores the last time-code received

for each type of control flag and can indicate to the host that a

time-code has been received through the status/interrupt

interface.

The controller can act as a time-code master either by

software insertion of a time-code, sending time-code on a

processor timer interrupt or by setting up an internal time-code

master counter, which automatically sends time-codes

periodically. The time-code frequency can be controlled by the

host software with up to 1 micro-second precision.

9) SpaceWire Interrupt Controller

The SpaceWire interrupt controller provides event

notification to the host processor for packet, time-code and

error events.

F. Power Management

The AT6981Castor device is a low power device with

dedicated mechanisms for adapting power consumption to the

level of processing performance required by the application.

Specific techniques used for power management include:

• Programmable clock functions that provide the clock

for each main function and peripherals, which are able

to adjust the clock speed and to gate it off completely.

• Dedicated reset for each major function which allows

them to be reinitialized locally after their clock restarts.

The estimate power consumption of the AT6981 Castor device

is as follows:

• Core stand-by current target: <100mA, mostly internal

memory leakage

• Core operating current target: 5mA/MHz

G. Rad Hard by design

The AT6981 Castor device is designed for spaceflight

application and is fault tolerance by design. It uses low level,

full triple modular redundancy (TMR) along with single event

transient (SET) filtering to provide radiation tolerance of its

internal logic. Memory is protected using EDAC which is

capable of single error correction and double error detection.

All internal memories have a dedicated scrubber with

internal EDAC in order to manage auto correction.

This scrubber is fully programmable on period of the

scrubbing cycle and the protected RAM array. It is an

additional value to the external EDAC capability provided with

the 1Mbytes of on chip available high speed SRAM to allow

customer own correction management.

All Memory blocks are designed in a way to never have

any adjacent bits for a same word. This technique simplifies

strongly the error management activities which allow using

only a simple EDAC for data single event protection. By this

way it’s not needed to implement an heavy TMR mechanisms

to protect register files which trigger some potential

performances limitation.

TMR mechanisms are implemented on all logic of the

design with also an SET filtering method.

Rad hard libraries on this proposed 90nm technology are

developed by Atmel in France based on all well proven

libraries from Atmel commercial products. AT6981 benefits

from the strong 30 years’ experience of Atmel France in rad

hardening techniques.

H. Debug and Test Facilities

The AT6981 Castor device has comprehensive debug

support with a processor debug support unit (DSU) supporting

debugging, trace memory and hardware watch points. The

DSU can be accessed through a UART, IEEE 1149.1 JTAG

Interface, or at high speed through a SpaceWire interface.

I. Operating Range

The AT6981 Castor device operates from two supply

voltages, minimizing the need for external power supply

components while keeping power consumption low:

• 3.3V +/- 0.30V for input/output,

• 1.0V +/- 0.15V for the core.

127

Castor operates over an ambient temperature range of -55 to

+125°C (Tj max 145°C).

The inputs/outputs are cold sparing.

V. AT6981 SOC VERIFICATION

AT6981 is a complex System on Chip device where

complexity management and control at each stage of the

development is key to insure the best product maturity and time

to market. Several verification steps are handled all along the

component development cycle as follow:

• Performances verification at early stage of the

design. All IPs have been unitary tested regarding

functionality and performances with modelisation

techniques and profiling. All IPs have been also

ported and verified on FPGA

• A full front end RTL functional validation has

been done after the IPs integration. Full set of

Atmel embedded software described later has

been used to exercise all applicative

configurations.

• Multilayer package routing validation with a

special focus on all differential links DDR and

LVDS to verify propagations and

synchronizations. During this phase RLC effects

have been minimized by electrical simulations as

much as possible to insure the 200Mhz IO

toggling

• Several Tests vehicle have been initiated to

validate the Rad Hard libraries used w 90nm

selected silicon to support radiations effects.

Those test vehicle have been used to assess:

o SET width variation at different ion

energies to size clock skewing of the

TMR cells

o EDAC and TMR errors feed-back

handled by processor TRAP interrupt

o IOs libraries cold sparing mechanisms

and ESD protection level

o Devices charge sharing effects to limit

multiple devices upset

o SEU and SEL libraries capabilities

• Set up a pre silicon development kit based on

FPGA to validate design in the system with all

peripherals and embedded software. It’s the way

to anticipate the applications tests before

prototypes are available

At each stage of testing, traceability is insured between

product requirements and test results. For final system tests

with hardware and software, applications cases are used to

handle the system test coverage.

VI. AT6981 EVALUATION KIT, SOFTWARE & SERVICES

Several options proposed by Atmel and partners for the

evaluation kit including hardware and software services

according to the development steps and customer engagement.

1) Atmel FPGA pre silicon evaluation environment

In order to manage system validation of AT6981 device

before silicon freeze, Atmel has developed a FPGA test board

based on Xilinx Virtex which contains the final and complete

RTL code. This FPGA board supports all castor peripherals

interface like Spacewire, CAN, 1553, DDR, etc … With this

board, end user can manage a full functional evaluation of the

CASTOR device, develop and exercise the full embedded

software. Level of performances will be of slightly limited

compare to real silicon device but largely enough to port real

time operating system like RTEMS or VXWorks.

Fig. III: Atmel FPGA pre silicon environment

2) Atmel Hardware evaluation kit

As soon as first AT6981 prototypes will be available,

associated Atmel Hardware evaluation kit will be also available

to complete application tests and to manage performances

assessment. AT6981 hardware kit design will be definitively

aligned on the current Sparc V8 kit architecture like for

AT697F or ATF697FF.

128

Fig. IV: Atmel Hardware evaluation kit

3) Extended Hardware kit from partners

StarDundee is providing an extended Spacewire FPGA

Test Board which allow to explore some extended capabilities

related to SpaceWire interface, SpaceWire protocol engines

and SpaceWire router.

4) Atmel Software and Services

With AT6981 Atmel hardware kit and Atmel pre silicon

environment, Atmel is offering a complete ecosystem of

software and tools which are used for the full chipset validation

and qualification. This guarantees the best starting point for

end user application development. A full software package

including embedded software drivers and libraries together

with a Basic Tools set for debug, download and trace are

proposed to AT6981 developers.

For embedded software package proposed with AT6981,

software drivers and libraries architecture concept is fully

reused from Atmel industrial and automotive microcontrollers.

This Atmel named ASF architecture is widely deployed and

proven with already some OS port facilities available.

 Atmel ASF is structured in stacks. Each stack is composed

of two layers:

• The drivers layer

• The services layer

The software is also embedding a Bootloader mechanism.

Main stack are:

• The memory stack:

 The aim of the memory stack is to implement a

memory virtualization. The virtualization allows to use every

types of supported memory in the same way (memory

controller). It also allows protecting memory at processes level

(Memory Management Unit) and dynamic allocation.

• The I/O stack:

 The I/O stack manage general purpose IO, PWM and

ADC/DAC interface

• The communication stack:

 The communication stack allows data transfer through

all communication interface using standard protocols such as

TCP/IP. The stack allows communication through all present

interfaces:

o Ethernet

o Mil STD 1553

o Space Wire

o CAN

o TWI

o SPI

o UART

• The system stack:

 The system stack handle with architecture specificities

such as system traps, windows management, interrupt. It also

manages system self test and diagnostic (e.g. edac).

Fig. V: AT6981 embedded software architecture

By taking advantage of all proposed software buildings

blocks available with the AT6981, end user is able to manage

his own system design and improve targeted application time-

to-market.

5) Extended Software services from partners

AT6981 developers will also benefit from additional

services and extended tool set that will be proposed by Atmel

partners as the comprehensive software development

environment suite from STAR-Dundee.

For more information related to Star-Dundee proposed

services with AT6981, please refer to http://www.star-

dundee.com/

VII. AT6981 SCHEDULE

The AT6981 is in its final stages of development and

evaluation by customers is targeted to start Q3 2014. Flight

models are targeted to be full space qualified end 2015.

129

VIII. AT6981 TARGETED SPACE APPLICATIONS

Providing integration of more peripherals and memory

blocks around the SPARC V8 processor core enables size,

weight and cost improvements for today’s space applications:

on-board computing, data handling, telemetry/telecommand,

remote terminal units, sensors, instruments and payloads. In

addition to strong system integration value, the AT6981

enables more powerful processing with 200MHz and

embedded fast memory to follow higher bandwidth capabilities

of peripherals with SpaceWire 200Mbit/s.

In this section several applications of the AT6981 Castor

Processor will be described. A generic functional block

diagram of a spacecraft avionics system is illustrated in Fig.

IV, from which the various applications of Castor will be

explored.

Instrument

Instrument

Instrument

AOCS

Sensors

AOCS

Actuators

AOCS

Processing

Instrument

Processing

Housekeeping

Processing

Payload

Control

Processing

Data

Compression

Mass Memory

HK Telemetry

Encoding

Telecommand

Decoding

Communications

Sensors and Actuators Processing Functions

Telemetry & Telecommand
Off Spacecraft

Communications
Sensor and Actuator

Bus/Network

Payload

Telemetry

Encoding

Payload Data-Handling

Fig. VI: Spacecraft Avionics Functions

A. Instruments

The instruments or payloads are the reason for the

spacecraft being launched. Instruments support the science,

earth observation or commercial application of the spacecraft.

The instruments sense the environment across the

electromagnetic spectrum and convert sensor signals into

digital data that can be handled on board the spacecraft and

sent to Earth. Instruments may be passive, receiving

information from the environment, or active sending out

signals which interact with the environment, reflecting some of

the transmitted energy back to the sensor on board the

spacecraft. Instruments may be relatively simple requiring very

basic control, or sophisticated requiring substantial interactive

control.

The Castor device is perfect for instrument processing

owing to its wealth of onboard resources and its low power

consumption. A typical instrument control application will run

within the on-chip memory of Castor and only the peripherals

that are required need to be activated and consume power. The

on-chip SpaceWire technology is able to off-load the

communications from the Castor processor simplifying the

sending of instrument data to the onboard mass memory unit.

The SPI, TWI, ADC/DAC and parallel IO interfaces of Castor

are designed to support direct connection to the instrument

electronics. If an FPGA is being used within the instrument

Castor is readily connected to the FPGA. The integrated

SpaceWire RMAP target handling capability is perfect for

controlling the instrument with minimal processor overhead.

B. Instrument Processing

Some instruments may require a substantial amount of

processing power and may require inputs from other sensors or

instruments in order for the instrument processing to be carried

out. In this case a separate instrument processor may be

required. This may be located within the main instrument itself

or in a separate instrument processing box.

Castor has substantial processing capability (>150 MIPS)

with a floating-point unit that is able to provide 40 MFLOPS.

This is adequate for many demanding instrument processing

applications. Where more processing power is required two or

more Castor devices may be easily networked and used in

parallel thanks to the embedded SpaceWire router.

C. Mass Memory

The onboard mass-memory provides data storage facilities

for the various instruments, managing the available storage,

allocating it according to mission priorities sent from ground

via the telecommand system.

A processor is typically used to control the mass-memory

system, allocating memory resources to the various instruments

or more specifically to particular application processes

identified by their application process identifiers (APIDs).

SpaceWire has been used in several mass memory systems

either for control, or for memory module interconnection or

both. The Castor processor with its embedded SpaceWire

router and MILSTD 1553 interfaces is just right for mass

memory control. Its on-chip memory is perfect for command

buffering and the integrated SpaceWire Engines with their

multi-channel DMA controllers are able to offload the

processor from much of the work distributing commands. The

internal SpaceWire router can also save on one of the

SpaceWire router devices that may be needed for the mass-

memory internal network, or the external payload data-

handling network.

D. Data Compression

A data compression processor may be attached to the mass-

memory to compress data from one or more of the payloads to

save on downlink telemetry bandwidth, enabling more payload

data to be sent to ground. Both loss-less and lossy (e.g. JPEG)

compression may be required to cover a variety of different

types of data.

The Castor device with its high processing power can be

used for some data compression tasks, especially if high-speed

data is buffered into the mass-memory first and subsequently

read out, compressed and written back to the mass-memory,

before being telemetered to ground. The Castor device is not

suitable for very high data-rate compression, but if an FPGA or

ASIC compression device is being used then Castor may have

a role in configuring and controlling the data compression

130

device, and in performing some of the less regular processing

required for rate control.

E. Housekeeping and Autonomy

The overall health of the spacecraft, including power

consumption, operating temperature, and battery status is

monitored by the housekeeping function. To perform this

monitoring function it gathers housekeeping information from

the various spacecraft subsystems, and reports this information

to ground via the telemetry encoding function and

communications subsystem. Autonomous operation of the

spacecraft may be supported in the event of anomalous

conditions occurring.

Castor has a wide variety of interfaces to support

housekeeping. It also has adequate processing capability to

support complex autonomous operational modes should that be

required. Where a SpaceWire network is being used for on-

board data-handling, it is straightforward for Castor to support

periodic housekeeping information gathering from any device

on the SpaceWire network. The SpaceWire Engines in Castor

include RMAP Initiators which may be set up with a sequence

of RMAP commands to acquire housekeeping information.

This sequence of commands can then be triggered every so

often by the processor and the RMAP initiator will send out all

the commands, gather the replies, put the data from those

replies into specified areas of Castor memory, and then signal

to the processor that the entire information gathering exercise

is complete. Any errors or missing replies are also reported to

the processor. This offloading of routine SpaceWire

communication tasks from the Castor processor is a major

benefit of the Castor architecture.

F. Telecommand and Payload Control

The instruments are activated and deactivated by the

payload control processing function, which is in overall control

of the spacecraft operation. It determines what onboard

resources are activated at any particular time. It receives

telecommands from the communications subsystem which are

decoded by the telecommand decoding function.

Software running on Castor is able to decode incoming

telecommands, validate those commands and execute them.

Once again the large amount of on-chip memory provided in

Castor is often adequate for the telecommand and payload

control processing.

G. AOCS Processing

AOCS processing receives required attitude and orbit

parameters from the telecommand system, and is responsible

for maintaining the required orbit and attitude of the spacecraft.

To achieve this, the AOCS processor will read the AOCS

sensors (e.g. star-tracker, gyro, accelerometer, GPS) to

determine its current pointing and orbital position, and control

various AOCS actuators to achieve the desired attitude and

orbit. AOCS processing is mathematically intense and often

requires support for floating-point maths. The processing has to

be deterministic.

Castor has the floating-point capability necessary for most

AOCS processing applications, its on-chip memory is adequate

for most AOCS software, and its range of peripheral interfaces

is sufficient for almost all important spacecraft AOCS sensors.

IX. CONCLUSION

International Spacewire conference 2014 is the ideal place

to update the worldwide space community on the progress of

new coming device. This processor is a highly capable

processor, which operates with low power consumption,

incorporates substantial on-chip memory and includes an

extensive set of on-chip peripherals. It has been designed

specifically for spaceflight, meeting the requirements of many

different onboard processing applications. On top of

component itself, a whole ecosystem including some Hardware

and Software facilities that will be provided by Atmel and

partners in order to facilitate fast ramp up, reuse & time to

market for space actors.

REFERENCES

[1] ECSS Standard ECSS-E-ST-50-12C, “SpaceWire, Links,

Nodes, Routers and Networks”, Issue 1, European

Cooperation for Space Data Standardization, July 2008.

[2] S. Parkes & P. Armbruster, “SpaceWire: Spacecraft

onboard data-handling network”, International

Astronautical Congress 2008, paper IAC-08-B2.4.1.

[3] ECSS, “SpaceWire - Remote memory access protocol”,

ECSS-E-ST-50-52C, Feb 2010.

[4] P. Mendham, S. Parkes, “SpaceWire Plug-and-play: a

Roadmap”, International SpaceWire conference, Nara,

Japan, 2008.

[5] S. Parkes, Albert. Ferrer, S Mills, A Mason, “SpaceWire-

D: Deterministic data delivery with SpaceWire”,

International SpaceWire conference, Russia, 2010.

[6] Yuriy Sheynin, Sergey Gorbatchev, Liudmila

Onishchenko, “Real-Time Signalling in SpaceWire

Networks”, International SpaceWire conference, Nara,

Japan, 2008.

[7] S. Parkes, C. McClements, G. Kempf, S. Fishcher, P.

Fabry, A. Leon, “SpaceWire Router ASIC”, International

SpaceWire Conference, Dundee, 2007.

[8] Chris McClements, Steve Parkes, “SpaceWire RMAP IP

Core”, International SpaceWire conference, Russia, 2010.

[9] ECSS standard ECSS-E-70-41A, “Ground systems and

operations – Telemetry and telecommand packet

utilization”, European Cooperation for Space Data

Standardization, January 2003.

[10] ECSS standard ECSS-E-ST-50-51C, “SpaceWire

engineering: SpaceWire protocol identification”,

European Cooperation for Space Data Standardization,

February 2010.

131

 SpaceFibre (Long)

132

SpaceFibre Implementation, Test and Validation

SpaceFibre, Long Paper

Steve Parkes, Chris McClements, David McLaren,

Angel Monera Martinez,

Space Technology Centre, University of Dundee,

166 Nethergate, Dundee, DD1 4EE, UK

smparkes@dundee.ac.uk

 Albert Ferrer Florit, Alberto Gonzalez Villafranca,

STAR-Dundee Ltd.,

STAR House, 166 Nethergate, Dundee, DD1 4EE, UK

Abstract—SpaceFibre is a multi-gigabit/s data link and

network technology for use onboard spacecraft. Compatible with

SpaceWire at the packet level, SpaceFibre runs over electrical

and optical media. It provides extensive quality of service (QoS)

and fault detection, isolation and recovery (FDIR) capabilities

that are designed specifically for spacecraft applications. This

paper provides a short introduction to SpaceFibre and then

describes how SpaceFibre is being implemented. It introduces

some SpaceFibre test equipment and explains how SpaceFibre

has been validated. SpaceFibre is designed to support high data

rate payload data-handling like synthetic aperture radar (SAR),

multi-spectral imaging systems and fast mass memory. It is an

ideal candidate for the next generation of spacecraft

interconnect, being an open standard designed specifically for

spacecraft applications.

Index Terms—SpaceWire, SpaceFibre, Network, Spacecraft

Onboard Data-Handling, Quality of Service, FDIR, Next

Generation Interconnect.

I. INTRODUCTION

SpaceFibre [1][2][3] is a very high-speed serial data-link

being developed by the University of Dundee for ESA for use

with high data-rate payloads. The draft SpaceFibre standard

has been written by the University of Dundee for ESA and has

been reviewed by the international spacecraft engineering

community. It has also been simulated and implemented in

several forms. SpaceFibre is currently being integrated into

several third party beta test applications to help refine the

standard.

The SpaceFibre standard is described in section II. The

design of a SpaceFibre IP core is outlined in section III. A

radiation ASIC implementation of SpaceFibre is described in

section IV. Currently available test equipment and future test

equipment for SpaceFibre is considered in section V. The ways

in which the SpaceFibre standard has been validated are

explained in section VI.

II. THE SPACEFIBRE STANDARD

SpaceFibre is currently a draft standard being specified by

the University of Dundee with contributions from several other

organisations. The protocol stack for SpaceFibre is illustrated

in Fig. 1.

QoS and FDIR

Lane Layer

VC Interface

Multi-Lane Layer

Physical Layer

BC Interface

Physical Interface

Network Layer

Packet Interface

M
an

ag
em

en
t

La
ye

r

Management
Interface

Broadcast Message Interface

Fig. 1. SpaceFibre Protocol Stack

The network layer protocol provides two services for

transferring application information over a SpaceFibre

network; the packet transfer service and the broadcast message

service. The Packet Transfer Service transfers SpaceFibre

packets over the SpaceFibre network, using the same packet

format and routing concepts as SpaceWire. The broadcast

message service broadcasts short messages carrying time and

synchronisation information to all nodes on the network.

The QoS and FDIR layer provides quality of service and

flow control for a SpaceFibre link. It frames the information to

be sent over the link to support QoS and scrambles the packet

data to reduce electromagnetic emissions. It also provides a

retry capability; detecting any frames or control codes that go

missing or arrive containing errors and resending them.

The Multi-Lane layer is able to operate several SpaceFibre

lanes in parallel to provide higher data throughput. In the event

of a lane failing the Multi-Lane layer provides support for

graceful degradation, automatically spreading the traffic over

the remaining working links. It does this rapidly without any

external intervention.

The Lane layer initialises each lane initialisation and re-

initialises the lane when an error is detected. Data is encoded

into symbols for transmission using 8B/10B encoding and

133

decodes these symbols in the receiver. 8B/10B codes are DC

balanced supporting AC coupling of SpaceFibre interfaces.

The Physical layer serialises the 8B/10B symbols and sends

them over the physical medium. In the receiver the Physical

layer recovers the clock and data from the serial bit stream,

determines the symbol boundaries and recovers the 8B/10B

symbols. Both electrical cables and fibre-optic cables are

supported by SpaceFibre.

The management layer supports the configuration, control

and monitoring of all the layers in the SpaceFibre protocol

stack.

The SpaceFibre standard has been simulated, implemented

and reviewed at all stages of its research, design and

development. The lane and QoS layers of SpaceFibre are fully

defined and have been extensively tested with simulations by at

least three independent organisations, and by implementation

in FPGAs. The physical layer is well on the way to being

complete with final inputs on eye pattern masks etc. to be

added. The multi-lane layer has been designed and simulated,

and is currently in the process of being implemented and tested

in FPGAs. Once this testing is complete and the specification

updated to resolve any issues found, draft G of the SpaceFibre

standard will be issued and an ECSS working group will be

convened to finalise the standard for formal approval.

The SpaceFibre network layer will be a separate standard

document. The network layer uses the same packet format as

SpaceWire and supports path and logical addressing.

III. A SPACEFIBRE IP CORE

A SpaceFibre IP core has been designed and developed to

test and validate the SpaceFibre specification. This has been

updated and used to re-validate each revision of the SpaceFibre

standard. A block diagram showing the interfaces to the IP

Core is given in Fig. 2. The current version SpaceFibre IP core

is complaint to draft F3 version of the SpaceFibre standard and

supports all its features with the exception of multi-laning.

SERDES

SpaceFibre

IP Core

VIRTUAL

CHANNEL

INTERFACE

BROADCAST

INTERFACE

MANAGEMENT

INTERFACE

8B/10B
Encoding

8B/10B
Decoding

Serialiser Deserialiser

Serial Data

Fig. 2. SpaceFibre IP Core Interfaces

The SpaceFibre IP Core is designed to interface with an

8B/10B encoder/decoder and SerDes. This allows the

SpaceFibre IP Core to be used with space qualified SerDes

such as the TLK2711-SP device from Texas Instruments. The

application interface to the SpaceFibre IP core comprises three

separate interfaces:

1. A virtual channel interface, which is used to send and

receive SpaceFibre packets over the virtual channels in

the interface.

2. A broadcast interface, which is used to send broadcast

messages over the SpaceFibre network.

3. A management interface, which is used to configure,

control and monitor the status of the SpaceFibre

interface.

The FPGA resources required for a SpaceFibre link with a

single virtual channel are detailed for various types of space

qualified, radiation tolerant FPGAs in Fig. 3. to Fig. 5. The

utilisation for an 8 virtual channel interface is about twice that

of a single virtual channel interface.

Fig. 3. SpaceFibre Single Virtual Channel Xilinx Virtex 4 FPGA Utilisation

Fig. 4. SpaceFibre Single Virtual Channel Xilinx Virtex 5 FPGA Utilisation

Fig. 5. SpaceFibre Single Virtual Channel Microsemi RTAX2000 Utilisation

The SpaceFibre IP core has been designed to support the

testing of the SpaceFibre standard. It has not been designed for

134

speed or size. A version of the SpaceFibre IP core targeted for

high performance and small size in flight qualified FPGAs is

currently being developed by STAR-Dundee Ltd. This IP core

is designed to support instrument interfacing with SpaceFibre

using existing flight proven FPGAs and SerDes devices.

IV. A RADIATION TOLERANT SPACEFIBRE DEVICE

A radiation tolerant SpaceFibre interface device has been

developed by University of Dundee, STAR-Dundee, Ramon

Chips, ACE-IC, IHP, Airbus DS and SCI within the Very High

Speed Serial Interface (VHiSSI) European Commission

Framework 7 project [5]. The VHiSSI chip integrates a

complete SpaceFibre protocol engine, together with the

physical layer interfaces, in a radiation tolerant chip

manufactured by a European foundry. A block diagram of The

VHiSSI device is shown in Fig. 6.

SpaceWire
Bridge

FIFO &
DMT

Interface

IO
Switch
Matrix

Mode
Switch
Matrix

SpaceFibre
CODEC

JTAG

CNF[3:0]

SpaceWire
& Digital IO

JTAG
VHiSSI Chip

SpaceFibre
Nominal

SpaceFibre
Redundant

SerDes

SerDes

……

…

VC0

VCA

VCB

VCJ

Fig. 6. VHiSSI Chip Block Diagram

There are five main functions within the VHiSSI chip:

 SpaceWire Bridge

 FIFO, DMA, Memory and Transaction Interface

 SpaceFibre Interface

 SerDes

 IO Switch Matrix

 Mode Switch Matrix

The SpaceWire Bridge provides a bridge between

SpaceWire and SpaceFibre with up to 11 SpaceWire interfaces

being available. The SpaceWire Bridge includes a seven port

SpaceWire router which allows routing between three

SpaceWire ports, three Virtual Channel (VC) buffers of the

two SpaceFibre interfaces and a device configuration port.

Configuration of the VHiSSI chip can be carried out over any

SpaceWire interface connected to the embedded SpaceWire

router or over VC0, VCA and VCB of the SpaceFibre

interface. The SpaceWire Bridge is connected to the IO Switch

Matrix and to the Mode Switch Matrix.

The FIFO and DMA, Memory and Transaction (DMT)

Interface provides various types of parallel interface into the

VHiSSI chip for sending and receiving data over the

SpaceFibre interfaces. The various parallel interface functions

have been designed with specific application scenarios in mind

and between them are able to operate with many types of local

host system, including FPGAs and processors. The parallel

interface is also designed to use a small number of pins, so that

the VHiSSI chip can fit into a small (100 pin) package

The SpaceFibre Interface has 11 virtual channels. VC 0 is

intended primarily for VHiSSI device and local system

configuration and monitoring and is connected to the

embedded SpaceWire router. The other VCs have

programmable VC numbers and so are referred to by letters.

VCA and VCB are connected to the embedded SpaceWire

router. The other VCs are connected directly to a SpaceWire

interface, or to the parallel interface, depending on the mode of

operation. Each VC supports full SpaceFibre QoS which can

be configured independently for each VC.

VC0 and VCA are directly connected to the embedded

SpaceWire router. The other SpaceFibre VC buffers are

connected to the Mode Switch Matrix which connects them to

either the SpaceWire Bridge or the parallel interface. The

SpaceFibre interface is connected via a multiplexer to either

the nominal or redundant SerDes and CML transceiver.

The SerDes converts parallel data words from the

SpaceFibre interface into a serial bit stream and vice versa. On

the receive side the bit clock is recovered from the serial bit

stream by the SerDes. The SerDes includes integral CML

transceivers.

The IO Switch Matrix connects either the SpaceWire

LVDS, SpaceWire LVTTL or parallel interface signals from

the FIFO and DMT interface to the digital IO pins of the

VHiSSI chip. Configuration is static and determined on exit

from device reset.

The Mode Switch Matrix connects either the SpaceWire

Bridge or FIFO and DMT interface (parallel interface) to the

VC buffers of the two SpaceFibre interfaces. Configuration is

static and determined on exit from device reset.

The digital logic for VHiSSI was designed by STAR-

Dundee Ltd. with system architectural design and project

management being carried out by University of Dundee.

AirbusDS provided inputs to the VHiSSI requirements. The

back end design was carried out by Ramon Chips. ACE-IC

designed the SerDes parts of the chip. Test vectors were

prepared by STAR-Dundee and SCI with inputs from other

partners. The chip was manufactured by IHP. The resulting

VHiSSI chip is shown in Fig. 7.

Fig. 7. VHiSSI SpaceFibre Chip

Initial testing of all chips was carried out at IHP with

support from STAR-Dundee and SCI. The VHiSSI chip can be

seen on the right hand side of Fig. 8. mounted on a chip tester.

135

Fig. 8. VHiSSI in Chip Tester at IHP

The chip tester was able to carry out basic testing of the

VHiSSI chip, but full-speed functional testing had to be carried

out using dedicated test boards and test equipment. Four test

boards were designed:

1. SpaceWire LVDS test board, for testing VHiSSI in

the SpaceWire bridge mode with five LVDS

SpaceWire interfaces and one LVTTL interface. This

board is also being used for SEU radiation testing of

VHiSSI.

2. SpaceWire LVTTL test board, for testing the

SpaceWire bridge mode with eleven SpaceWire

LVTTL interfaces.

3. FMC interface test board, for testing the parallel,

FIFO and DMT, interface modes of operation.

4. Radiation test board, for testing the total ionising dose

characteristics of the VHiSSI device.

A block diagram of the SpaceWire LVDS test board is

shown in Fig. 9.

VHiSSI ASIC
In

Test Socket

Termination
Pads

Po
w

er
 S

u
p

p
ly

Pi Filters

Power
Planes

Configuration
Switches

SpaceFibre N

Clock/
Oscillator

SMA

Po
w

er
 S

u
p

p
ly

C

o
n

n
ec

to
r

Termination
Pads

SpaceFibre R

LVTTL
LVDS

Buffer

SpaceWire 2

LVDS
Buffer

SpaceWire 1 LVDS
LVDS

Buffer
SpaceWire 3

LVDS
LVDS

Buffer
SpaceWire 4

LVDS
LVDS

Buffer
SpaceWire 6

LVDS
LVDS

Buffer
SpaceWire 5

SMA

Fig. 9. Block Diagram of VHiSSI SpaceWire LVDS Test Board

The VHiSSI chip is mounted in a specially designed wide

bandwidth test socket which can support the SpaceFibre 2.5

Gbits/s serial data rate. The VHiSSI chip is directly connected

to the nominal and redundant SpaceFibre interfaces. The

SpaceWire interfaces are connected via LVDS buffers to

SpaceWire micro-miniature D-type connectors. The LVDS

buffers on the board are only necessary for SpaceWire

interface 1 which has an LVTTL interface to the VHiSSI chip.

The others are there simply to protect the VHiSSI chip during

testing since in the SpaceWire LVDS mode they have LVDS

interfaces on the VHiSSI chip. A crystal oscillator,

configuration switches and power supply circuitry are included

on the test board. Latch up protection circuitry is also included

within the power supply circuitry for the SEE radiation testing.

The VHiSSI chip was tested using a STAR-Dundee STAR

Fire unit, to send and receive SpaceFibre packets and broadcast

codes from VHiSSI and to monitor the link during lane

initialization and error recovery operations. The STAR-Fire

unit is described in section V.

The block diagram of the VHiSSI SpaceWire LVDS

illustrates how simple it is to build a SpaceWire to SpaceFibre

bridge using the VHiSSI chip, with very few additional

components being required especially when external LVDS

buffers are not used.

A photograph of the VHiSSI SpaceWire LVDS test board

is shown in Fig. 10.

Fig. 10. VHiSSI SpaceWire LVDS Test Board

The radiation test board for VHiSSI is shown in Fig. 11.

Fig. 11. VHiSSI Radiation Test Board

Four chips are tested together two powered and two not

powered with one of the powered devices also clocked.

The VHiSSI chip is currently being tested in Dundee.

Initial results from the testing will be available by the end of

136

September 2014. Radiation testing will be carried out by

Airbus DS GmbH in October 2014.

V. SPACEFIBRE TEST EQUIPMENT

STAR-Dundee has developed a range of SpaceFibre test

and development equipment. The first unit, STAR Fire, was

designed to support the testing of SpaceFibre and include

SpaceWire to SpaceFibre bridging, pattern generation and

checking for multiple virtual channels and link analysis

capabilities. A block diagram of STAR Fire is shown in Fig.

12. and a photograph in Fig. 13.

Packet
Gen/Chk

Reg

USB
3

Router

SpW

SpW

1

2

5

6 SpaceFibre
Port 1

(8 Virtual
Channels)

SpF

Analyser
Mictor

Packet
Gen/Chk

SpaceFibre
Port 2

(8 Virtual
Channels)

Reg

7
8

Analyser

SpF

Mictor

RMAP Configuration
(RMAP Target)

4

Configuration Bus

Fig. 12. STAR Fire SpaceFibre Development Kit

The STAR-Fire unit contains two SpaceFibre interface each

with eight virtual channels. Two virtual channels of each

SpaceFibre interface are connected to a SpaceWire router,

which also has two SpaceWire ports, a USB port and an

RMAP configuration port. This allows the two SpaceWire

interfaces and the USB interface to send packets through either

SpaceFibre interface. To test the SpaceFibre interface at full

speed and to exercise and validate the bandwidth reservation,

priority and scheduled qualities of service, a packet generator

and checker is attached to six of the virtual channels of each

SpaceFibre interface. The STAR Fire unit is configured and

controlled by a Remote Memory Access Protocol (RMAP)

interface attached to the SpaceWire router. This allow

configuration to be performed over the SpaceWire interfaces,

USB interface or the SpaceFibre interfaces. Each SpaceFibre

interface has an analyser attached which can be used to record

and analyse the operation of the SpaceFibre interface.

Fig. 13. STAR Fire Unit

A graphical user interface provides access to all the

capabilities of STAR Fire. Part of an example analysis display

is shown in Fig. 14. where the control words being exchanged

in each direction are shown in colour and the four symbols that

make up the left hand control code being shown in black and

white.

Fig. 14. STAR Fire Analysis Display

A cPCI interface board has also been developed for

SpaceFibre which is compatible with cPCI, RASTA and

National Instruments PXI systems. This board can provide a

number of different SpaceFibre functions including SpaceFibre

interface, SpaceWire to SpaceFibre bridging and SpaceFibre

Router functions. This board is expected to be available early

in 2015. The STAR Fire unit is currently available from

STAR-Dundee along with the SpaceFibre IP core.

VI. SPACEFIBRE VALIDATION

The University of Dundee designed the lane layer of

SpaceFibre with funding from ESA under the SpaceFibre

contract, and the QoS and FDIR layer with funding from the

European Commission (EC) SpaceWire-RT grant. The

physical, multi-lane and management layers are currently being

specified with ESA funding under the SpaceWire

Demonstrator contract.

As SpaceFibre was being designed by the University of

Dundee, various alternative designs were simulated to rapidly

explore alternative designs and support design trade-offs.

In parallel with specifying the SpaceFibre standard the

University of Dundee designed and tested the SpaceFibre IP

core in VHDL. This was used to validate each revision of the

SpaceFibre standard in a series of FPGA implementations.

137

To support the testing of SpaceFibre a suitable test platform

was required, so STAR-Dundee Ltd. developed the STAR Fire

unit. This device was used as a validation platform for the

SpaceFibre IP core. Link analysis capability was included so

that the exchange of information over the SpaceFibre interface

could be recorded and analysed.

As the specification of the SpaceFibre standard developed

formal simulations of the standard were carried out by St

Petersburg University of Aerospace Instrumentation (SUAI),

covering drafts C, D and E [6], and by Thales Alenia Space

France, covering draft F3. These simulations identified many

issues with the SpaceFibre standard which were then rectified.

NEC and Melco in Japan are both developing SpaceFibre

interface devices to the specification produced by the

University of Dundee. This work has provided valuable

feedback on the specification and implementation of

SpaceFibre.

Several ESA projects are using the Dundee SpaceFibre IP

core under a Beta evaluation programme. Feedback from these

beta sites has been used to improve the SpaceFibre standard

and the SpaceFibre VHDL IP core and related documentation.

To raise the TRL of SpaceFibre a spaceflight engineering

model is being developed by Airbus Defence and Space in the

frame of the ESA SpaceFibre Demonstrator project. This

design uses already flight proven components (RTAX2000 and

TLK2711-SP).

The VHiSSI radiation tolerant SpaceFibre interface device

was developed by University of Dundee and partners within

the Very High Speed Serial Interface (VHiSSI) European

Commission Framework 7 project. This device has been

manufactured and is currently being tested.

Axon is working on an open specification for SpaceFibre

cable and connectors, which has been referred to in the current

draft specification of the SpaceFibre standard. The cables and

connectors have been tested using the STAR Fire unit.

VII. CONCLUSIONS

SpaceFibre is a multi-Gigabit/s data link and network

technology specifically designed for spaceflight applications. It

is targeted primarily at spacecraft onboard payload data-

handling applications. It includes built in, very efficient,

quality of service and fault detection, isolation and recovery

techniques, which simplify the use of SpaceFibre enormously;

providing substantial system level benefits without requiring

the implementation of complex performance limiting software

protocols. SpaceFibre is backwards compatible with

SpaceWire at the packet level allowing easy bridging between

SpaceWire and SpaceFibre, so that existing SpaceWire devices

can be incorporated into a SpaceFibre network and take

advantages of its performance and QoS and FDIR capabilities.

SpaceFibre has been designed, reviewed and validated

through analysis, simulation and hardware implementation, in a

series of stages with feedback from each validation cycle

feeding into the design. This has resulted in a mature well

tested standard which will be released to ECSS for formal

standardisation at the end of 2015. The TRL is already at TRL

5 with an implementation designed in flight proven radiation

tolerant FPGA and SerDes devices. It will be raised to TRL 6

with application demonstrations in the near future. An

experimental radiation tolerant SpaceFibre interface has been

designed and manufactured and is currently undergoing tests.

ACKNOWLEDGMENT

The research leading to these results has received funding

the European Space Agency under ESA contract numbers

4000102641 and 17938/03/NL/LvH from the European Union

Seventh Framework Programme (FP7/2007-2013) under grant

agreement numbers 263148 and 284389. We would also like to

thank Martin Suess the ESA project manager for the

SpaceFibre related activities for his help, advice and guidance.

REFERENCES

[1] S. Parkes, A. Ferrer and A. Gonzalez, “SpaceFibre Standard”,

Draft F3 September 2013, available from http://space-

env.esa.int/indico/confLogin.py?confId=32 (last accessed 15th

Feb 2014).

[2] S. Parkes, A. Ferrer, A. Gonzalez, & C. McClements,

“SpaceFibre: Multiple Gbits/s Network Technology with QoS,

FDIR and SpaceWire Packet Transfer Capabilities”,

International SpaceWire Conference, Gothenburg, June 2013.

[3] S. Parkes, “Never Mind the Quality, Feel the Bandwidth:

Quality of Service Drivers for Future Onboard Communication

Networks”, paper no. IAC-10.B2.6.6, 61st International

Astronautical Congress, Prague 2010.

[4] ECSS Standard ECSS-E-ST-50-12C, “SpaceWire, Links,

Nodes, Routers and Networks”, Issue 1, European Cooperation

for Space Data Standardization, July 2008.

[5] S. Parkes, A. Ferrer, A. Gonzalez, C. McClements, R. Ginosar,

T Liran, G Sokolov, G Burdo, N Blatt, P Rastetter, M Krstic, A

Crescenzio, “A Radiation Tolerant SpaceFibre Interface

Device”, International SpaceWire Conference, Gothenburg,

2013.

[6] V. Olenev, I. Lavrovskaya, and I. Korobkov, “SpaceWire-

RT/SpaceFibre Specification and Modelling”, International

SpaceWire Conference, Gothenburg, 2013.

138

 SpaceFibre/SpaceWire-RT implementation
experience and evolution trends

SpaceFibre, Long Paper

Elena Suvorova, Irina Lavrovsakaya, ValentinOlenev, YuriySheynin
Saint-Petersburg State University of Aerospace Instrumentation (SUAI)

Saint-Petersburg, Russian Federation
sheynin@aanet.ru, suvorova@aanet.ru

Abstract—

The paper considers experience of SpaceFibre/SpaceWire-
RT implementation and analysis. Overheads are estimated and
gaps in the SpaceFibre draft for implementation are
considered, its refinement is proposed.

The problems in the Retry level are discussed. In case of
repeating a frame the virtual channels characteristics
(priorities, timeslots) are not fully followed; it could corrupt
required QoS of the traffic. Another problem with the Retry
level is shown in a case study of streaming data traffic. For
such type of traffic late frames transmission (could be not only
useless but harmful for the target traffic. To deal with the
problems a modification of Retry is proposed.

Another open problem is in disconnection of a link at the
Lane and Encoding levels when there is a need to change
virtual channels (VC) logical numbers. When one needs to
switch on or change a logical number of a single VC the link
disconnection and restart is done. Thus data transfer would be
stopped for all the VC of the link. It leads to considerable
delays in tuning logical structuring of networks, excessive
delays in virtual channel transfers when other VC in the same
controller are retuned, excessive complication and resources
in processor-less nodes implementations. To deal with the
problem a modification of link flow control crediting is
proposed.

I. INTRODUCTION
The SpaceFibre standard supports several quality of

service (QoS) classes:
- guaranteed packet delivery;
-priorities;
-guaranteed throughput;
 - scheduling;
- best effort.
Support for these classes of service is provided in the

data link at the QoS layer. (The SpaceFiber protocol stack is
shown in fig. 1). The QoS layer includes the Virtual channels
sublayer, the Framing sublayer and the Retry sublayer,
fig. 2.

Fig.1. The SpaceFibre protocol stack

However, there are some problems and requirements,
which are not supported in the current SpaceFibre standard
draft:
- problem of fulfillment the data flows characteristics

(priority, reserved bandwidth, timeslots list for
scheduling) in case of frames retransmission;

- no packets transmission without guaranteed delivery for
some types of traffic;

- no reconfiguration of virtual channels logical numbers
without disconnection on the Lane and Encoding layers.

In some cases a single error that occurs in the channel
does not lead to breaking the connection at the Lane and the
Encoding layer. Currently specified in the SpaceFibre
procedure of frames retransmission may violate the QoS
characteristics and constraints that are specified for data
flows characteristics. At the VC layer it can lead to quite
noticeable delays of high-priority traffic transmission, and,
when scheduling is used, to frames transmission out of the
assigned timeslots.

139

For most types of streaming data traffic there is no
requirement of guaranteed delivery, for example for video
traffic. Loss of some data in this traffic is not critical for
system functionality as a whole. In typical videostream
networking (e.g. ARINC 818) frame fragments with errors
are not repeated; it is neither needed, nor possible for
conventional equipment to implement. Created by this traffic
network load is very high. The retransmissions of such
traffic may lead to network congestions, impossibility to
deliver other traffic with the QoS constraints to destination
terminal nodes, e.g. command traffic, which transmission is
much more critical to the system functionality.

Reconfiguration of virtual channels logical numbers may
be necessary due to changes in the network operation mode,
to tasks and applications migration between nodes, to new
equipment attachment, etc. In SpaceFibre, to reconfigure VC
logical numbers one needs to disconnect the link.
Disconnection leads to data transmission impossibility via all
the other VCs of the data link during reconfiguration of the
single VC and connection recovery (about 50 us). This may
result, for example, in very essential delay of command
traffic.

Fig. 2 The QoS sublayer structure

II. THE QOS LAYER OF THE SPACEFIBRE STANDARD
The QoS layer includes the Virtual channels sublayer, the

Framing sublayer, the Retry sublayer, fig. 2.

A. The Virtual channels sublayer
The main functions of the Virtual channels sublayer are:
- the data flow control functions (credit based

mechanism);

- partitioning of packets into data blocks, each of
which is further placed in a separate frame;

- support of priority mechanism;
- providing of guaranteed throughput;
- scheduling.

The Virtual channels sublayer has a separate buffer space

for every virtual channel (VC), which includes the buffers
for storing the transmitted data and the buffers for storing the
received data. The Destination VC sends to the Source VC
information about the available buffer space. The Source VC
may send amount of data that corresponds to this free buffer
space.

The Virtual channel partitions data into blocks before
transmission to the Framing sublayer that will place them
into separate frames.

Transmission of the next data block may start if the
Virtual channel transmission buffer contains the end of
packet or contains 256 Nchars (the maximal size of frame
data field).

The media access controller, fig. 2, arbitrates requests for
data transmission from the virtual channels. The arbitration
is done in correspondence with the priority levels, amount of
allocated bandwidth and scheduling that are assigned to
every VC.

B. The Framing sublayer
The main functions of the Framing sublayer:
- packing data blocks, FCT, Broadcasts to frames for

transmission and extraction of data blocks, FCT,
Broadcasts from received frames;

- scrambling and descrambling.

C. The Retry sublayer
The main functions of the Retry sublayer are:
- junction for transmission of data frames, Broadcast

frames, command frames correspondingly to their
priorities;

- separation of the received frames into the data frames
flow, Broadcast frames flow, command frames flow;

- implement mechanisms for guaranteed delivery.

To ensure guaranteed delivery, at the Retry sublayer on

the source side:
- A serial number and CRC are assigned to every

frame.
- A frame is stored in the retry buffer for transmitted

and unacknowledged frames; the frame is stored in
this buffer until ACK will be received.

- When ACK is received, all the frames with
sequence numbers less or equal to the specified in
the ACK are considered successfully transmitted
and are deleted from retry buffer.

- When NACK is received all the frames with
sequence numbers more than the specified in
NACK number should be retransmitted (sequence

140

numbers of the frames could be changed before
retransmission).

To ensure guaranteed delivery on the destination side:
- the Retry sublayer checks the sequence number,

CRC and structure of the received frame;
- if there are no errors in the frame the ACK

(acknowledgment of success) is sent;
- if an error is found, the NACK is sent.

If the frame has been received without errors it is
transferred to the Framing layer and then pass to the Virtual
channels layer (or to the Broadcast layer).

The problem of data frames retransmission in correct
QoS sequence

The data flow, FCT flow and broadcast flows are
distinguished at the Retry layer (the priority levels of them
are kept when they are retransmitted). However, the data
frames of different virtual channels are not distinguished at
the Retry layer. Serial numbers of frames are generated at the
Retry layer and the frames are placed in the buffers, fig.2. If
a NACK is received, the unacknowledged data frames will
be retransmitted in the order, in which they happened to be
placed in the Retry data buffer. The assigned priorities,
scheduling, allocated bandwidth in this case are not
accounted by the Retry layer. It can violate QoS parameters
of data frames from different VC.

The fig. 3 shows dependency between the frame
retransmission time and quantity of retransmitted frames that
have been placed in the Retry buffer before this negatively
acknowledged frame. The frame retransmission time grows
proportionally to the quantity of previous frames in the Retry
buffers.

Fig.3 The dependency between the frame retransmission time and

quantity of retransmitted frames that are placed in the Retry buffer before
this frame

The Retry sublayer provides the guaranteed delivery
service class by retransmission of all corrupted or lost data

frames. This retransmission mechanism cannot be turned off
for some data flows, for which the guaranteed delivery is not
required.

We suggest some modifications of the QoS layer for
provision of:

- rearranging frames processing between the
sublayers of the QoS layer to take into account the
frames’ QoS attributes and parameters when the
frames are retransmitted;

- additional transmission mode without guaranteed
delivery for some data flows;

- resetting and reconfiguration of a single VC without
interruption of information flow in other VCs.

III. THE MODIFICATIONS OF THE VIRTUAL CHANNELS AND
THE RETRY SUBLAYERS

At the Retry sublayer there is no information about the
required characteristics of frames, their QoS attributes and
parameters. Therefore in frames retransmission it is not
possible to apply processing algorithms for QoS support at
this layer. We suggest moving the retransmission
functionality from the Retry sublayer to the Virtual channels
sublayer and the Broadcast layer. At these layers
retransmission of frames may be arranged in accordance
with their priorities, the list of timeslots, allocated
bandwidth. The modified QoS protocol sublayers structure is
represented in fig. 4. The suggested modifications:

- separate numbering of data frames and FCT frames;
- separate numbering of data frames and Broadcast

frames;
- separate the acknowledgement and retransmission

for different Virtual channels, for Broadcasts
channels;

- move the acknowledgement and retransmission
schemes d from the Retry to the Virtual channels
sublayer;

- move the acknowledgement and retransmission for
Broadcast frames from the Retry sublayer to the
Broadcast layer.

Within the suggested approach the receiver interprets the
frame numbers with reference to the type of flow (Data,
Broadcast, FCT) and for the Data and FCT flows – with the
reference to the logical VC number also. Some functions of
the Retry sublayer go from the Retry sublayer to the VC
sublayer and Broadcast sublayer:

- data frames and FCT sequence numbers will be
generated and controlled by the VC sublayer (;

- sequence numbers of Broadcast frames will be
generated and controlled by the Broadcast sublayer;

- ACK and NACK frames are generated separately:
for the Data and FCT flows they are generated by
the VC sublayer, for Broadcasts - by the Broadcast
sublayer;

To support these new features:

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

8 16 32 64 128 256

ns

frame length

The frame retransmission time

frames = 0

frames = 1

frames = 3

frames = 7

141

- include additional information in the ACK, NACK
and RETRY frames – the attribute of belonging the
ACK/NACK to the data flow, FCT flow or
Broadcast flow;

- include the VC number in Data and FCT frames;
- include in the FULL frame the attribute of

belonging to data flow, FCT flow or Broadcast
flow, for the Data and FCT flows the VC number
also;

- frames, which belong to a data flow without
guaranteed delivery (No-retry frames), should be
transmitted with the sequence number 0.

- IDLE frames should be transmitted with the
sequence number 0.

The ACK, NACK, RETRY FULL commands should be
transmitted between the VC and the Retry sublayers via the
Framing sublayer, fig.4.

Fig . 4 The suggested variant of the QoS sublayer structure

In the modified sublayers the frame retransmission can
be organized only for data flows with the guaranteed
delivery requirement. If guaranteed delivery is not required
for a data flow, its frames are not checked in the receiver of
the Retry sublayer; the receiver does not send acknowledge
for such frames. For these frames the frame sequence
number is not used and we recommend setting it to 0.

IDLE frames do not belong to any flow. If an error
occurs when an IDLE Frame is received, it does not cause
frames retransmission for any flow. Therefore the serial
number of IDLE frames is not used in the receiver; we
recommend to set its value to 0.

We propose to change the format of the ACK, NACK,
RETRY and FULL frames. These frames are generated not
by the Retry sublayer (as in the basic variant) but by the VC
sublayer and by the Broadcast sublayer. We add to them
information about flow type (Broadcast, FCT, Data) and the
VC number (for Data and FCT flows), fig. 5-8.

 Fig. 5 The ACK frame format

Fig. 6. The NACK frame format

Fig. 7 The RETRY frame format

Fig. 8 The FULL frame format

The encoding of the FLOW_TYPE field:
D0_0 – Broadcast;
D0_1 – FCT;
D0_2 - Data.

Other possible values are reserved.

The suggested QoS sublayers modification positively
effects implementation complexity. The transmitter buffers
of the Retry sublayer are not needed due to suggested
modification (its role play the buffers on the VC layer).
Therefore hardware cost of an implementation is decreased
by 15 – 20% (Concrete value in general case depends on the
Retry buffer size in the basic variant of an implementation.)

Frame numbering separation from the junction controller
of data, broadcast and command flows, which includes
priority control, allows decreasing of ratio between the QoS
layer operating frequency and data transmission frequency
in the serial channel. It is important parameter if a
SpaceFibre port is implemented, for example, in 180 nm
technology. Such technologies are actively used today for
aerospace equipment when thinner design rules do not meet
space operation requirements.

Implementation of suggested mechanisms leads to some
additional channel throughput overheads. To estimate

142

overheads assume that transmission of one frame (the
maximal size one) corresponds to transmission of one FCT
and one ACK in the opposite direction. Overheads of FCT
and ACK transmission in SpaceFibre are about 3% of the
channel throughput. In the modification, the length of ACK
(NACK) and FCT grow in 2 times, so maximal overhead of
its transmission grows from 3% to 6% of the channel
throughput.

For data without guaranteed delivery requirement the
suggested algorithms allow to decrease data link
transmission time. Let the ratio between QoS processing
frequency and data channel transmission frequency be 1/10.
The ratio between frame transmission time without CRC
control and with them is represented on fig. 8. These charts
show that timing gain is 10 - 15% when frames length is 64 -
256 bytes; elimination of unnecessary for this traffic frames
retransmission gives additional gain also.

Fig. 9 Ratio between frame transmission time without CRC control

and with CRC control

Implementation of the suggested mechanisms allows
reducing transmission delay of high priority frames or
frames that should be transmitted in specific timeslot, in case
of channel errors.
The charts of the ratio between high priority packet
transmission time with current SpaceFibre and with the
suggested modification used are represented in fig.9. In this
investigation we supposed that the high priority packet
length is 64 bytes. We assume that transmission error does
not cuase disconnection at the Lane or Encoding layer.
Different quantities of frame buffers at the Retry layer: 2, 4,
8; and the frame length in the buffers from 8 to 256 Bytes,
are considered. These charts show that when frames in the
Retry buffers are short and quantity of retry buffers is small
the proposed method allows to reduce time in 2 – 4 times. If
the quantity of buffers is big and frames are long enough
timing gain goes up to 18 times.

Fig. 10. Ratio between high priority packet transmission time with the

current SpaceFibre retransmission mode and with the suggested
modification

IV. LOGICAL NUMBERS RECONFIGURATION AND RESET FOR
SEPARATE VC WITHOUT DISCONNECTION

User may need to change logical numbers of a VC in a
SpaceFibre network reconfiguration for starting new
applications in the network nodes or migration of
applications between nodes, adding new devices, changing
of a node equipment operation mode, etc.
In the current SpaceFibre draft it is not possible to reset a
single VC. For example in case of a VC data buffer overflow
(such event is considered in standard) the user should reset
all virtual channels. Thus data transmission for others VC of
this data link will delay until connection recovery (about 50
us).

In the current SpaceFibre standard draft any changes of
VC logical numbers without the connection break is
impossible. The new VC logical numbers on different sides
of the connection will be configured with some variance in
time. As a result, one side can start FCT sending before
another side is configured; these FCT will be rejected as
invalid. So if we need to reconfigure a single VC, we should
break connection at the Lane layer. The connection recovery
time is about 50 us. For this time data transmission from all
the other VC of this data link will be impossible. This delay
can significantly affect parameters of the data flows
transmitted via other VC, may violate special requirements
and QoS constraints for these VC.
To deal with the problem we suggest:
- to slightly change the FCT sending rule: after the VC

logical number configuration the VC should send only

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

8 16 32 64 128 256

ratio

frame length

the ratio between frame
transmission time without CRC
control and with CRC control

the ratio
between
frame
transmission
time without
CRC control
and with CRC
control

0

2

4

6

8

10

12

14

16

18

20

8 16 32 64 128 256

ratio

frame length

the ratio between the high priority
packet transmission time for

current and syggested variants

buf = 2

buf = 4

buf = 8

143

one FCT; all other FCT should be send only after
receiving of one FCT from the other side of the channel
(the first FCT is used not only for credit but for
connection establishment on the VC sublayer);

- add the new reset command– “Single VC Reset”; this
command is analog to the flush command, but it resets
only one VC – the VC, for which user needs to reset or
to change logical number.

This modification of the FCT transmission mechanism
affects only the VC sublayer. We propose to introduce an
additional command for reset of a single concrete VC
(VC_reset) to solve this problem. For this command coding
could be the KCode that in current SpaceFibre standard draft
is used for NACK command, but in our modification, which
is described in the previous section, it is not needed more for
this purpose. When the VC_reset command is received, the
control logic of this virtual channel only is set to the initial
state.

Fig. 11 The format of VC_reset command

Implementation of this mechanism requires some
modifications at the Retry and Framing layers also, because
the command should go via these layers. Processing of this
command should be done at the Virtual channels layer.

Implementation of the suggested mechanisms requires
little hardware cost (less than 1% of the SpaceFibre port
implementation). It does not lead to additional overhead of
data channels bandwidth.

V. CONCLUSION
The suggested modifications of SpaceFibre standard draft

can extend its functionality and improve implementation and
application.

Transfer of all functionality for data QoS support to the
Virtual channels sublayer allows to retransmit frames in full
correspondence with the QoS traffic parameters (such as
priority, scheduling). AS we show, it isn’t ensured fully in
the current SpaceFibre draft. This modification allows also
decreasing hardware cost of an implementation due to
removing buffers from the Retry sublayer. Changing the
frames numbering scheme allows to decrease ratio between
the QoS processing frequency and the serial link frequency.
It is useful when coarse design rules are used for
implementation.

The modification enables to retransmit only traffic with
guaranteed delivery requirement also. For other types of
traffic retransmission could be switch off, along with
overheads for its implementation. It efficiently supports
streaming data traffic and improves network useful
bandwidth. Adding of the service class without guaranteed
delivery allows to reduce transmission time, to exclude
retransmission of data frames in case of disconnections and
thereby decrease network load after connection recovery,
and, accordingly, decrease delivery time for other traffic.

Provision of dynamic reconfiguration of a single virtual
channel number and a separate reset for a single virtual
channel without disconnection at the Lane and the Encoding
layers provide possibility of dynamic reconfiguration for
some data flows without distortion of other data flows.

REFERENCES
[1] S. Parkes, A. Ferrer, A. Gonzalez, C. McClements.

SpaceFibre Specification. Draft F3, September 2013

144

QoS in SpaceFibre and SpaceWire/GigaSpaceWire
Protocols

SpaceFibre, Long Paper

Nadezhda Matveeva, Yuriy Sheynin, Elena Suvorova
Saint-Petersburg State University of Aerospace Instrumentation

SUAI
Saint-Petersburg, Russian Federation

nadezhda.matveeva@guap.ru, sheynin@aanet.ru, suvorova@aanet.ru

Abstract—Nowadays SpaceWire, SpaceFibre, GigaSpaceWire
protocols are widely used in spacecraft design. SpaceWire is
established as one of the main standards for data transmission. It
is used in many Russian, European, American and Japanese
spacecraft. SpaceFibre is a newly emerging standard for the
SpaceWire technology standards family, which is able to operate
over fiber-optic and copper cable and supports data rates up to 2
Gbit/s. GigaSpaceWire link specification is also developed for
SpaceWire technology extension. It provides gigabit link
technology with longer distances and galvanic isolation capability
for SpaceWire networks.

Quality of service (QoS) becomes important network
characteristic for prospective onboard networks. There are
various approaches for QoS provision in networks. Some of them
provide QoS at every data link and node inside the network, some
provide QoS features at the network boundary, in its terminal
nodes, some combine these approaches in a way.

The SpaceFibre follows the first approach. In every data link it
has QoS services, providing priorities, guaranteed bandwidth,
guaranteed data delivery, scheduled frames transmission.
Implementation of these mechanisms is associated with additional
overhead such as frame transmission delay, transmitting overhead
information such as header and end of frame, traffic planning and
dispatching, retransmission in every data link, etc. These factors
lead to increasing overheads and packet transmission time, to
useful bandwidth degradation.

For SpaceWire/GigaSpaceWire the second approach for QoS
provision is evolving. QoS services can be implemented over the
basic SpaceWire/GigaSpaceWire network interconnection, e.g. at
the Transport layer, with much more economical implementation
and overheads.

In the article we analyze both approaches, their feasibility and
value of QoS in SpaceWire/GigaSpaceWire and in SpaceFibre
networks. Networks with different topologies and traffic pattern
are used to study and to evaluate the performance. Various traffic
types such as the data packets, streaming data, commands will be
transmitted in networks. Data delivery characteristics for
SpaceFibre and SpaceWire/GigaSpaceWire networks are analyzed
and compared.

Index Terms—SpaceFibre, SpaceWire, GigaSpaceWire , Quality
of Service (QoS)

I. INTRODUCTION
Let us see what features for QoS have SpaceFibre,

SpaceWire and GigaSpaceWire.

The SpaceFibre standard, [1], supports several classes of
service at the data link layer:

• priority;
• guaranteed throughput;
• guaranteed packet delivery;
• scheduling;
• best effort.

The QoS (Quality of Service) layer of the SpaceFibre
standard provides these services. Its sublayer - the Virtual
channels sublayer, realizes priority, guaranteed throughput,
scheduling and best effort classes of service functionality.

For each virtual channel (VC) a priority level may be
assigned. When some virtual channels have data to transmit,
data from the VC with the highest priority will be sent first.
Unique priority level can be assigned to every VC or one
priority level may correspond to some VC.

For each VC amount of bandwidth that it can use can be
defined. There is a bandwidth credit counter for every virtual
channel. If the VC does not transmit any data the bandwidth
credit counter is incremented. If the VC transmits some data,
the bandwidth credit counter is decremented (wherein takes
into account amount of transmitted data and defined amount
of bandwidth for this channel). If some virtual channels with
the same priority level have data to transmit, first come data
from the VC with the largest bandwidth credit counter value.

Another QoS mode uses scheduled frames transmission.
For every virtual channel a list of timeslots, in which it can
transmit data, can be defined. . Request from the VC for data
transmission during other timeslots are blocked. It gives
guaranteed delivery latency for VC traffic.

The SpaceFibre standard draft makes the Retry layer
responsible for guaranteed data delivery service. This layer
checks correctness of the received frames and retransmit
frames that have been transferred with errors or lost. For
these mechanisms each frame includes a sequence number
and the checksum (excluding IDLE frames).

145

Mechanisms of constrained priority are supported in the
SpaceWire/GigaSpaceWire standards. Mechanisms to
support other classes of service are not provided by the core
SpaceWire/GigaSpaceWire networks. However mechanisms
to support different service classes may be implemented on
top of these standards, at the Transport layer especially. In
this paper we consider only variants that do not require
implementation of some special functions in routers for
SpaceWire, [2], and GigaSpaceWire, [3]:

• priorities (at the Network layer);
• the guaranteed packet delivery between the source

and destination terminal nodes (at the Transport
layer);

• the scheduling mechanism for providing
constrained data packet delivery time (at the
Transport layer).

In the paper we consider and compare:
• features and characteristics that could be provided

by the priority mechanism in SpaceWire
/GigaSpaceWire networks and in SpaceFibre
networks;

• mechanisms of guaranteed packet delivery that is
based on an acknowledgement scheme between
data source and destination terminal nodes in
SpaceWire/ GigaSpaceWire and retransmission
mechanism in data links in SpaceFibre .

• scheduling mechanisms for guaranteed data packet
delivery time for SpaceWire/GigaSpaceWire
networks and in SpaceFibre data links.

II. PRIORITY MECHANISMS FEATURES
In the SpaceFibre standard draft each VC may have its

own priority level. The priority level affects frames
transmission order from different virtual channels to the link.
The frame for transmission is selected according to its
priority value. If transmission of a lower priority frame has
started before the higher priority frame arrival, then higher
priority frame waits until the lower priority frame
transmission is finished. The SpaceFibre standard does not
use frame transmission interruption. Therefore high priority
frame waiting time is up to maximum length frame (256
Nchar) transmission time plus time overheads.

In SpaceWire/GigaSpaceWire a priority level can be
specified for packets at the Network layer. Priority level is
associated with the packet network address (logical,
regional-logical). The priority level affects packet
transmission order to the output port. When transmission of a
packet with lower priority is started before the packet with
higher priority has arrived, the higher priority packet is
transmitted after completion of the lower priority packet
transfer; SpaceWire/GigaSpaceWire do not use packet
transmission interruption. Therefore high priority packet
waiting time depends on the lower priority packet length.

The SpaceWire standard does not limit packet length and
in a general case we can’t estimate the high-priority packet
delay in a hop. Its waiting time depends on data formats used

in a specific network. If we limit maximum packet length in
the SpaceWire network, we can obtain reliable estimates of
high priority packets waiting time.

To estimate transmission characteristics of high priority
traffic in SpaceFibre and SpaceWire/GigaSpaceWire
networks consider dependency of high priority packet
transmission time in one router from low priority packet size.
This dependency is presented in Fig. 1; the high priority
packet length is 64 bytes.

Fig. 1. Dependency of the high priority packet transmission time in one

router from low priority packet size. Data rate: 400 Mbit/s in
SpaceWire; 1250 Mbit/s in GigaSpaceWire; 1250 Mbit/s in

SpaceFibre

The SpaceFibre provides priority level at the Frame
layer. Its dependency on the Fig. 1 looks almost like straight
line parallel to X axis with value 2784 ns.

High priority packet transmission time in one router for
SpaceWire and GigaSpaceWire practically coincides with
high priority packet transmission time in one router for
SpaceFibre when low priority packet size is less than 256
bytes; after it high priority packet transmission time in one
router for SpaceWire and GigaSpaceWire significantly
grows.

The results show that high priority packet transmission
time for SpaceWire and GigaSpaceWire networks may be
close to the value for SpaceFibre networks if low priority
packets size would be limited to 256 bytes. This can be
achieved by appropriate fragmentation on the Transport layer
in terminal nodes.

Now let us consider dependency of low priority message
transmission time from the packet size. Charts for this
dependency are presented in Fig. 2.; data rates are 250
Mbit/s and 312 Mbit/s.

The Figure 2 shows that message transmission time is
almost the same when it is transmitted as one packet and by
several packets with the size of 256 Nchar. So packets
fragmentation practically doesn’t worsen the message
transmission time.

0

20

40

60

80

100

120

8 16 32 64 128 256 512 102420484096
Size of packets with low priority, byte

Packet transmission time with high priority.
Size of packets is 64 bytes

SpW - 400
Mbit/s

gigaSpW -
1250 Mbit/s

SpFi -
1250Mbit/s

us

146

Fig. 2. Dependency of the low priority message transmission time from the

packet size.

Thus for traffic with different priorities in
SpaceWire/GigaSpaceWire networks practically the same
transmission characteristics as in SpaceFibre can be achieved
if packet’s data field length would limited to 256 Nchar. It
can be implemented at the Transport layer.

From the functional point of view
SpaceWire/GigaSpaceWire networks are more flexible in
packet priority mechanism than the SpaceFibre. In them a
priority is assigned to logical and regional-logical addresses.
Thus different priorities can be assigned for dozens and
hundreds of packet streams in a network. In SpaceFibre
priorities are assigned to a virtual channel in a data link.
While in theory there could be 256 VCs in a data link, due to
high hardware overheads for a VC implementation their
number in a link would be limited by quite several ones (4-8
VC as an optimistic estimation). Thus only 4-8 data packet
streams may have particular priorities in the entire network.

III. PACKET DELIVERY MECHANISMS
The guaranteed delivery in SpaceFibre is ensured by

checking the frames transmission correctness in every data
link at the Retry layer. Transmitted with errors or lost frames
are retransmitted.

From a functional point of view both options allow to
ensure guaranteed delivery of a packet. Difference is in
where retransmission is organized – at every data link or at
the network boundary, in terminal nodes. These options may
have different timing characteristics and hardware costs.

Fig. 3. The illustration of retransmission scheme in SpaceFibre data link

layer and corresponding delays

The SpaceWire and GigaSpaceWire do not provide
mechanisms for guaranteed packet delivery in a data link.
But mechanisms for guaranteed packet delivery can be
implemented in terminal nodes, at the Transport layer (the
RMAP protocol is an example). Such protocol can include
mechanisms for identification of packets that are lost during
transmission (for example by sequence numbers), for
identification of packets with errors (for example by CRC),
for data packets acknowledgement and retransmission of
unacknowledged packets (either not been confirmed or timed
out in acknowledgement waiting).

Fig. 4. The illustration of retransmission scheme between source and

destination node in SpaceWire /GigaSpaceWire network and
corresponding delays.

To compare timing characteristics we assume that one
error occurs during the packet transmission. In a SpaceFibre
network it cause a frame retransmission in the data link. In
this case additional transmission time consists of the NACK
transmission time and the retransmission time of the frame in
the link. We assume that time of NACK formation and time
of it operation at the Retry level is negligible.

In SpaceWire/GigaSpaceWire networks an error will
cause a full packet retransmission from the source node. In
case when one error occurs during the packet transmission,
packet retransmission time depends on

• communication protocol organization;
• rules of error detection;
• timeout mechanisms and timeout values ;

0

20

40

60

80

100

120

140

160

512 1024 2048 4096
Size of packets, byte

Dependency of the low priority message
transmission time from packet size

1 packet
(gigaSpW, 125
0 Mbit/s)

Size of packets
- 256 bytes
(gigaSpW, 125
0 Mbit/s)

1 packet
(gigaSpW, 312
Mbit/s)

Size of packets
- 256 bytes
(gigaSpW, 312
Mbit/s)

us

147

Timeout values depend on network
characteristics, transmission paths of differen
intersect with the considered traffic.

Let us first take the case when a packet
destination node but contains errors due t
transmission. In this case total time of pac
calculated as the sum of transmission betw
destination time, time of packet checking,
transmission from the receiver to the tran
repeated transmission time. We can assume
checking time is negligibly small as it can b
the-fly during packet receiving.

Dependencies between packet delivery ti
of transient routers in SpaceFibre and
networks for the one error case are presented
results are based on calculations and mod
drawn for different packet sizes: 16, 64, 256
Nchar. The Acknowledge packet
SpaceWire/GigaSpaceWire network is equal

As one can see from the Fig. 5, the delive
packets (up to 256 bytes) for a GigaSpaceW
less than for SpaceFibre. Further, with increa
packets and with a small number of transit r
time is better for SpaceFibre. It is intere
increasing packet size, the number of tran
which SpaceFibre is better also increases.
packets is 1024, SpaceFibre is better when
routers ≤ 3. When size of packets is 4096
better after the number of routers ≤ 8.

Now consider the situation where error
the packet transmission and it led to link disc

In SpaceFibre the time to restore connecti
a disconnection error occurs. In this case retr
is increased by sum of time to restore the
duration of the noise.

In SpaceWire and GigaSpaceWire the
connection is 19,2 us after a disconnectio
packet transmission time in this case, we a
acknowledgment waiting timeout (Tout) co
transmission time between the source and the
of the NACK transmission time.

Denote sum of packet transmission tim
source and the destination and NACK trans
Tf. We evaluate characteristics when a
waiting timeout is equal Tf, 2*Tf and 3*Tf. W
worst case when disconnection happens in the
There are two variants:

• Sum of noise duration and the con
time is less than the sum of the a
waiting timeout and the repeat pack
time up to the link, in which th
happens. In this case packet deliver
of the acknowledgment waiting tim
packet transmission time between
the destination.

k size, traffic
nt traffics, which

t is delivered to
to errors during
cket delivery is

ween source and
time of NACK

nsmitter and the
e that the packet
e performed on-

ime and number
GigaSpaceWire

d in Fig. 5. These
deling. Plots are
, 1024 and 4096
size for a

to 8 Nchar.
ery time of short
Wire network is
asing the size of
routers, delivery
esting that with
sit routers from
. When size of

n the number of
6, SpaceFibre is

occurred during
onnection.
ion is 50 us after
ransmission time

connection and

time to restore
on. To evaluate
assume that the
nsists of packet

e destination and

me between the
smission time as
acknowledgment
We consider the
e final link.

nnection restore
acknowledgment
ket transmission
e disconnection
ry time consists

meout and repeat
the source and

Fig. 5. Dependencies between pack
for the one error ca

• Sum of noise durat
time is larger than t
waiting timeout and
up to the link, in w
this case packet d
acknowledgment w
transmission time
destination and the t

Dependency between the
packet size, when the noise
Fig. 6. For SpaceWire/G
acknowledgment waiting
transmission time between
plus the NACK transmission

0

20

40

60

80

100

120

1 2 3 4 5 6
Number of rou

Packet delivery time
in us

ket delivery time and number of routers
ase (without disconnections)

tion and the connection restore
the sum of the acknowledgment

d repeat packet transmission time
which disconnection happens. In
delivery time consists of the

waiting timeout, repeat packet
between the source and the

time to restore the connection.

e packet delivery time and the
duration is 1 us, is presented in

GigaSpaceWire in this case
timeout is equal to packet
the source and the destination
time.

7 8 9 10
uters

when there is one error
a link

16 bytes -
gigaSpW

16 bytes - SpFi

64 bytes -
gigaSpW

64 bytes - SpFi

256 bytes -
gigaSpW

256 bytes -
SpFi

1024 bytes -
gigaSpW

1024 bytes -
SpFi

4096 bytes -
gigaSpW

4096 bytes -
SpFi

148

Fig. 6. Dependency between the packet delivery time and the packet size

when a transmission error occurs (Tout = Tf

As one can see from the Fig.6, packet delivery time in
SpaceWire is less than in SpaceFibre if size of packets ≤
1024 bytes. Packet delivery time in GigaSpaceWire is less
than in SpaceFibre if size of packets ≤ 2048 bytes.

However this value of acknowledgment waiting timeout
for SpaceFibre/GigaSpaceWire networks may be selected in
cases when packet and NACK paths do not interfere with
packet paths of other traffic. Namely, packet and its NACK
don’t wait in output ports. If packet and NACK paths
interfere with packet paths of other traffic, we should
consider waiting time to access an output port also in a value
of acknowledgment waiting timeout.

Let us evaluate packet delivery time when
acknowledgment waiting timeout is equal 3*Tf.
Dependency between the packet delivery time and packet
size when the noise duration is 1 us is presented in Fig. 7.

As one can see from the Fig.7, the packet delivery time
in SpaceWire is less than in SpaceFibre if size of packets ≤
512 bytes. Packet delivery time in GigaSpaceWire is less
than in SpaceFibre if size of packets ≤ 1024 bytes.

Let’s consider the packet transmission time in case when
no errors occur during transmission and packets are not
retransmitted. The plots of dependency between packet
transmission time and the transit routers number are
presented in Fig. 9.

As can be seen, the packet transmission time (for packets
with considered length) is 1,5 times less for GigaSpaceWire
than for a SpaceFibre network. The wormhole routing used
in SpaceWire/GigaSpaceWire routers reduces the packet
transmission time via network. The packet transmission time
in a SpaceFibre network is about 1,5 times bigger due to
delays associated with the full frame buffering and CRC
checking in each data link. This check is made for all types
of traffic, including the traffic for which guaranteed data
delivery is not required by an application.

Fig. 7. Dependency between the packet delivery time and packet size when

transmission error occur (Tout = 3*Tf).

This delay is especially significant for short packets with
less than 256 Nchars length. The transmission time of short
packets is bigger for SpaceFibre network with 1250Mbit/s
transmission rate than even for SpaceWire network with
400Mbit/s transmission rate. Short packets typically are used
for command traffic therefore its delivery time is particularly
important.

It is important to understand that provided in the
SpaceFibre guaranteed delivery mechanism, cannot
guarantee a packet delivery if there would be faulty network
equipment or links. Therefore for networks with high
guaranteed delivery requirements one still need to use
mechanisms of packet replication at the hardware level.

If the hardware and data redundancy is used in a
SpaceFibre network in combination with standard retry
mechanism and recoverable connection breaks, then correct
interpretation of the packet replicas that goes via a path with
temporary disconnection is very difficult.

Connection recovery in a SpaceFibre link may take a
long time – duration of connection procedure is 50 us. The
duration of noise may be added to this time. Therefore one
copy of packet can reach the destination node with a very
noticeable delay (dozens – hundreds of us, dependent on
duration of noise) in comparison with other copies that goes
via paths without disconnections.

In systems with data duplication for redundant
transmission (N replicas of one packet are sent to the
network) typically packet numbering is used. The receiver
terminal node determines by its number whether it has
already a copy of this packet.

0

50

100

150

200

250

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Pa
ck

et
 d

el
iv

er
y

tim
e,

 u
s

Size of packets, byte

Comparison SpW, GigaSpW, SpaceFibre

SpW-Tout-
noise 1

gigaSpW-
Tout-noise 1

SpF-noise 1

0

50

100

150

200

250

300

350

400

450

500

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Pa
ck

et
 d

el
iv

er
y

tim
e,

 u
s

Sizeof packets, byte

Comparison SpW, GigaSpW, SpaceFibre
(3Tf)

SpW-3Tout-
noise 1

gigaSpW-
3Tout-noise 1

SpF-noise 1

149

Fig. 8. Dependency between the packet transmission ti
of transit routers (without errors during tra

Fig. 9. The dependency of transmission time from q
routers for packets with 256 Nchars

The packet number field in the packe
constrained size. In short command packets
is typically 3 – 8 bits. Correspondingly th
cycle after which numbers will be repe
especially when commands go often. So it
difficult to determine by the command se

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Pa
ck

et
 t

ra
ns

m
is

si
on

 ti
m

e,
 u

s

Number of routers

Packet transmission time when the
no errors in link

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

Pa
ck

et
 tr

an
sm

is
si

on
 ti

m
e,

 u
s

Number of routers

Dependency of transmission time
quantity of transit routers

ime and the amount
ansmission)

quantity of transit
length

et structure has
size of this field

he length of the
eated is small,
t could be very

equence number

whether the late command is
with some advance.

IV. GUARANTEED P

To ensure guaranteed pa
packet transmission is used
transmission is assigned for
source in a terminal node
destination addresses of the
path for different packet traf
timeslot, should not share dat

It can be implemented
networks, [4]. Terminal no
transmission only in allowab
a terminal node (an applicat
still start data transmission o
failure/error of time synch
malfunctions (for example
timeslots table). It may increa
the time constraints for the d
in time but cross with the pac
The scheduling and data
timeslots must be made by
terminal node – by specia
software) to deal with this pro

Another source of a p
timeslot is data link disconne
should be transmitted to a
currently under connection re
a time until the connection
continue its transmission. M
finished and the packet w
timeslot.

In packets delivery sche
account such situation, to set
schedule. To determine the
transient faults and errors pro
disconnections, should be co
With appropriate margins w
probability, sending packets i

In SpaceFibre the timeslo
data link of a router and a
associated with virtual chann
flows transmission in prede
should be assigned to diffe
timeslots table should be as
channels in every data link.

As the data transfer is con
transmission out of its timesl
nearest network node in ca
terminal node. Even if a te
packet out of its timeslot (an
blocked in the SpaceFibre o
itself) the packet goes to the
be received in the SpaceFib
output port, where its further
a corresponding timeslot.

ere are

256 bytes SpW-
400 Mbit/s

256 bytes
gigaSpW-1250
Mbit/s
256 bytes SpFi-
1250 Mbit/s

1024 bytes SpW-
400 Mbit/s

1024 bytes
gigaSpW-1250
Mbit/s
1024 bytes SpFi-
1250 Mbit/s

4096 bytes SpW-
400 Mbit/s

4096 bytes
gigaSpW-1250
Mbit/s
4096 bytes SpFi-
1250 Mbit/s

e from

SpW - 400
Mbit/s

gigaSpW-
1250 Mbit/s

SpFi-1250
Mbit/s

belated, or goes on time or goes

PACKET DELIVERY TIME
acket delivery time a scheduled
d. A list of timeslots for data
every application, every packet
e. Timeslots are linked with
packets. The data transmission
ffics, which are assigned to one
ta links.

in SpaceWire/GigaSpaceWire
odes are responsible for data

ble for them timeslots. However,
tion in this terminal node) may
out of allowable timeslot due to

hronization or due to internal
distortion of the bits in the

ase packet delivery time, violate
data packets that are transmitted
cket that runs out of its timeslot.
transmission in corresponding

y the trusted component of the
al network controller (not by
oblem.

packet transmission out of its
ection. For example if the packet
an router output port that is
ecovery, the packet will stop for
is set; after it the packet will

Meanwhile the time slot could be
would run in another, in alien

eduling one needs to take into
t appropriate margins in the time
margins the network topology,

obability, which can lead to link
onsidered and took into account.
we can eliminate, with certain
in wrong time slots.

ots control is performed in each
a terminal node. Scheduling is
nels, not with packets. For data
etermined timeslots, data flows
ferent virtual channels and the
ssigned to corresponding virtual

ntrolled in every data link a data
ot will be quickly stopped in the
ase of incorrect behavior of a
erminal node transmits the data
nd this transmission has not been
output port of the terminal node
e next SpaceFibre router. It will
bre router input port, go to an
r transfer will be suspended until

150

The Figure 10 represents plots of the packet delay due to
a transmitted out of its timeslot traffic.

Fig. 10. Dependency of the packet delay in one router from the size of the

packet that is transmitted out of his timeslot

If we need to transmit traffic with guaranteed delivery
time and traffic without this requirement, the one part of time
slots can be for traffic with guaranteed transmission time and
remaining time slots to other traffics. The transmission paths
of the traffic without guaranteed time requirement can share
interconnection paths in assigned for them all time slots.

We should take into account also that in SpaceFibre
timeslotting is associated with virtual channels, not with
packets. As in the priorities case, the quantity of virtual
channels in a SpaceFibre data link is constrained by its
hardware cost. Typical virtual channels quantity per data link
is 4 or, rarely 8. The specified in the SpaceFibre standard
draft quantity of 256 VC is practically impossible for
implementation in VLSI. Therefore in SpaceFibre there is
very limited number of objects for scheduling. Applications’
packets flow scheduling and selection of data transmission
paths will be essentially complicated in comparison with
SpaceWire/GigaSpaceWire networks. The quantity of data
flows that can be planned to time slots is very limited.

V. CONCLUSIONS
As has been shown abode, the QoS may be implemented

both in SpaceFibre and in SpaceWire/GigaSpaceWire
networks. While SpaceFibre strives for QoS in every data
link, SpaceWire/GigaSpaceWire could implement QoS at the
boundaries of the network, in its terminal nodes, at the
Transport layer.

If we constrain the packet length in SpaceWire and
GigaSpaceWire network by value of 256 Bytes (equal to the
SpaceFibre data frame size) the timing parameters of high
priority traffic transmission in these networks and
SpaceFibre are similar. This constraint does not affected
essentially transmission time of big data objects, which in
this case would be sent by multiple packets. Basically, the

question goes down to where the data objects (messages)
will be sliced into pieces – in terminal nodes (as packets) or
in every data link (as frames).

The data transmission time when network error occur in
SpaceFibre will be better than in SpaceWire/SpaceWire
GigaSpaceWire network with retransmission of lost or
incorrect packet between the source and destination nodes,
for example at the Transport layer. On the other hand,
impossibility of turning off for retry mechanism in
SpaceFibre leads to essential growing of data packets
transmission for traffic without guaranteed delivery
requirement (e.g. video data streams). Potential incorrect
interpretation of the packets that arrive too late due to
waiting of connection recovery in network with packets
duplication is another problem.

For traffic with guaranteed delivery in
SpaceWire/GigaSpaceWire networks same characteristics
could be reached as for SpaceFibre networks if all data flows
will be transferred strictly in the assigned timeslots. If can
happen that some traffic is transmitted out of its timeslots (as
result of malfunctions of terminal nodes or disconnections on
links) then SpaceFibre operation will be more reliable. It
checks the schedule in every data link and will stop invalid
in time transmission in the first network node on its.

Traffic parameters for SpaceWire/GigaSpaceWire
networks can be similar to the SpaceFibre ones when
SpaceWire packet length is constrained by 256 bytes.

In general, in timing characteristics for QoS traffic both
SpaceFibre and SpaceWire/GigaSpaceWire area balancing in
their gains in relation to network topology, error probability,
size and features of target data items. In many cases they
could be made rather similar.

The SpaceFibre advantages are in QoS mechanism
immersion in every data link that makes them more reliable
in case of network components malfunctioning. Drawbacks
of the SpaceFibre approach to QoS are much higher
implementation costs and longer latencies in packets
delivery.

The SpaceWire/GigaSpaceWire QoS approach is
considerably cheaper in implementation, gives lower
latencies, and may operate over conventional
SpaceWire/GigaSpaceWire network backbone. However,
without control of packets transmission QoS rules and
assignments inside the network backbone, it may be more
sensitive to errors and network components malfunctioning.
What could be included in a SpaceWire router node for more
reliable QoS network operation, without sacrificing the
native SpaceWire feature – compactness and simplicity, is a
good subject for further research.

ACKNOWLEDGMENT
The research leading to these results has received funding

from the Ministry of Education and Science of the Russian
Federation under contract n° 14.578.21.0022.

0

20

40

60

80

100

120

Pa
ck

et
 d

el
ay

 ti
m

e,
 u

s

Sizeof packets with low priority, byte

Dependency of the packet delay from size of
the packet that transmitted out of timeslot

SpW - 400
Mbit/s

gigaSpW -
1250 Mbit/s

SpFi -
1250Mbit/s

151

REFERENCES
[1] S. Parkes, A. Ferrer, A. Gonzalez, C. McClements.

SpaceFibre Specification. Draft F3, September 2013
[2] ECSS-E-ST-50-12C, European Cooperation for Space

Standardization, “SpaceWire – Links, nodes, routers and
networks”, 31 July 2008

[3] 165. E. Yablokov, Yu. Sheynin, E. Suvorova, A. Stepanov,
T.Solokhina, Ya. Petrichcovitch, A. Glushkov, I. Alekseev,
“GigaSpaceWire – Gigabit Links for SpaceWire Networks”,
SpaceWire-2013. Proceedings of the 5th International
SpaceWire Conference, Gothenburg 2013. Editors Steve
Parkes and Carole Carrie. ISBN 978-0-9557196-4-6, Space
Technology Centre, University of Dundee, Dundee, 2013,
pp. 28-34.

[4] D. Raszhivin, Yu. Sheynin, A. Abramov, “Deterministic
Scheduling of SpaceWire Data Streams”, SpaceWire-2013.
Proceedings of the 5th International SpaceWire Conference,
Gothenburg 2013. Editors Steve Parkes and Carole Carrie.
ISBN 978-0-9557196-4-6, Space Technology Centre,
University of Dundee, Dundee, 2013, pp. 141-144.

152

 Poster Presentations

153

Implementation of a RMAP Bootloader for the Solar

Orbiter RPW Experiment
SpaceWire Missions and Applications, Poster Paper

Philippe Plasson, C. Cuomo, T. Gadeaud, A. Gaget, L. Gueguen, L. Malac-Allain, E. Revert

Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA)

Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot

5 place Jules Janssen, 92195 Meudon, France

Philippe.Plasson@obspm.fr

Abstract— This paper presents the implementation of a RMAP

bootloader which has been developed in the context of the RPW

(Radio Plasma Waves) experiment on the Solar Orbiter mission.

It describes the different steps of the RMAP boot mechanism, the

performances of this process, the main advantages of such an

approach and its integration as a reusable software block in the

GERICOS (GEneRIC Onboard Software) framework.

Index Terms—RMAP, Bootloader, RPW, Solar Orbiter,

LEON3-FT, Flight software

I. INTRODUCTION

The Radio and Plasma Waves (RPW) experiment [1] is one

of the ten instruments of the ESA Solar Orbiter mission which

will be launched in 2017. The RPW instrumentation is a

sophisticated plasma/radio wave receiver system providing in-

situ measurements of both electrostatic and electromagnetic

fields and waves in a broad frequency range. The RPW

consortium is led by CNES (RPW management) and LESIA

(PI institute). It includes the scientific and technical

participations of the following labs and institutes: LPC2E

(Orleans), LPP (Palaiseau), IRF (Uppsala), IAP (Praha), IWF

(Graz).

In this paper, after presenting the electrical and software

architecture of the instrument, we describe how the RMAP

protocol [2] has been used to implement a remote boot process

of the RPW subsystem software. We also give the various

justifications which have led to this technical choice. Some

results about the performance of the RMAP boot process are

detailed. Finally, we show how the RMAP boot loader modules

have been developed and qualified as generic and reusable

pieces of software.

II. RPW INSTRUMENT ELECTRICAL AND SOFTWARE

ARCHITECTURE

A. RPW Electrical Architecture Overview

1) RPW System

The RPW instrument is divided in three subsystems located

in different parts of the Solar Orbiter spacecraft:

 The MEB (Main Electronic Box) is located with in-situ

systems.

 The SCM (Search Coil Magnetometer) is located on

the S/C boom.

 The Antennas are located on the three sides of the S/C.

2) RPW MEB

The RPW Main Electronic Box is made up of several

electronic boards. Four RPW sub-systems embed a LEON3-FT

processor and thus a flight software:

 the first one is the Data Processing Unit (DPU) which

is in charge of the communication with the spacecraft

via a SpaceWire interface;

 the three others are analyzer boards in charge of the

electrical field and magnetic field signal acquisition

and processing.

The RPW MEB contains also:

 a Bias Unit board driving the currents to the electric

antennas;

 a Low-Voltages Power Supply (LVPS) and Power

Distribution Unit (PDU).

The figure below shows the RPW MEB architecture:

Fig. 1. RPW MEB Architecture

154

3) RPW DPU

The RPW DPU is based on the Aeroflex LEON3-FT

UT699 processor. It handles four SpaceWire interfaces, one

toward the spacecraft, the three other toward the analyzer

boards.

The RPW DPU embeds an EEPROM (4 MB) for storing

the software images, a SRAM memory module (64 MB)

allocated to the software execution and science data processing

and a PROM (64 KB) for storing the DPU boot software.

In addition to the processor, a FPGA is used to generate the

control signals for the memory management and the

synchronous serial interfaces to the RPW Bias Unit and to the

RPW Power Distribution Unit.

They are two DPU, one nominal and one redundant, the

redundancy scheme being a cold redundancy.

4) RPW Analyzer Boards

The first analyzer board is a Low Frequency Receiver

(LFR) which is designed to produce waveforms, averaged

spectral matrices and basic parameters from LF

electromagnetic waves in the range from quasi-DC to 10 kHz.

The second analyzer board is a Time Domain Sampler

(TDS) which consists in a medium frequency wave analyzer

that processes analogue signals from electric field antennas and

search coils at sampling rates up to 524288 samples per

second.

The Third analyzer board is a Thermal Noise and High

Frequency Receiver (TNR-HFR) which provides electric

power spectral densities from 4 kHz up to 16.4MHz and

magnetic power spectral densities from 10 kHz up to 500 kHz.

The three RPW analyzer boards (LFR, TDS and TNR-

HFR) are based on a LEON3-FT processor synthetized in a

RTAX FPGA. They communicate with the DPU thanks to a

point-to-point SpaceWire link. They use as SpaceWire link

controller a GRSPW core with RMAP support.

B. RPW Software Architecture Overview

The RPW Instrument contains five flight software: the

DPU application S/W, the LFR flight S/W, the TDS flight

S/W, the TNR-HFR flight S/W and the DPU boot S/W.

1) DPU Application S/W

The DPU Application Software (DAS) is a complex

software managing lots of various interfaces and implementing

the standard PUS services but also a set of services specific to

the RPW experiment. The DAS is responsible for managing

the RPW modes, switching on/off the RPW sub-units,

configuring and commanding the RPW sub-units, verifying

and executing the RPW telecommands received from the S/C,

monitoring the RPW sub-units, reporting housekeepings and

events, supporting the FDIR mechanisms, distributing the time

to the analyzer boards, processing, compressing and

packetizing the science data sent by the analyzer boards,

performing science event detection. The DAS communicates

with the spacecraft using the CCSDS protocol over the

SpaceWire link [3].

2) LFR, THR and TDS Flight S/W

The main role of the analyzer flight software is to acquire

and pre-process the raw data provided by the sensors. The pre-

processing includes event detection, data reduction, data

selection and lossy compression. The communication protocol

used between the DPU and the analyzers for exchanging TC

and TM is the CCSDS protocol.

3) DPU Boot S/W

To manage the maintenance and the boot of the DPU

application software, a standard and well proven architecture

based on the use of a separate boot software has been

implemented. The DPU boot software is a critical and low

complexity software stored in PROM. The DPU application

software, that is stored in the DPU EEPROM, is loaded in the

working memory and started upon the reception of a dedicated

TC packet by the boot software. The boot software implements

also the memory management PUS service and is able to patch

or fully change in EEPROM the application software.

4) Analyzer Flight S/W Boot and Maintenance

The approach chosen for managing the boot of the DPU

Application S/W is a well proven approach, used for many

years in the context of lots of space missions. However, this

approach has a relatively high cost in terms of development. A

boot software is never a trivial software: in addition to the boot

mechanism itself, it shall implement a subset of the PUS

services [4], as the service 1 (telecommand verification), the

service 3 (housekeeping reporting), the service 5 (event

reporting), the service 6 (memory management). A boot

software shall be stored in PROM to avoid any corruption or

unexpected erasing of the software image during the mission.

The consequence is that this kind of boot software cannot be

changed or patched during the flight. A software failure, not

seen during the validation, which would occur for example in

the module managing the communication with the spacecraft

or in the module managing the boot process itself could have

dramatic consequences for the mission and could result in the

loss of the instrument. That’s why the criticality level of the

boot software is the level B according to the ECSS-E-40

standard [5]. The effort for qualifying a level B software is

huge in terms of validation, code coverage analysis, design

justification and quality rule verification. Developing such a

boot software is not always possible for the instrument teams

which prefer focus their efforts on the development of the

application software which is directly linked to the scientific

return of the mission.

All these arguments have pushed the RPW team to find

another solution for tackling the issue of the analyzer flight

S/W boot process and maintenance management.

In order to simplify the overall electronic and software

architecture of the RPW instrument and to suppress the risks

and costs inherent to the development of a level B software, the

boot process and maintenance management of the three

analyzer software has been delegated to the DPU application

software. A solution based on the capability offered by the

SpaceWire / RMAP technology has been studied.

155

III. RMAP BOOTLOADER MECHANISM

A. RMAP Bootloader General Principle

The boot process of each analyzer flight software is

performed remotely, over the SpaceWire link, by the DPU

application software using the RMAP protocol. Each analyzer

board integrates a RMAP hardware controller, which allows

the DPU to access to any area of its memory, including the

processor registers. The RMAP protocol offers all the

mechanisms allowing to have remote memory write and read

operations highly reliable. In this sense, the RMAP protocol is

very suitable for implementing a remote boot mechanism for

the flight software.

Thanks to the RMAP protocol, the DPU can remotely

configure the registers of the LEON3-FT processor analyzer

boards, load a software image in the SRAM analyzer board and

start it without intervention of any local boot software. The

boot process of the analyzer software is entirely under the

responsibility of the DPU application software.

The image of each analyzer flight software is stored in the

EEPROM of the DPU. In addition to being responsible for the

analyzer boot process, the DPU application software is also

responsible for the maintenance of these three software images.

During the flight, the various software images can be patched

or entirely replaced by a new one directly in the DPU

EEPROM by the DPU application software using the standard

PUS memory management service (PUS service 6). Each flight

software executable image is stored in EEPROM as a sequence

of several data/opcode segments and one end segment, each

segment being protected by a checksum. The size of each

segment is limited to the maximum size (204 bytes) of one

telecommand in order to simplify the code upload process and

the code maintenance: each memory load TC (PUS service 6,2)

allows to upload exactly one data/opcode segment. In case of

failure of the EEPROM at the DPU side, the RMAP boot

process allows to retrieve the analyzer software images directly

from the DPU SRAM instead from the EEPROM. A set of

GSE software tools have been developed to generated

automatically from the SREC (S-Record format) files provided

by the compilation chain a sequence of telecommands allowing

to upload in the EEPROM of the DPU any analyzer S/W

image.

With this approach, there is no need to have, at the analyzer

board level, a boot software whose the development and the

qualification would have been costly and whose a failure

during the flight would be critical for the mission.

In the same way, there is no more need to have EEPROM

parts or PROM parts at the analyzer board level: this simplifies

the hardware design and reduces the number of potential

failures. The overall development cost (hardware and software)

is also clearly minimized.

B. RMAP Boot Process Steps

1) RMAP Boot Process Overview

The RMAP boot process is divided into the following steps:

 Identify the start address of the analyzer flight S/W in

the DPU source memory (EEPROM or SRAM). The

flight S/W start address is a parameter of a

telecommand packet or can be retrieved in the RPW

operational context maintained by the DPU

application S/W in case of boot operation triggered

after an internal decision taken in the context of the

FDIR (Failure Detection and Isolation Recovery)

mechanisms.

 Check in the DPU source memory (EEPROM or

SRAM), where the flight S/W is stored as a sequence

of opcode and data segments, the completeness and

correctness of each software segment using

checksums.

 If the flight S/W image is complete and correct in the

DPU source memory, configure the registers of the

analyser LEON processor before loading the

application image itself.

 Copy, using RMAP write commands, all the software

segments from the DPU source memory (EEPROM or

SRAM) to the analyzer executable memory (SRAM).

 Check in the analyzer executable memory (SRAM),

using RMAP read commands, that the flight S/W has

been correctly deployed.

 If the flight S/W has been correctly deployed, start the

flight software.

The success of each step depends on specific criteria: if a

failure is detected, the boot process is stopped and an event

report TM packet is generated to notify the ground segment

of the error.

2) Boot Process Starting

The RMAP boot process of the analyzer S/W is started

upon the reception of a telecommand from the spacecraft

(ground telecommand or OBC telecommand). The

telecommand contains a parameter allowing to choose the

location in EEPROM (or SRAM) of the software image to be

booted. The RPW EEPROM has been sized to be able to store

up to 2 software images for each of the four RPW flight S/W.

A second parameter allows to enable or disable the

verifications which are performed during the various steps of

the boot process.

3) Software Image Integrity Verification

This second step consists for the boot manager in checking

that each data / opcode segment stored in EEPROM and

forming the software image pointed by the logical address

given in the telecommand are not corrupted. The verification is

based on the computation of a XOR checksum on the data /

opcode block and to the comparison of this XOR checksum

with the XOR checksum contained in the trailer of the

segment. During this step, the boot manager checks also that

the destination address and the size of the data / opcode block

contained in each segment header are in authorized ranges.

Each segment shall be immediately followed by another

segment. The verifications ends with success if the boot

manager finds an end segment and that all the verifications

performed for the previous segments have been successful.

4) Remote Processor Configuration

In this step, the DPU application S/W takes the control of

the remote processor (LEON3-FT inside the analyzer board).

156

The DPU application S/W puts the remote LEON3-FT

processor in the debug state. To do that, it sends a RMAP write

command toward the analyzer board for configuring the Debug

Support Unit (DSU) Control Register and for setting the Break-

Now (BN) bit of the DSU Break and Single Step Register of

the remote processor. It has to be noted that after the initial

powering-on sequence, the LEON3-FT processor of each

analyzer board goes by itself in the debug mode without

executing any instructions: this is done by asserting DSUEN

and DSUBRE signals at reset time [6].

Then, before loading the S/W image, the boot manager

performs on the remote LEON3-FT processor the setting listed

below by accessing its various registers using RMAP write

commands:

 Set up analyzer memory configuration: the analyzer

memory controller shall be initialized before the RAM

can be accessed. This shall be accomplished by writing

to the MCFG[1:3] registers over RMAP.

 Disable interrupts

 Disable the watchdog

 Clear the IU register files

 Clear the FPU register files

 Set up the Y, PSR, WIM, FSR registers

 Set up GPIO if needed

 Set up AHBSTAT if needed

 Set up the PC and TBR registers to the entry point

address of the analyzer software

 Set up the NPC registers to the entry point address plus

4 bytes

 Set up the stack pointer

 Configure the timers

5) Software Image Deployment

Once the remote LEON3-FT processor is configured, the

code deployment phase itself can start. The content of each

data / opcode segment is copied from the local EEPROM to the

remote SRAM by using RMAP write commands.

Just after having copied a segment, the boot manager reads

back, using a RMAP read command, the segment written in the

analyzer memory. Then, it compares the content of the read

segment with the source content stored at the DPU level. If the

comparison fails, the boot process is stopped and an error event

report packet is generated. This verification has been

implemented to make the boot process fully reliable. However,

it has to be noted that the RMAP protocol includes already a

verification mechanism, based on a CRC computation, of the

integrity of both the write command header and data. In case of

corruption of the data during the transfer, the analyzer RMAP

controller will detect it and reply with a negative

acknowledgment reporting the cause of the error (“invalid data

CRC error”). The CRC implemented in the RMAP protocol is

a 16-bit CRC highly reliable (99.998%): the verification based

on the read back operation of the written blocks could be

optionally skipped without taking too much risk.

6) Remote Software Starting

When all the data / opcode segments are copied and

checked, the boot manager has to release the remote processor

from the debug state by writing 0 to the DSU control register

and by clearing the Break-Now bit of the Break and Single

Step Register. The remote application is then started and can

perform its own initializations.

7) RMAP Boot Process Ending

If all the different steps of the boot process have been

successful and as soon as the first housekeeping packet is

received from the analyzer board, the DPU application S/W

produces a progress event report TM packet notifying that the

boot process is a success and giving the version number of the

booted software.

8) Error Management and Failure Reporting

The following errors can cause the failure of the boot

process:

 At a given address in the DPU memory (EEPROM) or

after a list of valid segments, there is no other valid

segment.

 A calculated checksum over a segment is different

from the checksum value at the end of this segment.

 At a given address, there is only an end segment.

 The destination address in a segment is invalid.

 The size of a segment is invalid.

 The content of a segment copied in the analyzer

memory is different of the content of the segment in

the DPU memory.

All these errors cause the aborting of the boot process and

the generation by the DPU application software of an error

event report TM packet giving information useful for the

diagnosis.

The errors which can occur at the SpaceWire level or at the

RMAP level are also reported by the DPU application S/W and

are normally recovered thanks to a retry mechanism. If a

RMAP command fails due to any reason (EEP, Invalid Data

CRC, Too much data…), the RMAP software driver

implemented in the DPU application S/W will repeat it again.

The boot manager knows that a command has been

successfully executed because all the RMAP commands are

acknowledged by the receiver, the Reply bit of the RMAP

write commands being set to 1.

IV. RMAP BOOTLOADER PERFORMANCE

The RMAP bootloader performance, in terms of duration of

the boot sequence, depends on the following parameters:

 The CPU clock of the board hosting the RMAP boot

loader.

 The SpaceWire data rate.

 The size of the remote software image.

Concerning RPW, the CPU clock of the DPU is 25 MHz

and the SpaceWire data rate is 10 Mbps.

The duration of the RMAP boot process which has been

measured for each RPW analyzer flight S/W is given in the

following table:

TABLE I. RMAP BOOT PROCESS DURATION
S/W Size (KB) Boot process duration (s)

LFR 260 8

TDS 95 5.5

TNR-HFR 211 7.5

157

The CPU load and the output data rates reported by the

DPU Application S/W during the RMAP boot process show

that, with the RPW configuration, the main bottleneck is the

CPU resource which reaches 100%. The SpaceWire link

occupation rate never exceeds 4% during the boot process.

With a processor clocked at 50 MHz, it should be possible to

reduce by a factor of two the boot duration (less than 4 seconds

for a 260-KB software). With a processor clocked at 100 MHz,

the boot duration for a 260-KB should be lower than 2 seconds.

By skipping the read back operation of the written blocks, with

the same configuration, the boot duration should be lower than

1 second.

 The figures below show the CPU load and the SpaceWire

transmission rate during the RMAP boot process of the three

RPW analyzers.

Fig. 2. CPU load during the RMAP boot process

Fig. 3. SpaceWire transmission data rate during the RMAP boot process

V. DESIGN AND QUALIFICATION OF THE RMAP BOOTLOADER

The RMAP bootloader developed for the RPW instrument

has been designed to be a fully reusable software block. The

RMAP bootloader modules have been developed in C++ using

a coding standard which is compliant to the ECSS-E-40

requirements and which is derived from the Lockheed Martin

Joint Strike Fighter standard Air Vehicle C++ coding standard

[7]. Its object-oriented design makes it easily re-usable in the

context of other projects and missions. The RMAP bootloader

modules are part of the LESIA GERICOS (GEneRIC Onboard

Software) framework. The GERICOS framework offers a set

of C++ libraries allowing to build a flight software by using a

collection of generic, re-usable, interoperable and space-

qualified software bricks implementing various things as a

RTOS object-oriented abstraction layer, SpaceWire and RMAP

drivers, the main PUS services...

The qualification of the RMAP bootloader modules has

been carried out according the requirements of the ECSS-E-40.

All the code of the RMAP bootloader modules has been

verified thanks to quality tools as Logiscope (metrics and

coding rules) or Polyspace (static analysis tool).

The development and the integration tests have been

performed using a DPU breadboard and specific home-made

simulators allowing to produce any RMAP or SpaceWire

errors. Several tests have been carried out for proving the

robustness of the RMAP bootloader to transient SpaceWire

errors and to RMAP failures.

The final validation of the RMAP bootloader modules has

been performed on the RPW EM boards. The RMAP boot

process and its implementation are now validated. The result of

this validation has been submitted to the RPW CDR review

group.

VI. CONCLUSION

The RMAP boot loader developed for the RPW instrument

is now fully operational. It has been integrated in the RPW

DPU application S/W and is currently extensively used in the

context of the RPW AIT. No major issues have been

encountered during the various tests carried out at AIT level or

at software development level. The approach can be now

considered as successful.

This approach takes benefit from the RMAP protocol and

its close integration with the LEON-3FT processor. The gains,

in terms of risk reduction and cost saving, relatively to the

development of a standard boot software, have been clearly

confirmed. Thanks to this technology, the RPW analyzer flight

software are fully reconfigurable during the flight: this is

crucial for the success of the mission.

The RMAP boot loader modules have been designed as a

set of generic software bricks, integrated in the GERICOS

framework, which could be easily reused in the context of

other space instruments.

In the context of the PLATO 2.0 project, studies are going

to be carried out in order to assess if the concept of RMAP

bootloader could be used. With the large number of DPU

boards making up the on-board data processing system, the

benefits could be huge for the PLATO payload team.

Last but not least, we advocate that the use of such an

approach could be also envisaged, by the space agencies and

the main prime contractors of the domain, at spacecraft level

for managing the boot of the payload DPU themselves. Such a

generic approach would reduce the development cost of the

scientific payloads.

REFERENCES

[1] Solar Orbiter Radio and Plasma Waves Instrument (RPW).

http://lesia.obspm.fr/Solar-Orbiter.html

[2] ECSS Standard, “SpaceWire - Remote memory access

protocol”, ECSS-E-ST-50-52C, Feb 2010.

[3] ECSS Standard, “SpaceWire - CCSDS packet transfer protocol”,

ECSS-E-ST-50-53C, Feb 2010.

158

[4] ECSS Standard, “Ground systems and operations - Telemetry

and telecommand packet utilization”, ECSS-E-70-41A, January

2003.

[5] ECSS Standard, “Software”, ECSS-E-ST-40C, March 2009.

[6] Aeroflex Gaisler, “GRLIB IP Core User’s Manual”, April 2014.

[7] Lockheed Martin Corporation, “Joint Strike Fighter Air Vehicle,

C++ Coding Standards”, 2RDU00001 Rev C, December 2005

159

The study and proposal for improvement the multi-

lane operation of SpaceFibre protocol
SpaceWire standardisation, Poster Paper

Yu Otake
1
, Kohei Hosokawa

1
, Yasuhiro Sota

1
,

Takahiko Tanaka
1
, Hiroki Hihara

2

1
NEC Corporation Tokyo, Japan

2
NEC TOSHIBA Space Systems, Ltd. Tokyo, Japan

y-otake@bp.jp.nec.com

Abstract— SpaceFibre protocol, which is developed by

European Space Agency as a standard protocol to communicate

between payloads in satellite network, adopts multi-lane

technique to increase transfer rate by using multiple physical

links. To realize high transfer rate in which the multi-lane

technique is needed, e.g. 20Gbps, FPGAs or ASICs devices to

process the SpaceFibre protocol needs to increase operating

frequency or to extend processing data width at one clock cycle.

The later way is generally adapted for giga bps class transfer

system since the operating frequency of FPGAs and ASICs for

space systems is relatively lower than these devices for

commercial systems.

It is important to consider a length of data to be processed

when extending the processing data width at one clock cycle. In

the SpaceFibre protocol, it is effective to design processing device

with 32-bits data width, because the minimum unit of

transmitting/receiving data width is 32-bits. For example,

however, if the width of data bus is assumed to 64-bits, it is

possible that frame boundaries between leading data frame and

following data frame is appeared in the middle of data bus. In

this case, two frames have to be processed at the same time and it

causes increase of complexity for processing and increase of

circuit size. To mitigate the complexity, we change the frame

length to be aligned with the utilized lane number at the framing

layer. In this paper, we report the method for alignment of frame

length and its evaluation results.

Index Terms— SpaceFibre, Multi-lane, throughput,

implementation

I. INTRODUCTION

The SpaceFibre protocol in Fig. 1 is currently developed,

and applies various techniques such as virtual channels, quality

of services and retransmission [1]. Furthermore, the SpaceFibre

protocol has a multi-lane transmission as an optional feature

which can enhance transfer rate by using several physical links

simultaneously (hereafter, a “physical link” is called by a

“lane”). However, implementing the multi-lane transmission

into actual devices has some problems. Although details of

those problems are described in chapter II, continuous data

might be unable to be processed in one clock cycle for

aerospace devices. Therefore, we describe a framing method to

adjust a number of words in a data frame to a multiple of a

number of used lanes for multi-lane transmission so as to

process a data frame efficiently by a circuit in chapter III. We

also show evaluation results of data throughput with our

method in chapter IV, because the data throughput with our

method decreases from that with the standard specification of

the SpaceFibre protocol.

Quality Layer

Multi-lane Layer

PHY

#1

Lane

#1

Network Layer

Packet I/F

Broadcast

Message I/F

Physical I/F

PHY

#2

Lane

#2

...

...

PHY

#N

Lane

#N

Lane Layer

PHY Layer

D

D

1st data is sent from 1st lane.

2nd data is sent from 2nd lane.

Nth data is sent from Nth lane.

N+1st data is sent from 1st lane.

D

D

: Data wordD

Fig. 1. Overview of multi-lane transmission of the SpaceFibre protocol

II. PROCESSING PROBLEM IN MULTI-LANE TRANSMISSION

The minimal meaningful unit of the SpaceFibre protocol is

32-bit data (one word). For example, framing control words,

such as Start Data Frame (SDF) and End Data Frame (EDF) to

configure one data frame, Start Broadcast Frame (SBF) and

End Broadcast Frame (EBF) to configure one broadcast frame

and Start Idle Frame (SIF) to configure one idle frame, are 32-

bit data. Similarly, other control words such as Flow Control

Token (FCT), ACK and NACK are also 32-bit data. Therefore,

it is efficient to design a processing device for the SpaceFibre

protocol with 32-bit data width. If a processing device is

designed with 32-bit data width, a required frequency is 62.5

MHz to achieve 2.0 Gbps throughput which is an initial

transfer rate of the SpaceFibre protocol by using only a single

lane. This operating frequency is feasible for an aerospace

device [2][3].

In multi-lane transmission of the SpaceFibre protocol, all

words are distributed and transmitted in parallel by using the

multiple lanes. In multi-lane transmission, at transmitter side,

the first word shall be sent over the lane with lowest

number(lane #1), the next word shall be sent over the lane with

the next number of the lowest number(lane #2), and so on, as

160

shown in Fig. 1. Multiple words, which is the same as the

number of used lanes, are transmitted simultaneously to a

receiver side. Besides, each transfer rate of multiple lanes is the

same as that of sigle lane. Therefore, the multi-lane

transimission of the SpaceFibre protocol can enhance transfer

rate in proportion. In contrast, the receiver gathers received

words from every lane and re-construct the transmitted words

from these receirved words.

Since the transfer rate of each lane does not depend on the

number of used lanes, the operating frequency of lane layer is

the same as that of single lane. However, upper layers such as

quality layer and multi-lane layer require higher throughput

than the lane layer. To achieve the higher processing speed,

these layers should operate at higher frequency, or should

expand internal data-bus of these layers in order to process

multiple words simultaneously. For example, when 10 lanes

are used and the transfer rate of each lane is 5.0Gbps which is

the maximum number of lanes supported in the SpaceFibre

protocol and the maximum transfer rate will be supported long-

term, the former way needs 1.5625 GHz with 32-bit data-bus.

It is difficult for aerospace devices to achieve this operating

frequency. Therefore, it is necessary to adopt the latter way to

implement the multi-lane transmission.

The required operating frequency of the latter way in the

quality layer is the same as that for single lane transmission.

Fig. 2 shows an example of data format of the SpaceFibre

protocol. When N lanes are used, N words are located from the

least significant word (LSW) to the most significant word

(MSW). For the latter way, N words on a line in Fig.2 are

processed simultaneously to increase the data throughput.

Words located at LSW are sent over the lowest number lane,

and words located at MSW are sent over the highest number

lane as shown in Fig. 2.

S D D D

E

D DD

S D D D

E

D DD D

S D

E

LSW MSW

S D D D

E

D DD

S D D D

E

D DD D

S D

E

LANE

#1

LANE

#2

LANE

#3

LANE

#N

Two or more EDFs can be

located in the same line.

One word (32bit)

N words (32 x N bit) S : Start Data Frame

: Data wordD

E : End Data Frame

Fig. 2. Word placement for multi-lane transmission

The frame length of the SpaceFibre protocol is independent

of the number of used lanes in the specification. Therefore, two

or more EDFs can be located at the same line which should be

processed at the same time. In this case, receiver should verify

two or more data frames at the same time since these EDFs

include frame sequence numbers and CRCs used for frame

verification. However, it is difficult to process multiple data

frames in parallel because sequential EDFs have order

dependency in their frame sequence numbers. This makes the

operating frequency lower in a processing device. This is a

problem to implement the multi-lane transmission into the

devices for aerospace since the operating frequencies of the

devices are slow.

Additionally, multiple CRC calculators are needed to

calculate CRCs of multiple data frames in parallel at the same

time. Although these parallel circuits are not always required,

they have to be prepared to calculate multiple CRCs only when

multiple frames are in the same line. This makes the circuit

area increase in a processing device. According to the reference

[4], a circuit size of CRC-32 calculator with 256-bit data width

becomes over 2000 LUT’s. This complexity is approximately

equal to a half of the SpaceFibre protocol using single lane

transmission. Thus, it is not preferred to implement two or

more large CRC calculators for the aerospace devices whose

circuit area is smaller than commercial devices.

III. OUR FRAMING METHOD FOR MULTI-LANE TRANSMISSION

To solve the problems of multi-lane transmission described

in chapter II, it is effective to limit the number of frames by

one in N continuous words to be processed at the same time

when N lanes are used. This avoids two or more frames

verifying at the same time and calculating in parallel.

Compared to the SpaceFibre protocol, this method can increase

the operating frequency and reduce the circuit area.

A. Detail specification of our framing method

We propose to add/modify the following three rules into the

specification of the SpaceFibre protocol for multi-lane

transmission (see Fig. 3).

Rule 1: Quality layer inserts Fill words to make a frame

length included one SDF and one EDF to a multiple of N if N

lanes transmission is used, whereas the Fill word contains of

four Fill codes (K27.7) in this paper. Thus, SDFs are located at

LSW and EDFs are located at the MSW.

Rule 2: Multi-lane layer sends SDF, SBF, SIF and FCT

over the lowest number lane (lane #1) \and sends EDFs over

the highest number lane (lane #N).

Rule 3: Multi-lane layer sends a control word whose length

is one word such as FCT, ACK or NACK over the lowest

number lane (lane #1), and sends the Padding words over the

rest lanes (lane #2-#N). The Padding word should be assigned

a new K-code to distinguish a control word inserted at the

multi-lane layer from the other control words inserted at the

other layers.

By the first rule, two or more words which include the

frame sequence number are not sent at the same time in multi-

lane transmission, because the frame length is set to a multiple

161

of the number of used lanes. Therefore, the problem to verify

two or more frame sequence numbers at the same time can be

avoided. By the second rule, two frames are not sent at the

same time. Therefore, the problem to implement two circuits

such as CRC calculators to process two frames in parallel can

be avoided. This second rule can reduce the circuit area in a

processing device. By the third rule, for control words other

than data frames, verifying multiple frame sequence numbers

and calculating multiple CRCs at the same time can also be

avoided because the rule makes one control word, such as FCT,

ACK or NACK, to N words by inserting the N-1 Padding

words. In the case, the Padding words should be removed in

the multi-lane layer at the receiver side.

S D D D

FD E

Aligning a frame by locating SDFs at the

LSW and locating EDFs at the MSW.

F

R

A

T

P PP

P PP

R R R

I R R R
Idle Frame (SIF and PRBS)

S D D D

ED DD

Adjusting the number of words in a frame

to a multiple of the number of using lanes

by filling Fill words.

F : Fill wordP : Padding word

T : Flow Control Token

A : ACK control word

I : Start Idle Frame

R : PRBS random word

LSW MSW

One word (32bit)

N words (32 x N bit)

1.

2.

3. Padding dummy data after control word

such as FCT, ACK or NACK.

Fig. 3. Our framing method for multi-lane transmission

B. Optional rules for our framing method

Our framing method inserts the Fill words and the Padding

words to limit the number of frames to be processed at the

same time by one. Therefore, compared to the standard

specification of the SpaceFibre protocol, data throughput of our

method must be decreased by inserting these words. Thus, we

add/modify the following two optional rules to the standard

specification of the SpaceFibre protocol.

Optional Rule 1: Quality layer makes a frame length

including one SDF and one EDF to the maximum number of a

multiple of N which is less than or equal to 64 words for N

lanes transmission.

Optional Rule 2: Minimum interval of sending ACK is

256ns in spite of the number of used lanes.

The first optional rule can reduce a number of the Fill

words inserted by our framing method. In the specification of

the SpaceFibre protocol, if there are 64 or more words of data

without EOP in virtual channel buffer, only 64 words of data

are read out from the buffer to make a data frame by adding a

SDF and an EDF. Then, the frame length is 66 words which

include 64 words of data, the SDF and the EDF. In our framing

method, the Fill words should be inserted when 66 words is not

a multiple of the number of used lanes. In other words, the data

throughput is decreased by inserting the Fill words to make a

data frame if the number of used lanes is not a submultiple of

66. By the first optional rule, the Fill words are not needed to

make a data frame if there are data more than maximum frame

length in the virtual channel buffer, except for last data frame.

Then, the decrease of the data throughput by inserting the Fill

words can be reduced.

The second optional rule can reduce the number of the

Padding words inserted by our framing method. When N lanes

is used with our framing method, one ACK word is sent over

the lowest number lane and the N-1 Padding words are sent

over rest lanes. Thus, compared with the standard specification,

the bandwidth for sending ACK becomes multiples of N in our

framing method. In the specification of the SpaceFibre protocol,

the minimum interval of sending ACK is 16 words in order to

restrict the increase of the bandwidth for sending ACK. This

interval equals to 256 ns in a single lane transmission if data

transfer rate is 2.0 Gbps. The bandwidth for sending ACK can

be the same as the single lane transmission in the standard

specification to apply this second optional rule to our method.

Then, the decrease of the data throughput by inserting the

Padding words can be reduced.

IV. EVALUATION OF DATA THROUGHPUT WITH OUR METHOD

Our framing method proposed in chapter III makes

implementation of the multi-lane transmission easily by

adjusting a frame length to the number of used lanes. On the

other hand, the data throughput must be decreased because the

Fill words and the Padding words are inserted to adjust a frame

length. Therefore, we evaluate the data throughput with our

framing method in computer simulations.

A. Simulation conditions

To measure the data throughputs of the SpaceFibre protocol

and our methods, we built a C-language simulation

environment. In our method, four packet transfer models, such

as (1) without any optional rules, (2) with the first optional rule,

(3) with the second optional rule, and (4) with the two optional

rules, are evaluated. The packet is transmitted in one-way and

the length of packet is set from 1 to 1024 words in random, and

there is no error at any physical links (Bit error rate is 0). The

throughput of data and control words are measured by counting

the received data or the received control words.

B. Simulation results

Figure 4 shows that the usage ratio of the bandwidth which

is occupied by data and control words when 10 lanes are used.

The left circle graph shows the usage ratio with the standard

specification of SpaceFibre Draft-F3 protocol, where the usage

ratio of the data is 95.5%. But this is an ideal data throughput

for multi-lane protocol since it is difficult to be implemented

by actual LSI and FPGA for aerospace as pointed in chapter II.

The right circle graph shows the usage ratio of our framing

method without any optional rules described at chapter III. The

data throughput is decreased from 95.5 % to 78.3% by the

insertion of the Fill words and the Padding words.

162

DATA

95.5%

SDF/EDF

3.0%

ACK

1.5%

Draft F3

DATA

78.3%

SDF/EDF

2.6%

ACK

1.3%

Fill

5.9%
Padding

11.9%

Our method

w/o any optional rules
Fig. 4. Usage ratios of Draft-F3 and our method without any optional rules.

Next, the usage ratios of our methods with the first optional

rule, with the second optional rule, and with two optional rules

are shown in Fig. 5 when 10 lanes are used. In the case of our

method with the first optional rule, the usage ratio of the Fill

words can be decreaced from 5.9% to 0.7%. The usage ratio

occupied by ACK or the Padding words is the same as the case

without any optional rules. In the case of the second optional

rule, the usage ratio of the Padding word can be decreaced

from 11.9% to 4.3%. In addition, the usage ratio of the ACK

words can be decreaces from 1.3% to 0.5%. Finally, in the case

with two optional rules, the usage of data achieves about 91.8%,

and the data throughput with two optional rules can increase

from 78.3% to 91.8%.

DATA

83.2%

SDF/EDF

2.9%

ACK

1.3%

Fill

0.7%
Padding

11.8%

(2) w/ 1st option

DATA

91.8%

SDF/EDF

2.7%

ACK

0.5%

Fill

0.8%

Padding

4.2%

(4) w/ two options

DATA

78.3%

SDF/EDF

2.6%

ACK

1.3%

Fill

5.9%

Padding

11.9%

(1) w/o any options

DATA

85.9%

SDF/EDF

2.9%

ACK

0.5%
Fill

6.4%
Padding

4.3%

(3) w/ 2nd option
Fig. 5. Usage ratios of our method with/without optional rules

Next, maximum throughput of our methods are shown in

Fig. 6 when a number of used lanes is changed. Figure 6 shows

that the maximum throughputs of our methods are decreaced

by insertion of the Fill words and the Padding words with the

increasing of the number of used lanes. However, Figure 6 also

shows that the optional rules can mitigate the deceasing of the

data thoughput. Especially, the method with the two optinal

rules can acheive over 90% data throughput in spite of a

number of used lanes.

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

M
a

x
im

u
m

 d
a

ta
 t

h
ro

u
g

h
p

u
t

number of used lanes

+4.9%

+7.6%

+13.5%

78.3%

95.5%Draft F3

(1) Our method w/o any options

(2) w/ 1st option

(3) w/ 2nd option

(4) w/ two options

0%

Fig. 6. Data throughput of our methods for the number of used lanes

V. SUMMARY

In order to make circuit implementation of the SpaceFibre

protocol using multilane transmission easy, we studied the

problems about multi-lane transmission and proposed the

framing method to solve it.

In the specification of the SpaceFibre protocol, two or more

EDFs can be received at the same time from different lanes.

This makes it difficult to implement the SpaceFibre protocol

into an aerospace device because sequential EDFs have order

dependency and the aerospace device generally operates at low

frequency. To solve this problem, we change a framing method

for multi-lane transmission by adjusting the frame length to a

multiple words of a number of used lanes, and by sending the

first word of a frame from the lowest number lane an sending

the last word of a frame from the highest number lane.

To evaluate the effect of our method, we measured the data

throughput in simulation because the data throughput may be

decreased by inserting the Fill words and the Padding words in

our method to adjust the placement of data or control word.

The simulation result shows the data throughput in our method

without the optical rules is decreased by 18% compared with

the case of the standard specification of the SpaceFibre

protocol. However, the maximum data throughput can achieve

over 90% at any number of lanes by applying two optional

rules which changes the maximum frame length and the

interval of sending ACK.

REFERENCES

[1] Steve Parkes, “SpaceFibre Standard Draft F3”, University of

Dundee.

[2] Yu Otake, Kohei Hosokawa, Yasuhiro Sota, Takahiko Tanaka

and Hiroki Hihara, “Performance evaluations and proposal to

improve next-generation SpaceFibre protocol”, proceedings of

international SpaceWire conference 2013, pp271-275.

[3] Steve Parkes, “A Radiation Tolerant SpaceFibre Interface

Device”, proceedings of international SpaceWire conference

2013, pp123-128.

[4] M. Walma, “Pipelined cyclic redundancy check (CRC)

calculation,” in ICCCN’07: Proceedings of 16th International

ConferConference on ComputerCommunications and Networks,

2007, pp365-370.

163

SpaceFibre Based Spacecraft Network Case Study
Networks & Protocols, Poster paper

Yuriy Sheynin, Elena Suvorova, Nadezhda Matveeva
Saint-Petersburg State University of Aerospace

Instrumentation
SUAI

Saint-Petersburg, Russian Federation
sheynin@aanet.ru, suvorova@aanet.ru,

nadezhda.matveeva@guap.ru

Alexey Khakhulin, Igor Orlovsky, Dmitry Romanov
Rocket and Space Corporation Energia after S.P. Korolev

RSC Energia
Korolev, Moscow area, Russian Federation

Alexey.Hahulin@rsce.ru, Igor.Orlovsky@rsce.ru,
Dmitry.Romanov@rsce.ru

Abstract—SpaceFibre based spacecraft network is used as a case
study of the real network, which SpaceWire based implementation
was analyzed in [1]. The network structure has tree-based structure,
includes dozens of different data sources (such as Telemetric System,
Radiation Monitoring System, Control Block of Onboard Complex)
and some data processing nodes (such as Central Computing
Machine, Computer of the Engine Bay, Cosmonaut Consoles).

We consider implementation of this network based on SpaceFibre
technology with its advantages: quality of service mechanisms
(guaranteed throughput, scheduling), possibility of galvanic isolation
on physical layer.

For this example we evaluate parameters for SpaceFibre network
implementation, compare the results with reachable parameters for
SpaceWire based network. The analyzed network includes some
typical data flows – video information, measurement information
from different sensors, command information. For different data
types flow parameters and timing requirements are essentially differ.

I. THE EXAMPLE: A FRAGMENT OF A SPACECRAFT NETWORK
Here we show an example of the real network which was

analyzed with the simulator. This is a fragment of a spacecraft
network shown in Fig. 1. The physical interconnections
between components (terminal nodes and routers) are
represented by the thick black lines. The thin black lines
correspond to videotraffic transmission paths. This traffic is the
main part of the communication system’s load.

The marked by hatching terminal nodes are sources or
destinations of command traffic of CBOC. The packet
transmission time of this traffic is most important for the whole
system correct functionality.

Detailed characteristics of the network traffic are given in
Table 2. All abbreviations described in Table 1.

The videotraffic enters the network permanently. The
traffic of other types is generated every 200 ms. The traffic
between CBOC and CCM, OREC has highest priority. Every
CBOC sends/receives one packet with data length 64 Bytes
every 200 ms. Four CBOC are connected to every RRV router;
five CBOC are connected to every REB.

Characteristics of the considered network should meet the
following requirements:

1. Latency of packets between CBOCs and CCM is ≤
10 ms.

2. Latency of video frames is ≤ 100 ms.
We evaluate the reachable characteristics for considered

network fragment implementations based on SpaceWire,
gigaSpaceWire and SpaceFibre standards:

• maximal packet transmission time from CBOC;
• videoframes transmission time;
• maximal available throughput.
In connection with the expected operating conditions for

the SpaceWire network we consider the variant, in which the
transmission rate is limited to 125 Mbit/s.

The variants with SpaceFibre and gigaSpaceWire
transmission rates 1250 Mbit/s and 125 Mbit/s are reviewed
also.

For simulation we use the routers with parameters:
• internal frequency of the router is 125 MHz;
• the width of switch matrix channels is 32 bit;
• the packet header transmission time is 7 clocks of

processing frequency.

164

CBOCCBOC

CBOC

ORECOMS

CBOC CBOC

BS
CC

RRV4

RRV5

RRV1

TS

EB

RMS

CBOC

RV

OS1

RRV2

CRRV

RRV3

REB1

CBOC
CBOC

CBOC

REB2

OS2

CEB

CREB

...

...

...

СС

CCM

CBOC
CBOC

CBOC

...

CBOC
CBOC

CBOC

...

CBOC

CBOC

CBOC ...

CBOC

CBOC CBOC

...

ATS

ISS

Fig. 1. Fragment of spacecraft network (rectangles are terminal nodes and rounds are routers)

TABLE I. ABBREVIATIONS

ATS Automated Test System
OREC Onboard Radio Engineering Complex
OS Onboard Systems
CBOC Control Block of Onboard Complex
RV Re-entry Vehicle
EB Engine Bay
CEB Computer of the EB
RRV Router of RV
REB Router of EB
ISS International Space Station
CC Cosmonaut Consoles
OMS Onboard Measurement System
RMS Radiation Monitoring System
BS Bearing System
CS Communication System
TS Telemetric System
CCM Central Computing Machine
CRRV Central RRV
CREB Central REB

165

TABLE II. NETWORK TRAFFIC, IN MBIT/S
 Receivers
Senders ATS OREC CBOC CEB ISS CC OMS TS CCM

ATS - - - - - - - - -

OREC - - - - - 2 - - 5

OS - - - - - 1 1 - 3

CBOC - - - - - - 0.5 - 0.08

CEB - - - - - 0.1 2 - 2

ISS - - - - - 25 3 - 2

CC 25x3 - - - - - 2 - 0.2

OMS 5 - - - 3 0.1 - - 5

RMS - - - - - 1 1 - 1

BS - - - - - - 0.1 - -

CS - - - - - - 0.2 - -

TS - 25 - - 25 25 0.1 - 0.01

CCM 5 5 0.08 2 2 5 1 0.01 -

II. THE TRANSMISSION TIME BETWEEN CBOC AND CCM, CBOC

AND OREC
The path between CBOC and CCM includes 2 or 3 transit

routers (depend on placement of CBOC in system). The path
between CBOC and OREC includes from 1 to 4 transit routers.

Let’s evaluate data packets transmission time form CBOC
with maximal length for our example. The data packets length
is 64 Bytes.

The minimal transmission time of these packets in
SpaceWire network is 2,3 us when transmission rate is
400 Mbit/s and 6,4 us when transmission rate is 125 Mbit/s.

The minimal transmission time of these packets in
SpaceFibre network is 2,2 us when transmission rate is
1250 Mbit/s and 14,8 us when transmission rate is 125 Mbit/s.

The minimal transmission time of these packets in
gigaSpaceWire network is 1,3 us when transmission rate is
1250 Mbit/s and 6,9 us when transmission rate is 125 Mbit/s.

These values are essentially less than user constrains
(10 ms). But this transmission time is reachable only in case
when data packet from CBOC doesn’t wait the output ports in
transit routers.

Let’s evaluate the maximal data packet transmission time
form CBOC to OREC in SpaceWire, gigaSpaceWire and
SpaceFibre network with transmission rate 125 Mbit/s.

The data packets from CBOC have the highest priority
layer, all CBOC send its packets practically in the same time.
Therefore in worst case the data packet from CBOC should
wait in output port queue of transit routers until all packets
from other CBOC, which goes along the same path, and one
packet with low priority (that transmission can happen to start
before the first packet from CBOC goes to the router) would be
transmitted. For considered data path this low priority packet in
worst case would be videotraffic packet from RMS to OMS.

Figure 2 shows the dependence between the maximal data
transmission time (CBOC ->OMS) and the low priority traffic

(videotrffic) packet length. We consider the packet lengths
from 512 to 4096 Bytes.

For the SpaceFibre network we evaluate transmission time
for network variations with different quantity of CBOC: from
30 to 60. In SpaceFibre the data transmission time for high
priority traffic depends not from the low priority traffic packet
length but from the frame length for SpaceFibre network. Thus
the corresponding to SpaceFibre diagrams, are straight lines
that go parallel with the X axe.

These graphs show, that in all cases the transmission time is
less than 10 ms (the user defined constraint). The data
transmission time for SpaceWire and gigaSpaceWire network
is less than for SpaceFibre, when the low priority traffic packet
size is 2 – 4 times bigger than the SpaceFibre frame size.

III. EVALUATION OF MAXIMAL VIDEOFRAMES DENSITY FOR
SPACEFIBRE AND GIGASPACEWIRE NETWORKS

Let’s evaluate the maximal reachable videoframes density
for considered example with SpaceFibre and gigaSpaceWire
based networks.

In this network video data goes counter each others, Fig. 1,
Table 1. Therefore in each direction of SpaceFibre network
should be translated one video data flow and ACK (NACK)
and FCT flows from video data flow that goes to opposite
direction.

In each direction of gigaSpaceWire network the video data
flow and FCT for It go in opposite directions.

In the SpaceFibre network video data flow can be
transmitted with big packets (packet size equal to video frame
size – from 1 to 2 Mbytes). These packets would be sliced in a
data link into frames with maximal size (256 Nchars). On each
such frame will have to transfer one ACK and one FCT from
an opposite video flow. Thus the overhead of data transmission
are 5,88 %. So the maximal reachable throughput for video
data flow is 941 Mbit/s.

We now consider the transfer of the same traffic by the
gigaSpaceWire network. We assume that for video flow

166

transmission packets with data field size 256 Nchars and
network header size 1 Nchar are used. This packet size is
selected to provide required transmission time for high priority
traffic.

In the gigaSpaceWire standard the credit size can be
adjusted. We assume that the size of one credit is 128 Nchars
(the maximal possible value). The size of the Credit command
is 1 K-Code.

For these parameters the overhead is 1,53 %.
Correspondingly the maximal reachable throughput for
videotraffic transmission is 984 Mbit/s.

When the videoframes transmission path does not meet
with command traffic, and therefore we can transmit
videoframes with big packets. If we transmit frames by packets
with 1 Mbyte size, the overhead is 0,78 %. For packets with
2 Mbytes size the overhead is 0.77 %.

Fig. 2. Dependency between the data packets length and the maximal

transmission time between CBOC and OMS (videostream)

IV. EVALUATION OF THE VIDEOFRAMES TRANSMISSION TIME
To evaluate transmission time of the big data objects –

videoframes with size 1 Mbyte, 1.7 Mbytes, 2 Mbytes for
SpaceFibre and gigaSpaceWire network with transmission rate
1250 Mbits/s consider that in gigaSpaceWire network the
videoframe is divided to packets with 256 Nchars data field
size.

The graph (Fig. 3) of dependency between the videoframe
transmission time and its size for gigaSpaceWire and
SpaceFibre network when other traffic isn’t transmitted via the
network.

Fig. 3. Dependency between the size of videoframes and its transmission time

in the network that includes 1 or 3 routers

This figure shows that parameters for gigaSpaceWire and
SpaceFibre are practically same.

With transmission rate 1250 Mbit/s the transmission time
of biggest videoframes (2 Mbytes size) is less than 18 ms.

Let's evaluate transmission time of videoframes in the
considered network with command traffic from CBOC when
the videotraffic and traffic from CBOC are crossed in the
CRRV router.

Fig. 4. Dependency between the size of videoframes and its transmission time

in network with 3 routers and traffic from CBOC

200

250

300

350

400

450

500

550

600

650

700

512 1024 2048 4096
Packet length, byte

Maximal transmission time
between CBOC and OMS

T CBOC->OMS
(30 CBOC) SpW

T CBOC->OMS
(40 CBOC) SpW

T CBOC->OMS
(50 CBOC) SpW

T CBOC->OMS
(60 CBOC) SpW

T CBOC->OMS
(30 CBOC)
gigaSpW

T CBOC->OMS
(40 CBOC)
gigaSpW

T CBOC->OMS
(50 CBOC)
gigaSpW

T CBOC->OMS
(60 CBOC)
gigaSpW

T CBOC->OMS
(30 CBOC) SpFi

T CBOC->OMS
(40 CBOC) SpFi

T CBOC->OMS
(50 CBOC) SpFi

T CBOC->OMS
(60 CBOC) SpFi

us

8

9

10

11

12

13

14

15

16

17

18

1 1.7 2
Size of videoframes, Mbytes

Dependency between size and
transmission time of videoframes

1 router
(gigaSpW)

1 router
(SpFi)

3 routers
(gigaSpW)

3 routers
(SpFi)

ms

8

9

10

11

12

13

14

15

16

17

18

1 1.7 2
Size of videoframes, Mbytes

Dependency between size and transmission
time of videoframes (CBOC traffic exist)

3 routers + T
CBOC
(gigaSpW
1250 Mbit)

3 routers + T
CBOC (SpFi
1250 Mbit)

ms

167

In the gigaSpaceWire network QoS mechanisms are not
provided. But the curves in the Fig. 4 show, that the
videoframes transmission time is practically the same for
gigaSpaceWire and for SpaceFibre.

It was reached thanks to the traffic logical organization: the
videoframes were divided into packets with data field sizes
equal to the SpaceFibre maximal frame size.

The number of terminal nodes in this example is less than
224. Therefore the SpaceWire address field size of these
packets is 1 for this example.

V. CONCLUSSION
In this article we consider different implementations of the

onboard network: the SpaceWire based network, the
SpaceFibre based network and the gigaSpaceWire based
network. We estimated reachable timing parameters and
throughput for different traffic types in these variants of
network implementation.

SpaceFibre with its QoS features provides ready-made
backbone networking for spacecrafts with mixture of high-
priority command traffic and low priority intensive streaming
data (videostreams as an example); the user packet delivery
latency constraints are consistently met for both traffic classes.

Unlike SpaceFibre, SpaceWire and gigaSpaceWire network
shave no QoS support mechanisms. But we show that for
SpaceWire and gigaSpaceWire network the same timing

characteristics as for SpaceFibre can be reached when packet
sizes for low-priority traffic is selected correctly. The packet
delivery latency constraints are consistently met also. For more
complicated mixture of traffic types, stricter latency constraints
and priority requirements SpaceWire and gigaSpaceWire
networks could be supplied with QoS features at the Transport
layer.

ACKNOWLEDGMENT
The research leading to these results has received funding

from the Ministry of Education and Science of the Russian
Federation under contract n° 14.578.21.0022.

REFERENCES
[1] A. Eganyan, L. Koblyakova, E. Suvorova. “SpaceWire network

simulator,” in proceedings of the 3rd International SpaceWire
conference, St.Petersburg, Russia, 2010, pp. 403-406.

[2] L. Koblyakova, Yu. Sheynin, D. Raszhivin. “Real-Time Services
in Networked Embedded Systems,” in 7th Conference of Open
Innovations Framework Program FRUCT, SPb, Russia, 2010,
pp. 64-67.

[3] A. Eganyan, E.Suvorova, Y. Sheynin, A. Khakhulin, I. Orlovsky,
“DCNSimulator – Software Tool for SpaceWire Networks
Simulation,” in proceedings of the 5th International SpaceWire
Conference, Gothenburg 2013, pp. 216-221.

168

The Remote Virtual-Channel Transfer Protocol
SpaceWire Networks and Protocols, Short paper

Wang Zhen

No.1 Dep.

Shanghai Institute of Satellite Engineering-SISE

Shanghai, China

simonlover121@163.com

Dong Yaohai

Science and Technology Dep.

Shanghai Aerospace Bureau

Shanghai, China

dongyaohai@hotmail.com

Abstract—The Remote Virtual-Channel Transfer Protocol

(RVTP for short) is proposed to transfer CCSDS AOS Virtual

Channel Frames across a SpaceWire Network. In order to

transfer more efficiently and reliably onboard data in large

volume and at high data rate, RVTP is designed to encapsulate a

CCSDS AOS Virtual Channel Frame into a SpaceWire packet at

the initiator node. At the target node, RVTP provides error

detection and handling services.

Keywords—SpaceWire RVTP, CCSDS, FY-4 Series Mission.

I. INTRODUCTION

RVTP is designed to encapsulate a CCSDS AOS Virtual

Channel Frame into a SpaceWire packet [1] which is

transferred from an initiator to a target across a SpaceWire

network. The RVTP provides error detection as a received

packet can be checked if it complies with the protocol at the

target. But it does not provide any means for ensuring

successful delivery of the packet, neither is it responsible for

the content of the packet being a CCSDS AOS Virtual Channel

Frame [2].

Fig. illustrates the location of the RVTP in a typical

onboard protocol stack. The RVTP provides a unidirectional

data transfer service from a single source user application to a

single destination user application through a SpaceWire

network.

Remote Virtual Channel

Transfer Protocol

User Application

SpaceWire

Network

SpaceWire

Network

Remote Virtual Channel

Transfer Protocol

User Application

Fig.1. Protocol configuration

II. PROTOCOL FEATURES

RVTP is suitable for high-speed data transferring between

remote instruments and communication system. It provides the

capability to transfer AOS virtual channel frames with fixed

size between end nodes of a SpaceWire network. When a

RVTP SpaceWire packet is received at the target, error

detective mechanism works. If the AOS virtual channel frame

is right, it will be extracted, and a synchronous header

(1ACFFC1D) is inserted to form a Channel Access Data Unit

(CADU) which can be transferred in communication system.

There are three main innovations of RVTP shown as

follows:

 The RVTP is based on Virtual Channel which is firstly

proposed.

 The RVTP packets are with fixed length which makes

the data transfer delay predicable in a SpaceWire

network.

 The RVTP provides FDIR function at the target node to

facilitate fault location and recovery autonomously.

III. SERVICE PARAMETERS

The RVTP provides users with data transfer services. The

point at which a service is provided by a protocol entity to a

user is called a Service Access Point. A Service Access Point

of the RVTP is identified by a SpaceWire logical address and

each service user is also identified by a SpaceWire Logical

Address.

Implementations may be required to perform flow control

at a Service Access Point between the service user and the

service provider. However, the RVTP does not recommend a

scheme for flow control between the user and the provider.

The end-to-end quality-of-service provided to service users

is the one that is provided by the underlying SpaceWire

network. The RVTP does not provide any mechanisms for

guaranteeing a particular quality-of-service; it is the

responsibility of implementing organizations to ensure that the

end-to-end performance of a particular service instance meets

the requirements of its users.

The service parameters are as follows.

A. Virtual Channel Frame

The Virtual Channel Frame parameter, intended as the

service data unit transferred by the Remote Virtual Channel

Transfer service, shall be the AOS Virtual Channel Frame.

169

B. Frame length

The value of the Virtual Channel Frame length shall be of a

fixed size.

The frame length is selected depending on the bandwidth of

communication channel. Users can select a suitable frame

length for a particular mission.

C. Status code

The Status code parameter shall be used to indicate the

validity of the Virtual Channel Frame to the receiving service

user. It shall take one of the following values [4]:

 0x00 indicates that the Virtual Channel Frame is ok;

 0x01 indicates Virtual Channel Frame arrived

terminated by EEP;

 0x02 indicates Channel ID was illegal.

D. Target SpaceWire Address

The Target SpaceWire Address parameter shall be used to

define the path to the Target when SpaceWire path addressing

is being used.

E. Target Logical Address

The Target Logical Address parameter shall be used to

define the logical address of the Target that is to receive the

Virtual Channel Frame.

F. Virtual Channel Data Unit

The RVTP packet contains an integrated Virtual Channel

Data Unit (VCDU) with that is defined in [2].

VCDU, shown in Fig.2, is contained by VCDU Header and

VCDU Data Zone.

Frame

Version

Number

Channel ID

SCID VCID

VC

Frame

Count

Signaling

Field

Replay

Flag

VC

Frame

Count

Usage

Flag

VCDU Header (6 Octets) VCDU Data Zone

2bits 8bits 6bits
3

Octets
1bit

RSVD.

Spare

VC

Frame

Count

Cycle

1bit 2bits 2bits

Frame

Insert

Zone

Frame

Data

Field

16bits
Fixed

Length

Fig.2. Virtual Channel Data Unit

VCDU shall follow, without gap, the Protocol Identifier.

G. Bitstream Protocol Data Unit

The RVTP uses Bitstream Protocol Data Unit (B_PDU),

which is defined in CCSDS 732.0-B-2 AOS Space Data Link

Protocol, to form Virtual Channel Data Units.

B_PDU, shown in Fig.3, shall be divided by B_PDU

Header and B_PDU Bitstream Data Zone.

RSVD.

Spare

Bitstream

Data

Pointer

B_PDU Bitstream Data Zone

2bits Fixed Length

B_PDU Header

14bits

Fig.3. Bitstream Protocol Data Unit

B_PDU shall follow, without gap, the VCDU Header.

IV. PROTOCOL FORMAT

The complete format of the RVTP packet is shown in Fig.4.

Target Logical Adress

……

Protocol Identifier Channel ID (MS)

VC Frame Count (MS) VC Frame Count (LS) Signaling Field

B_PDU Bitstream Data

(First byte)
B_PDU Bitstream Data B_PDU Bitstream Data

B_PDU Bitstream Data …… …… B_PDU Bitstream Data

EOP

VC Frame Count

Target SpW Adress

Channel ID (LS)

B_PDU Header (MS) B_PDU Header (LS)Frame Insert Zone (MS) Frame Insert Zone (LS)

B_PDU Bitstream Data

Target SpW Adress

First byte transmitted

B_PDU Bitstream Data
B_PDU Bitstream Data

(Last byte)

Last byte transmitted

Fig.4. RVTP packet format

A. Target SpaceWire Address field

The Target SpaceWire Address field shall comprise zero or

more data characters forming the SpaceWire address which is

used to route the RVTP packet to the target.

SpaceWire path addressing and regional addressing may be

used.

The Target SpaceWire Address field shall not be used when

a single logical address is being used for routing the Virtual

Channel frame to the target.

B. Target Logical Address field

The Target Logical Address field shall be an 8-bit field that

contains a logical address of the target.

 The Target Logical Address field is normally set to a

logical address recognised by the target.

 If the target does not have a specific logical address

then the Target Logical Address field can be set to the

default value 254 (0xFE).

 A target can have more than one logical address, but a

logical address indicates one target, in other words,

different target has different logical address in a

SpaceWire Network.

C. Protocol Identifier field

The Protocol Identifier field shall be an 8-bit field that

contains the Protocol Identifier complied with the provisions of

the related ECSS standards [3].

D. Channel ID field

The Channel ID shall be a 16-bit field that contains Frame

Version Number, Spacecraft ID(SCID), Virtual Channel

ID(VCID).

 The Frame Version Number shall be a 2-bit field that

identifies the data unit as a VC Transfer Frame; it shall

be set to ‘01’.

 The Spacecraft Identifier shall be an 8-bit field that is

assigned by CCSDS and provide the identification of

the spacecraft which is associated with the data

contained in the VC Transfer Frame.

 The Virtual Channel Identifier shall be a 6-bit field that

is used to identify the Virtual Channel.

170

E. VC Transfer Frame Count field

The Virtual Channel Transfer Frame Count shall be a 24-bit

field which contains a sequential binary count (modulo-

16,777,216) of each Transfer Frame transmitted within a

specific Virtual Channel.

The purpose of this field is to provide individual

accountability for each Virtual Channel, primarily to enable

systematic Packet extraction from the Transfer Frame Data

Field.

F. Signaling field

The Signaling shall be an 8-bit field that contains Replay

Flag, Virtual Channel Frame Count Cycle Use Flag, Reserved

Spares, Virtual Channel Frame Count Cycle.

The Replay Flag shall be a one-bit field that is to

discriminate between real-time and replay Transfer Frames

when they both may use the same Virtual Channel. When it is

set to ‘0’, it means that it is a real-time Transfer Frame,

otherwise, it is a Replay Transfer Frame.

The Virtual Channel Frame Count Cycle Use Flag shall be

a one-bit field that indicates whether the VC Frame Count

Cycle field is used. When it is set to ‘0’, it means that the VC

Frame Count Cycle field is not used, otherwise, it means that

the VC Frame Count Cycle field is used.

The Reserved Spare shall be a 2-bit field that is reserved for

future definition by CCSDS and shall be set to ’00’.

The Virtual Channel Frame Count Cycle shall be a 4-bit

field. If used, the Virtual Channel Frame Count Cycle Use Flag

shall be set to ‘1’. Each time the Virtual Channel Frame Count

returns to zero, the VC Frame Count Cycle shall be

incremented. If not used, the Virtual Channel Frame Count

Cycle Use Flag shall be set to ‘0’ and this field shall be set to

‘all zeros’.

G. Frame Insert Zone field

The Frame Insert Zone shall be a 16-bit field that can be

used to insert some special information according to user

application, such as time, secret key.

The Frame Insert Zone shall exist in every Transfer Frame

transmitted within the same Physical Channel, including Idle

Transfer Frames.

H. B_PDU Header Field

The B_PDU Header shall be a 16-bit field that contains

Reserved Spare and Bitsream Data Pointer.

The Reserved Spare shall be a 2-bit field that is currently

undefined by CCSDS; by convention, it shall therefore be set

to the reserved value of ‘00’.

The Bitsream Data Pointer shall be a 14-bit field that

discriminates between idle user data and valid user data within

B_PDU Bitstream Data field. The locations of the bits in the

B_PDU Bitstream Data field shall be numbered in ascending

order. The first bet in this filed is assigned the number 0. The

Bitstream Data Pointer shall contain the binary representation

of the location of the last valid user data bit within B_PDU

Bitstream Data field.

I. B_PDU Bitstream Data Field

The B_PDU Bitstream Data Field shall be fixed-length that

follows, without gap, the B_PDU Header.

The Bitstream Data field shall contain either a fixed-length

block of the user Bitstream Data (possibly terminated with idle

data at a location delimited by the Data Pointer), or Idle Data (a

fixed-length project-specified ‘idle’ pattern).

J. EOP character

The end of the RVTP packet shall be indicated by an EOP

character.

V. PROTOCOL ACTION

The normal sequence of actions for a RVTP packet transfer

is illustrated in Fig.5.

1. Send Request

3. Receive Indication

2. Transfer

Packet

Initiator Target

 Fig.5. RVTP Packet Transfer

A. Send request

The RVTP packet transfer shall begin when an initiator

user application requests to send a RVTP packet (Send

Request).

The initiator user application shall pass the following

information to the initiator:

 Target SpaceWire Address

 Target Logical Address

 Channel ID

 VC Transfer Frame Count

 Signalling field

 Frame Insert Zone

 B_PDU

B. Transfer packet

In response to the send request the initiator shall

encapsulate the Virtual Channel Frame into a SpaceWire

packet as described in Part IV and send it across the SpaceWire

network to the target (Transfer Packet).

C. Receive indication

When a RVTP SpaceWire packet is received at the target,

error detection and recovery mechanism works as follows.

 Protocol identifier error. When a SpaceWire packet is

received at the target and the Protocol Identifier field is

not indicated to be a RVTP packet, the packet shall be

discarded.

 Channel ID error. If the Remote Virtual Channel

Transfer Protocol packet arrives at the target with the

Channel ID field set to an invalid value (the value is not

expected and pre-assigned), the target user application

should be informed that there is a Channel ID Error at

171

the target. In this case, the Virtual Channel Frame shall

be extracted from the SpaceWire packet and passed to

the target user application.

 Frame Count discontinuous error. If the Virtual Channel

Frame Count received at the target is not sequential

within a specific Virtual Channel, the target user

application should be informed that there is a Frame

Discarded Error with the specific Channel ID. In this

case, the Virtual Channel Frame shall be extracted from

the SpaceWire packet and passed to the target user

application.

 Virtual Channel Frame Length error. If the RVTP

packet arrives at the target with the Virtual Channel

Frame Length shorter than the predesigned value, the

target user application should be informed that there is a

Shorter Frame Error with the specific Channel ID. In

this case, the Virtual Channel Frame shall be extracted

and inserted idle data subsequently till the Frame

Length equal to the predesigned value. Otherwise, If the

length longer than the predesigned value, the target user

application should be informed that there is a Longer

Frame Error with the specific Channel ID. In this case,

the Virtual Channel Frame shall be extracted till the

Frame Length equal to the predesigned value and the

redundant data shall be discarded.

VI. CONCLUSION

RVTP has been applied in FY-4 series mission which is the

first Chinese Space mission using SpaceWire for onboard data

transfer in China. Through mass of engineering tests, RVTP is

proved to be more efficient and reliable. Besides, it can make a

unified design at the target.

REFERENCES

[1] ECSS-E-ST-50-12A, Space Engineering - SpaceWire - Links,

nodes, routers and networks. 24 January 2003.

[2] CCSDS 732.0-B-2, AOS Space Data Link Protocol. Blue Book.

July 2006.

[3] ECSS-E-ST-50-51C, Space Engineering - SpaceWire protocol

identification. 5 February 2010.

[4] ECSS-E-ST-50-53C, Space Engineering - SpaceWire - CCSDS

packet transfer protocol. 5 February 2010.

172

Active Optical Cable for SpW applications
Poster session, Short Paper

Julián Blasco, Olga Navasquillo, David Cano

DAS Photonics

Valencia, Spain

jblasco@dasphotonics.com

Mª Angeles Esteban

Airbus Defence and Space

Madrid (Spain)

Abstract— DAS Photonics and Airbus Defence and Space

(Spain) have been working for more than six years in the concept

of an Active Optical Cable (AOC) for copper SpaceWire cable

substitution. The main advantages that AOC offers are

significant mass and size saving, better flexibility and routing of

the cable and immunity to EMI.

Index Terms—Active Optical Cable, low mass, SpaceWire,

high speed, fiber optic

I. INTRODUCTION

Communication harness constitutes a major part in mass

and volume of current satellite and onboard equipment. The

main problems of the typical copper or coaxial cables used are

the high mass and some problems derived of the technology,

like low immunity to EMI or difficult to be routed. In order to

assure the harness to be free of EMI or noise, it is needed to

increase the diameter of the cables, increasing in consequence

the volume/mass.

The limitations of the copper cables, as base for satellite

harnessing, are used as main arguments to switch the actual

technology from copper to optical fibre to be used for payload

and potentially platform applications.

The first and most obvious benefit of harness reduction is a

saving in the mass of the spacecraft. This could reduce launch

cost significantly, may make the spacecraft easier to balance

prior to launch, and reduces the fuel required to manoeuvre the

spacecraft after launch. Moreover, harness mass savings could

allow additional payloads to be flown, increasing the spacecraft

capability.

Another benefit of optical cables is a decrease in the cable

diameter, making it easier to route through the spacecraft. In

addition, it does not cause or is affected by EMI and avoids

ground loops.

DAS Photonics and Airbus Defence and Space have been

working together developing an opto-electronic conversion

module to use fibre optic without impacting the current IF

elements in on-board equipment.

The first demonstration of the technology was performed in

the Spanish Space Program and the next steps done consisted

in two in-orbit validations to verify the suitability of the

technology under real space conditions. Finally a GSTP was

executed where first Active Optical Cables (AOC) for

SpaceWire (SpW) were developed.

Mainly, an AOC consist in two transceivers that manages

the electro-optical conversion of equipment data, being

connected using fiber optic.

In this paper are presented the main tasks performed on the

design and technology verification, as well as related results to

date.

II. FIRST DEVELOPMENTS

The first works were focused in the validation of the optical

technology intended to be used in the opto-electronic

conversion modules for digital communications. The initial

developments consisted in a set of optical transceivers to fit

low and medium signal speed:

- Low Speed: this solution, with a maximum data rate

of 10Mbps, covers all control buses such as MIL-

STD-1553 and CAN. Also is suitable to substitute

other low speed links such as TM/TC signals or even

low speed clocks.

- Medium Speed: this solution, with a maximum data

rate of 500Mbps, covers all SpW data links (with low

skew/jitter) usually used from 100 to 400 Mbps. Also

is suitable to substitute other medium speed such a

clocks or commands.

Due to the lack of qualified optical components [1], and in

order to minimize the size and mass, commercial components

were used in the design of the optical transceivers.

The developed models were submitted to several

environmental and mechanical tests in order to validate the

suitability of the technology for space use [2].

Fig. 1. First Active Optical Cable developed by DAS

173

mailto:jblasco@dasphotonics.com

III. IN-ORBIT VALIDATIONS

The successful and promising results obtained in the first

developments brought DAS two opportunities to validate in

orbit a test bed of the AOCs.

First flight opportunity raised under the frame of the TDP8

project, framed in the Alphasat mission, where DAS delivered

a flight optical board with four optical transceivers for digital

communications. The experiment allowed the demonstration of

the performance of 4 optical links working @1Mbps and 4

optical links working @100Mbps.

Fig. 2. Optical experiment boarded on TDP8 for Alphasat

As part of the in-orbit validation activities, the non space

qualified components were submitted to a complete space

assessment campaign with good results.

Fig. 3. Constructional analysis of photonic component

Although the satellite suffered some delays, finally was

launched in 2013. At this moment DAS is receiving telemetry

from the experiment with no detected errors in the optical links

or visible degradation in their performance.

The second flight opportunity was in Proba-V satellite,

where DAS and T&G Elektro developed a test bed to validate

MTP connectors and multi-fibre cables. Thanks to the good

results during TDP8 activity, T&G trusted DAS to design and

manufacture an experiment that allowed both companies to

demonstrate the feasibility of the technology for future space

applications.

This flight opportunity consisted in single equipment with 4

optical channels SpW compatible working at 100Mbps and

interconnected through two MTP connectors. Each optical

channel was configured with different power margin between

transmitter and receiver in order to check the complete losses

(including MTP connector) in the channel.

No errors have been detected in any channel except for the

channel_2, but since the distribution is centered in each

equipment switch on, it seems that the error is produced due to

a bad start of the equipment. The start procedure was changed

on flight, and no errors were detected beyond this change.

Fig. 4. Optical experiment boarded on Proba V

This experiment was executed within a very stringent

schedule of 6 months. The Proba-V satellite was launched in

April 2013. Collected data from the experiment telemetry

allows to have more than one year of results producing

representative BER information of the optical channels.

TABLE I. 1 YEAR PROBA-V EXPERIMENT BER

Optical channel

@100Mbps
BER values

1 1.86E-16

2 (max. power margin) 3.43E-12

3 1.86E-16

4 (min. power margin) 1.86E-16

IV. AOC FOR SPACEWIRE

With the information collected from previous activities

DAS started a GSTP focused on the development of an AOC

for buses and point-to-point protocols being SpaceWire one of

the target applications.

Since SpW is a protocol well known and used in intra-

satellite communications [3], the key points of the new AOC

design was to improve such points where optic fiber has strong

advantages against copper, minimizing the impact on the

equipment in terms of power consumption and signal integrity.

Another key point was the reduced electrical connector used in

SpW. The uD-9 has very low profile and this fact constrained

the mechanical design of the AOC in order to have the same

size than the uD9 connector plus the backshell.

Fig. 5. SpW AOC transceiver block diagram

174

During GSTP execution not only the design of the AOC

was performed, also a devoted components assessment

campaign complementary to previous ones was executed,

including life test and constructional analysis.

The GSTP activity was divided in following stages:

- Requirements identification

- Detailed Design of the optical transceivers

- Components assessment for non-qualified EEE

- Manufacturing of the AOCs

- Test campaign at module level

The results of test campaign as well as the summary of

OAC performance will be presented in following paragraphs.

V. COMPONENT ASSESSMENT

Since photonic and some EEE parts used in the optical

transceivers are non space qualified because of the lack of

available parts for these technologies, a components

assessment was needed to be performed. The obtained results

along with the previous information from other activities, the

viability of the use of the parts will be determined for future

missions.

Previous data results from other activities were used to

complement the GSTP components assessment:

- Outgassing and residual gas test (Previous data;P)

- Catastrophical Optical Damage (P)

- Thermal Vaccuum Cycling (P)

- Heavy Ions (P)

- Life test (new test)

- Thermal Conductance analysis

The life test of 1000 hours @85ºC was performed on 20

samples of each component type used in the AOC. No major

degradation was observed during the life test and all

components survived to the test.

0 50 100 150 200 250 300 350 400
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Number of samples

O
p
ti
c
a
l
P

o
w

e
r

(d
B

m
)

Laser optical output power - (group 1)

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

Fig. 6. Life test, output optical power of first set of 10 lasers

Also, a verification programme of the soldering process for

the assembly of micro-D connector to the board inside the

transceiver of the AOC was performed. Since in order to

optimize the size of the optical transceiver an approach not

supported by ECSS[4][5]was needed to be used.. This

verification produced successful results and the process was

validated for this application.

Fig. 7. uD9 soldering assement

VI. SPW AOC TEST CAMPAIGN

Four complete SpW AOCs were manufactured and

submitted to the test campaign. This test campaign was

performed using representative values and profiles on all test in

order to cover as much as typical application cases as possible

for future flight missions.

Fig. 8. SpW AOC

Test campaign at AOC level included the following

tests[6]0:

- Functional tests

- Mechanical tests (vibration and shock)

- TVC: 8 cycles -40/85ºC

- TID: 150Krad @ 360rads/min

- Single Events (protons): 60,100,200MeV

None of the tests comprised in the test campaign produced

destructive or detectable degradation on the performances of

the AOC.

Fig. 9. Errors distribution at 200MeV, flux 1E8 p/cm2/s, fluence 1E11 p/cm2

For protons irradiation some errors were detected due to

single events. This experimental data allowed inferring future

175

behavior in flight mission extracting the expected BER figure.

For a GEO mission (15 years) the expected BER will be from

3.6E-18 to 1.7E-16 and for a LEO mission (8 years) the

expected BER will be from 5E-18 to 1E-15. Both values are

much lower than the requirement for a SpW communication,

1E-12.

Radiation tests such as gamma and proton were performed

upon the transceivers with and without the mechanical package

in order to measure the different behavior of the AOC. No

important effects were measured in both tests.

Fig. 10. TID test, transceivers with and without mechanical package

VII. SPW AOC PERFORMANCES

As results of the GSTP activity was generated the first

commercial version of an AOC for SpW copper cable

replacement. Following table presents the current

specifications of a copper cable and the measured values for

the AOC for an example case of a 1 meter long cable.

TABLE II. COPPER SPW CABLE VS AOC

Especification Copper cable AOC

Mass 87 grams <30 grams

Data rate <400Mbps
<400Mbps by design

Tested up to 380Mbps

Jitter/Skew 2000ps 190ps

Power
consumption

NA <700mW @ 200Mbps

Bending radius >45mm >25mm

Temperature
range

-200 to +180ºC -40 to +85ºC

The scalability of the AOC allows to improve the mass

saving with longer cable lengths since the mass cost of a

copper cable is around 80-100g/m but for an AOC is 4-10 g/m.

A real study of mass saving was performed comparing

expected mass figures of harness and connectors.

TABLE III. MASS FIGURES OF SPW CABLE AND AOC

Connector mass

(g)
Cable mass (g/m)

Copper cable
Min 9,5 83

Max 23,5 100

AOC cable
Min 12 1,2 (x 4)

Max 15 2,4 (x 4)

Using this table values the mass of a cable of 1m in copper

will be around [102, 147]g whereas for optical fiber cable the

mass is between [29, 39.6]g

This means a mass saving of more than a 70% per cable.

For longer cables the mass saving will be higher. For 10 m

the mass saving could reach the 90%.

VIII. CONCLUSSIONS AND RECOMENDATIONS

The results from the GSTP activity were quite positive and

DAS and Airbus think that the developed AOC could be a

potential replacement for copper SpW cable for future

applications for those scenarios where a mass reduction of

current Spw harness is needed.

The major drawback of the AOC is the power consumption

as well as the need of external powering the transceivers since

there are no spare pins available at uD9 interface connector.

Next ECSS issue will allow to use different connectors that

changing minimally the mechanical package and the electrical

design make possible to use a connector pin as power input to

the transceiver.

At this moment DAS continues performing tests with

debug equipment in order to complete all expected possibilities

in future missions when connecting onboarded equipments.

After these tests DAS expects to have a flight opportunity to

check in real environment the SpW AOC (not only the

technology as in previous flight opportunities) in order to raise

TRL level of the solution.

ACKNOWLEDGMENT

DAS and Airbus Defence and Space want to thank the

support received from ESA during GSTP execution, especially

the help from the technical office, Nikos Karafolas, and also

the rest of ESA departments involved in orbit validation,

SpaceWire group and component selection.

REFERENCES

[1] ECSS-Q-ST-60C Rev 2. Electrical, electronic and

electromechanical (EEE) components.

[2] ECSS-Q-70-71A Rev.1. Data for selection of space materials

and processes. Revision 1 of First issue. June 2004

[3] ECSS-E-ST-50-12C. SpaceWire - Links, nodes, routers and

networks. Second issue. July 2008

[4] ECSS-Q-ST-70-08C. Manual soldering of high-reliability

electrical connectios

[5] ECSS-Q-ST-70-38C. High-reliability soldering for surface-

mount and mixed technology.

[6] ESA PSS-01-609. The Radiation Design Handbook.

ECSS-Q-ST-60-15C. Radiation hardness assurance- EEE
components

176

SpaceWire to SpaceFibre Bridge
SpaceWire Components, Short Paper (Poster Presentation)

Sridhar Sundaram Natchinarkiniyan (Author)

Astrium GmbH

Ottobrunn, Germany

n_sri_ss@yahoo.co.in

Paul Rastetter (Mentor)

Astrium GmbH

Ottobrunn, Germany

paul.rastetter@astrium.eads.net

Abstract—This paper describes the architecture of a

SpaceWire (SpW) to SpaceFibre (SpFi) bridge which merges

multiple SpaceWire links from various communication nodes to

the virtual channel buffers of a single high speed SpaceFibre link.

The main goal is to make the bridge highly configurable and to

allow each SpaceWire links to transmit data packets with full

throughput and independent of its length without out blocking

the network even if one is defected.

Index Terms—SpaceWire, SpaceFibre, high speed serial link,

bridge, flight compatible.

I. INTRODUCTION

SpaceWire has been proven to be one of the most efficient,

low latent, fault tolerant high speed serial communication

interface by various missions of space communities around the

world for years now. With the introduction of the SpaceFibre

technology which is a spin-off from the existing SpaceWire

protocol, higher data rates above 2Gbits/s and comparatively

lesser cable weight is envisaged. With the escalation of highly

complex network of devices for space environment, the on-

board communication links should also be flexible to the

devices to support both SpaceWire and SpaceFibre

technologies with its maximum potential. This proposed

bridge will expand the possibility of communication between

instruments which support SpaceWire and instruments which

support SpaceFibre without any bandwidth loss, minimized

mass and expenditures for box to box communication.

II. ARCHITECTURE

The architecture of the bridge contains eight SpaceWire

links which will be merged to eight virtual channel buffers of

a single SpaceFibre link, of which six spacewire links will be

used to transmit the data from various instruments. The

remaining two SpaceWire links will be connected to some

spacewire compatible micro-processer which will be used to

control and configure the bridge through the Random Memory

Access Protocol (RMAP). For our test the Multi-DSP

Architecture (MDPA) processor from Airbus DS was used to

control and configure the bridge. The SpW and SpFi IPs used

in the bridge are from University of Dundee. The integration

of the SpW and SpFi IPs is easy, because the SpFi protocol is

designed to work with the SpW protocol, the structure of the

data packets of both protocols are almost the same.

Figure (1). Packet Structure(1)(5)

The data packet structure is given in the figure (1). The

destination address will be the first data to be transferred from

the header following the other necessary information about the

packet. A single data frame of SpaceWire consists of 9-bits,

MSB is the control character and the remaining 8-bits are data

bits. In the SpaceFibre there is a separate 32-bit data bus and

4-bit control bus. A simple state machine can be used to

convert the data and the control characters from SpaceWire to

SpaceFibre format and vice versa. With this state machine one

data word is transmitted in each clock cycle. The transmit

clock frequency of the SpFi was set to 125 MHz which will

transmit with 2.5Gbps and the SpW transmit clock frequency

was set to 20MHz which will transmit with 200Mbps. The

system clock frequencies for both IPs were set to 62.5 MHz.

For different test cases the SpW transmit clock frequency can

be variable.

The bridge was implemented with all the IPs like the

RMAP controller, the Spacewire router, eight SpW links, one

SpFi link and the necessary configuration and status registers

for the whole design. Various FIFO interfaces were built

around the IPs for proper flow control and sampling on both

directions between the IPs. The difficulties of clock domain

crossing within the design were solved by using dual port

synchronous FIFO interfaces wherever required. The design

was verified with Model Sim simulation. The test was

conducted in various directions for data rate, fault tolerance

and failure propagation. The design of the whole architecture

is presented in figure (2).

Header

Cargo

EOP/EEP

177

Figure (2). Architecture of the SpW to SpFi Bridge

III. ANALYSIS AND IMPLEMENTATION

The data rates of the bridge was tested for two

possibilities, all SpW links transmitting in maximum data rate

of 200Mbps and each links transmitting in varying data rates

of maximum at 200Mbps to the minimum of 2Mbps. For the

fault tolerance of the bridge various error cases were

introduced in the design and verified for non-block operation

of the bridge. Since the SpW router used in this bridge is

working with non-blocking worm-hole routing technique,

even if one link is defective and transmits for infinite time

period, a timeout mechanism in the router can be implemented

to recover the defective port from the software level. So each

SpW link is completely independent from any other and

would not affect the operation of the bridge.

The general operation of the bridge is configurable

according to the implementation of the user in the design via

various generics and configuration registers. For our

implementation we needed some restrictions in the routing

table for the communication of each sender and receiver. For

example the SpW router used in the bridge contains seventeen

ports, six data SpW links are considered as links coming from

various instruments connected in the network and they are not

allowed to communicate with each other. These data SpW

have only access to transmit data to their respective virtual

channel buffers of the SpFi or transmit housekeeping data via

one of the two control SpW links. The RMAP controller can

communicate only with one of the control SpW links. One of

the eight virtual channels was used bi-directional and other

virtual channels can only receive the data from their respective

SpW links. The figure (3).shows the detailed routing

permission table implemented in the bridge.

Components

Data
SpW
(To)

Ctrl
SpW

RMAP Data VC Ctrl VC

Data SpW
(From)

Not
Allowed

Allowed Not
Allowed

Respective
VCs(same
number)

Not
Allowed

Ctrl SpW

Allowed Not
Allowed

Allowed Not
Allowed

Respective
VCs(same
number)

RMAP Not
Allowed

Allowed Not
Allowed

Not
Allowed

Not
Allowed

Data VC Not
Allowed

Not
Allowed

Not
Allowed

Not
Allowed

Not
Allowed

Ctrl VC Not
Allowed

Only
last one

Not
Allowed

Not
Allowed

Not
Allowed

Figure (3). Implemented Routing Permission Table for the bridge

SpW Link 7

Configuration

Block

MDPA Controller

SpW Link 6

Configuration to SpFi
Configuration to all SpW

Configuration to Router

RMAP

Controller

SpW to SpFi

Converter

 Routing

Mechanism

SpW Link 0

SpW Link 1

SpW Link 2

SpW Link 3

SpFi VC 0

SpFi VC 1

SpFi VC 2

SpFi VC 3

SpFi VC 7

SpFi to SpW

Converter

SpFi VC 6

Multiple SpW links

Single SpFI Link

TX

R

X

RX

RX

SpW to SpFi Bridge

Data Links

Control Links

Control VCs

DataVCs

TX

178

TCL

IV. SYNTHESIS AND HARDWARE EMULATION

The hardware implementation of the bridge was proved in

Chip-It hardware emulation systems from Synopsys. For

testing the design in the Chip-It systems a synthesizable test

bench was designed with packet generators, packet checkers

and a loopback mechanism. The random packet generators are

capable of generating SpW and SpFi data with a CRC (cyclic

redundancy check) attached to it before the end of packet

marker. The packet checkers can receive the incoming data to

check for the CRC and generate the number of packets

received and the number of corrupted data in transmission.

The necessary information about the packet is included in the

header of the packet.

The Chip-it hardware emulation system uses UMR-Bus

protocol from Synopsys to communicate with the design under

test. The design under test (DUT) was connected to the APB

bus as one of its slaves through a configuration register block

which acts as the medium to transmit data from the external

world to the bridge and vice versa. The packet generators and

checkers were used to emulate the actual instruments

transmitting SpW packets. A separate SpW FIFO interfaced

was also attached with the APB bus for the transmission and

reception of the RMAP packets from the external world

through the MDPA for the configuration of the bridge. The

slaves connected to the APB bus can be accessed by the UMR

bus through an APB to UMR Bridge and the data to be

transmitted can be given through TCL commands from a PC.

The transmit and receive interface above the DUT contains

SpW and SpFi IPs or dual port FIFO interfaces to pass the

data from the generators and checkers to the DUT. For the

first set of test in the Chip-it the FIFO interfaces were used

inside the DUT and in the test bench to transmit and receive

data in same data rate like the SpW links.

Figure (5). Hierarchy of Chip-it Test Bench

 The input data for the packet generators will be written to

the registers in the Chip-it test bench and the outputs from the

checkers like the number of received, defective packets and

various other data about the transmission can also be written

in the register blocks. By accessing those register blocks with

TCL commands we can know the operation of the bridge. The

reason for using the FIFO interfaces instead of the SpW links

is because of reduced availability of the clock buffers in the

hardware. After the successful implementation of the bridge in

the hardware and tested for normal operation it transmitted

without any failure. Then the behavior of the bridge was

observed with some failure test cases. After all these testing

the bridge has been proven to be robust, fault tolerant and non-

blocking even with maximum throughput. The second set of

test was implemented in the Chip-it systems with three SpW

links for data transfer and one for controlling the bridge

through the MDPA controller. The behavior of the bridge was

same like the first test but with little latency. The hierarchy of

the Chip-it test bench is explained in figure (5).

The Chip-it emulation hardware contains two Xilinx

Virtex-5 (XC5VLX110) FPGAs. The bridge design uses very

less resources when synthesized for Virtex-5 FPGA. The area

summary for Virtex-5 is in the figure (6).

Resources Used Quantity

I/O Ports 579

DSP48s 1(64)

Non I/O Register bits 8314(12%)

Block RAMS 15(128)

LUTS 12076(17%)
Figure (6). Resource Utilization of the bridge

V. FUTURE ADD-ONS

The next step of addition in the bridge would be the

timecode interface. It has been planned to implement a

separate network from this bridge to transmit the timecodes

from the SpW to the broadcast interface of the SpFi link.

VI. CONCLUSION

The results obtained from the implementation of the bridge

shows that it is highly configurable, robust and fault tolerant

which is also very easy to adapt in any network with devices

supporting the SpW and SpFi standards. This architecture will

comparatively reduce the total mass and costs. With the

future add-ons and optimization to this current bridge, it will

be compliant with most of the radiation hardened FPGA

technologies.

REFERENCES

1) ECSS, “Space Engineering: SpaceWire- Links, nodes,

routers and networks”, EECS-E50-12C, 31 July 2008.

2) SpaceWire Codec IP, User Manual, Uod_Link_User 2.3,

Chip-It Test Bench

Packet Checkers

UMR TO APB Bridge

Config & Status Registers SpW FIFOs

Tx/Rx Interface

Loopback

Test Bench
Packet Generators

DUT

179

12 March 2008, STAR-Dundee Ltd, www.star-dundee.com

3) SpaceWire CODEC IP, VHDL Functional Description,

Uod_Link 2.3, 12 March 2008, STAR-Dundee Ltd, www.star-

dundee.com.

4) ECSS, “Space Engineering: SpaceWire- Remote Memory

Access Protocol”, ECSS-E-ST-50-52C, 5 February 2010.

5) SpaceFibre Specification, Draft F3, 10 September 2013,

Space Technology Center, University of Dundee.

6) SpaceFibre VHDL IP Core, User Manual, Doc-ref 1.4, 17
th

January 2013, STAR- Dundee Ltd, www.star-dundee.com.

7) CHIP-it Iridium/Copper Edition, Handbook, D-2009.12,

Synopsys, Inc. www.synopsys.com.

180

http://www.star-dundee.com/
http://www.star-dundee.com/
http://www.star-dundee.com/
http://www.star-dundee.com/
http://www.synopsys.com/

Protocols for Deterministic Packets Delivery in
SpaceWire Networks
Networks and protocols, Short Paper

Dmitry Raszhivin, Yuriy Sheynin
State University of Aerospace Instrumentation

St. Petersburg, Russia
dmitry.raszhivin@guap.ru, sheynin@aanet.ru

Abstract— Tasks of deterministic packet delivery in
conventional SpaceWire Networks are considered. The published
draft of the SpaceWire-D is considered in the general context of
time division (TDMA) multiplexing in comparison with FlexRay,
TTP, TTEhernet, ZigBee, etc. Advances for efficient TDMA in
conventional SpaceWire networks – static and dynamic time-slot
segments, variable epoch duration, multiple transport protocols
support, “trusted” end-nodes are considered.

Index Terms— SpaceWire, Networking, Spacecraft
Electronics.

I. INTRODUCTION

Time Division Multiplexing is a well-known and widely
used in network technologies channel access method. Time
division guarantees for nodes of a network predictable
transmission characteristics with deterministic latency. Such
industrial networks, as FlexRay, TTCAN, TTEhernet, use
TDMA principles to obtain guaranteed transmission
characteristics. St. Petersburg State University of Aerospace
Instrumentation investigates time division multiplexing
support for SpaceWire transport protocols developments in
correspondence with industry requirements.

II. TIME DIVISION MULTIPLEXING IN COMMUNICATIONS

Time multiplexing is actively used in 2G and 3G mobile
networks, as well as in some wireless personal networks, such
as Bluetooth, ZigBee, Ubiquiti. However, SpaceWire
developers are primarily interested in the experience of using
time division multiplexing applying to wired networks.

A. TTCAN

The time-triggered CAN protocol [1] is a higher layer
protocol on top of the CAN data link layer. TTCAN provides
mechanisms to schedule CAN messages in a time-triggered
way as well as in an event-triggered way. It allows using CAN-
based networks for closed-loop control. Also the real-time
performance in CAN-based in-vehicle networks increases with
the use of TTCAN.

The time-triggered control and thus synchronization of the
involved control units in a network are done via a reference
message. All participants of the TTCAN network identify the

reference message by its identifier. As soon as the first bit of
the frame (Start of Frame: SOF) is recognized, the local time
unit is synchronized. The accuracy of the local time units
depends only on the physical signal propagation of the bus line
and is thus is neglectable. Individual TTCAN participants are
configured to know when to send their frames after having
received the reference frame.
The time between two reference frames is called the basic
cycle. Basic cycles are not always identical in order to be able
to transmit messages at different periodic frequencies. The
system matrix comprises several basic cycles and is repeated
indefinitely until the vehicle network is turned off.

B. FlexRay

FlexRay [2] is a fast, deterministic and fault-tolerant bus
system for automotive use, based on the experience of
Daimler-Chrysler with the development of prototype
applications and the developed by BMW byteflight
communication system.

FlexRay works according to the TDMA principles.
However, the fixed allocation of the bus bandwidth to the
FlexRay components or messages by means of fixed time slots
has the disadvantage that the bandwidth is not fully exploited.
For this reason FlexRay subdivides the cycle into a static and a
dynamic segment. The fixed time slots are situated in the static
segment at the beginning of a bus cycle. In the dynamic
segment the time slots are assigned dynamically.

In order to implement synchronous functions and optimize
the bandwidth by means of small distances between two
FlexRay messages, distributed components in the
communication network require a common time base (global
time). For clock synchronization, specific FlexRay messages
tagged as synchronization messages are transmitted in the static
segment of the cycle. With the aid of a special algorithm, the
local clock-time of a component is corrected in such a way that
all local clocks run synchronously to a global clock.

C. TTP/С

The TTP/С [3] frame consists of one byte header, up to
236 bytes of the payload and 3-byte CRC field. TTP/C
implements the time-division multiplexing approach based on
MEDL (Message Descriptor List), which shall be loaded into

181

every node. The MEDL contains predefined static data to
control when a message shall be sent on or received from the
communication channels.

Each MELD string consists of the following main fields:
the global time when the message shall be sent or received;
the memory location of the message intended to be sent or
received; the attributes field that includes the message type
(input or output), the message length, etc.

To determine whether a node is operating correctly the
membership service is used. Each bit in the membership field
corresponds to a particular cluster node. When a node is
allocated for data transmission at a particular time unit, all
other nodes in the cluster analyze the input data so as to
determine whether this node operates correctly.

D. TTEhternet

TTEthernet [6] is implemented on the basis of Ethernet. It
provides time-triggered communications and global clock
synchronization as well as a fault-tolerant operation mode.
TTEthernet offers three types of traffic classes: Time-
Triggered, Rate-Constrained and Best-Effort.

TTEthernet implements the TT class of QoS by the
combination of resource reservation in space and time-
division multiplexing. Each TTEthernet device in the network
shall send TT frames only at predefined points of time to
avoid collisions. On the other hand, frames, which are
transmitted over different paths, can be sent to the network at
the same time. To support this scheme TTEthernet implements
clock synchronization mechanism.

In order to prevent error propagation from failed
components the fault-tolerant TTEthernet network
configuration deploys two independent channels for each
connection. Safety-critical TTEthernet controllers shall be
able to transmit and receive messages using two
communication channels simultaneously.

In order to detect a failure of nodes within a cluster,
TTEthernet provides membership service similar to TTP/C.

III. SUGGESTIONS

To develop a Transport protocol conforming space industry
demands, [5], we propose flexible epoch with static and
dynamic segments, guarding port operation and redundant time
master operation.

A. Epoch ogranization

Each new time code indicates the beginning of a new time
slot. Number of time slots in the epoch can vary from 2 to 64.
The question is – how the node should determine the slot
number basing on the time-code value.

Let a network member know a total number of time-slots in
the epoch. It increments a slot's counter on receiving of the
next valid time-code. This counter is reset to zero when the
maximum value is reached. The disadvantage of this method is
loss of transparency that is pawned in SpaceWire-D draft: the
time-slot number is equal to the received time-code value.

Router synchronization problem arises if two routers were
turned on at different time moments, as it is often done in real

equipment. When the second router receives the first (his) time
code, it would be treated as the start point for the first time-slot.
At the same time this time-code would be subsequent for the
first router that started before the second one, and the routers
come out of synchronization. The problem is shown in Fig. 1. :
the router K1 is the time-master, it distributes time-codes, the
epoch consists of 4 time-slots. The second router K2 turns on
two slots later and receives a time-code with value “3”.
However, it can’t unambiguously determine a place in the
epoch of the current time-slot using the incoming time-code
value, because time-code value is not equal to time-slot
number.

Fig. 1. Time-slots counter

Restriction on the multiplicity is another approach to epoch
organization. Let’s limit the value of time-slots in the epoch by
the values that are the power of two: 2, 4, 8, 16, 32, and 64. All
routers should know the value of power n, for two time-slots
n=1, for 4 slots n=2, for 8 slots n=3 etc. All network
participants can identically determine time-slot number while
receiving new time-code if value n is pre-defined for them.

B. Port Guardian

A lot of network technologies, described above, suppose
port guardian mechanism in order to protect the network from
faulty nodes that try to transmit data at appropriate time-slots.
Often such a "watch dog" is implemented as a separate device
or chip in order to increase fault tolerance. Port guardian
guarantees that the node would not transmit data during wrong
time-slots and eliminates «babbling idiot» problem. Port
guardian mechanism is supposed to be included to SpaceWire
routers or nodes in order to improve network fault-tolerance of
a deterministic SpaceWire network.

The Fig. 2. shows a SpaceWire network with time division
multiplexing support. Network routers, marked as «Net guard»,
store scheduling table and permit data transfer for nodes only at
proper time moments. The central part of the router is the
standard SpaceWire router.

Fig. 2. Network with network guardians

The Fig. 3. shows «Net guard» router's port. This router has
the ability to block transmission that violates the predetermined
during configuration time scheduling table.

182

Fig. 3. Port guardian

C. Shadow master

An important task for the time division multiplexing
protocol is to provide a fault-tolerance mechanism for the time
markers distribution [4]. Loss of a single time-code with
«master-slave» time synchronization leads to two time-slots
loss; full time-master failure leads to the absolute network
closedown.

Shadow master is one of possible solutions to increase time
distribution fault-tolerance. This backup master can send time-
codes in addition to the primary time master. It should be noted
that this is a violation of the normative part of SpaceWire
standard, that says that only one channel interface in the whole
network should actuate an active tick signal. The Shadow
master continuously checks the status of the primary time
master by controlling the validity of incoming time code (Fig.
4.). If the shadow master does not receive valid time code
within a certain predefined time, it would start time codes
distribution itself.

Fig. 4. Time backup master

D. Dynamic and static segments

It is necessary to integrate scheduled traffic and event-
triggered traffic to effectively utilize psychical resources of the
network. An epoch is divided into two parts for it; those parts
are used for data transmission of scheduled or event-triggered
traffic (Fig. 5.).

Scheduled data transmission goes during static segment,
flow control manages epoch division into slots. During
dynamic segment all TDMA mechanisms are switched off,
network runs at “classical” SpaceWire mode. The last slot in
the epoch is designed to clean the routers' buffers of data,
which has not been sent, to transmit an EEP or EOP symbol
and to prepare the conversion to the static segment.

Fig. 5. Static and dynamic segments

IV. CONCLUSION

The paper gives an overview of several network
technologies, that use time division multiply access for
deterministic data transmission. Several mechanisms are
suggested for organization of deterministic packet delivery
protocol in SpaceWire networks. It could be used for
scheduling in new Transport protocol developments based the
requirements of space industry and in further developments of
the SpaceWire-D or its successor protocols. .

REFERENCES

[1] Fuehrer, T., Mueller, B., Hartwich, F., and Hugel, R., "Time
Triggered Communication on CAN (Time Triggered CAN-
TTCAN)," SAE Technical Paper 2001-01-0073, 2001

[2] A. Hanzlik, “A Case Study of Clock Synchronization in
FlexRay”, Research Report 31/2006 Technische Universitat
Wien, Institut fur Technische Informatik, 2006

[3] H. Kopetz, “Real-Time Systems. Design Principles for
Distributed Embedded Applications”, Kluwer Academic
Publishers, Boston, 1997.

[4] W. Steiner, R. Maier, D. Jameux, A. Ademaj “Time-triggered
services for SpaceWire”, Proceedings of the 2nd International
SpaceWire Conference, 2008

[5] Lavrovskaya I., Olenev V., Korobkov I., Dymov D., “Analysis
of the Transport Protocol Requirements for the SpaceWire On-
board Networks of Spacecrafts”, Proceedings of the 15th
Conference of Open Innovations Association FRUCT, Saint-
Petersburg, Russia, 21-25 April 2014

[6] A. Ademaj, H. Kopetz, P. Grillinger, et al., “Fault-Tolerant
Time-Triggered Ethernet Configuration with Star Topology”,
available on-line

buffer

buffer

fct

data

183

HANDS：A Heterogeneous Aerospace Network

Architecture For Disaggregated Satellites based on

SpaceWire
SpaceWire networks and protocols, Short Paper

Wei Han, Baosheng Wang, Baokang Zhao*, Jing Tao, Zhu Tang

College of Computer,

National University of Defense Technology

Changsha, Hunan, P.R. CHINA

{weihan, bswang }@nudt.edu.cn

Abstract—Fractionated spacecraft such as system F6, has the

potential to significantly enhance the adaptability and survivability

of space capabilities, while also shortening the development time

for complex space systems. It has become an important trend in the

development of small sized satellite.

SpaceWire has been widely adopted in satellite for its high

throughput in communication and simplicity in design, and it is

believed that SpaceWire will be deployed as a common standard in

small satellites. However, it lacks the capability to communicate in

the fractionated spacecraft scenario.

In this paper, we propose HANDS, a Heterogeneous Aerospace

Network architectures for Disaggregated Satellite based on

SpaceWire. HANDS consists of three parts. First, satellites

communicate with their fixed identifier and routing among them

could be realized by identifier. The introduction of identifier

assures the zero-loss packet during handover process. Second,

Egress Router(ER) on satellites maintains reachable information of

onboard equipment and shields the difference of the equipment’s

location. The introduction of ER helps to keep the SpaceWire

communication standard in single satellite and strengthens the

scalability of the network. Third, the equipment’s address is coded

globally, which benefits the networking between equipment. We

also perform careful analysis and discussion on characters of

HANDS and show the benefits of this architecture.

Index Terms—SpaceWire, Fractionated spacecraft, network

architecture, identifier.

I. INTRODUCTION

System F6 program
[1]

, lead by DARPA, is proposed to

develop and demonstrate the enabling technologies for

fractionated spacecraft architectures. As is shown in Fig 1, the

fractionated spacecraft are a set of disaggregated satellites

whose function inherit from a single large satellite. Function of

traditional satellite is divided into several independent parts

and each of them is realized on certain fractionated satellite.

These spacecrafts are wirelessly-interconnected and capable of

seamlessly sharing a variety of resources such as computation,

storage and so on. Such an architecture has the potential to

significantly enhance the adaptability and survivability of

satellite in aerospace, while also shortening the development

time for complex space systems. More security policies and

fault tolerance scheme could be realized on satellites and the

reliability could be improved at the same time.

Fig. 1. Notional depiction of the F6 on-orbit demonstration [1]

Taking into account that SpaceWire lacks the capability to

communicate in fractionated spacecraft, we propose HANDS, a

Heterogeneous Aerospace Network architectures for

Disaggregated Satellite based on SpaceWire which provide a

solution to integrate wireless network into the wired one. In

this architecture, satellites communicate with fixed identifier

and routing among them could be based on identifier. The

introduction of identifier assures the zero-loss packet during

handover process. Egress Routers(ER) on satellites maintain

reachable information of onboard equipment and shields the

difference of their location. The equipment’s address is

globally coded and can promote fast routing and switching on

satellite network.

II. APPLICATION SCENARIO

The proposed application scenario is shown in fig 2.

Traditional satellite is disaggregated into several wirelessly

184

interconnected modules (S1,S2,S3,S4). Its function is divided

into several independent parts at the same time. Satellite S1

provides computing and storage resources. S2 collects

environmental information through sensors. S3 is used to

provide high speed inter-satellite link (ISL). S4 supports high

speed ground-satellite link (GSL) between fractionated

satellites and gateway on the earth. Communication inside each

spacecraft adopts SpaceWire standard but not between

satellites. All fractionated satellites share information and

resources through wireless communication which plays an

important role in providing high speed information exchanging

between fractionated satellites.

S2

S1

S3

S4

Traditional Satellite

Fractionated Satellites

Computing & Storage

Sensors

High Speed GSL

High Speed ISL

Ground Gateway

Other Satellite

Fig. 2. Scenario of fractionated spacecraft

III. SYSTEM ARCHITECTURE

A. HANDS model

Wireless Network

ER2

ER1

ER3

ER4

Router1

Router2

Node2
Node3

Node5

Node6

Router1

Node2Node1

Router1

Node1

Router1

Node2
Node1

ID1

ID2

ID3

ID4

Fig. 3. Model of HANDS

There are mainly three different roles in HANDS. As is

shown in Fig 3. Node is the data source on satellite and has an

independent address. Router is responsible for packets routing

and switching on satellite. Egres Router (ER) works as an

gateway between equipment on satellite it belongs to and that

on other fractionated satellites. The fractionated spacecraft

forms an WLAN(Wireless Local Area Network) in space and

communicate through ER. Communication between satellites

adopts spacewire standard which is not available in this

scenario. ER is responsible for processing and switching

packets in wireless network so that heterogeneous network

could cooperate to form an unified architecture.

B. Characters of system

1) Satellites communicate with fixed identifier: In HANDS,

each satellite or teminal has a fixed identifier which is used for

to communicate with other satellites or terminals. Address of

satellites may change while identifier remains the same and is

globally unique. Identifier is also used for rouing between

satellites when address is invalid during the handover process

between fractionated satellites and other terminals (e.g. other

satellite, ground gateway, user terminal). The identifier makes

sure that the packet be sent to destination instead of being

dropped. When packet is transmitted to ER and will be sent to

other terminals which is not within fractionated satellites,

identifier will be encapulated in the packet header.

2) ER maintains connection: ER is mainly responsible for

packet encapsulation and decapsulation when packet passes

through. As the gateway of satellite, ER not only modifies

message but also shields the difference of equipment's location

by NAT(Network Address Translation) which is used to

translate node's private address into the public(globally

reachable) one and vice versa. It maintains an mapping table

which include addresses of node on fractionated satellites and

related addresses which is used to communicate with other

satllites or teminal. In this way, communication between ERs

is transparent to nodes and routers and nodes on different

fractionated satellites would communicate as if they were in

the same satellite.

3) Coding nodes' address globally in fractionated satellites:

The nodes' addresses are coded globally so that the address

can be used directly when communicating with nodes within

fractionated satellites. At the same time, ER could decide the

egress port of the packet by its destinated address. Therefore,

communication between two nodes has no difference with that

on tranditional statellite.

IV. SYSTEM SCENARIO AND DISCUSSION

A. Networking with identifier

Identifier is used to uniquely identify certain sallite or

terminal. Satellites in different location access gateway on the

earth with their identifier and get allocated addresses. Then

communication packets will be routed based on address while

the identifier are still encapsulated in packets which can be

used for routing when addresses are invalid. As shown in fig 4,

fractionated satellites S1 and S2 has their own identifer ID1,

ID2. When they access the ground gateway, they will get

185

address IP1 and IP2 repectively. With the movement of

satellites, link between S2 and gteway will be interrupted while

S1 will access the gateway. In this scenario, when there is a

packet with destination address of IP2(S2) is transmitted to

gateway, it will be dropped because the link between S2 and

gateway has already been disconnected. When identifer is

encapsulated in the packet, gateway will check the identifer

information and know that the destionation is S2. Then packet

will be forwarded to S1 according to ceratin policy and arrive

at S2 correctly.

S1 S2

Gateway

Moving direction

Data flow

Wireless connetction

ID1 ID2

IP1 IP2

ID3

IP3

Fig. 4. Example of data flow during handover process

The introduction of identifer helps to avoid loss of packet

during handover process and improves the utility of the

network. Networking with identifer makes mobility

management of satellites straightforward and specific and is

more suitable to the scenario when network node keeps moving.

Simply using IP address in network cannot meet the demand of

constantly dynamic toplogy of satellites. Nodes on satellites

need some fixed identifier to indicate themselves during the

movement so that packets can be routed to destination when

address is invalid.

B. Egress Rrouter

Payload Priv Addr

Payload Pub AddrID

Payload Pub Addr

Payload Priv Addr

Payload Priv Addr Payload Priv Addr

Priv Addr

Pub Addr

Payload Priv Addr

Payload Priv Addr

Gateway

Storage
Sensors

Router1 Router2

ER1 ER2

Fig. 5. Packet process in HANDS

As shown in fig 5, when communication is going on

between fractionated satellites, ER can decide whether the

packet is sent to the fractionated satellite based on the

destination address and will send the packet through ER

without further operation if it is. Gateway ER of destination

receives the packet and forward it to the destinated node. When

the destination is outside the fractionated satellites(gateway as

an example in fig 5) and packet is passed through ER, ER will

encapsulate identifier information in the packet and translate

the private address into a global reachable address. And when

there is packet received from wireless network, ER will

decapsulate the identifer information and mapping the

destination address into the private one. Then the packet will

be sent to the destinated node.

Packet flow will be divided into two classes based on the

private address range. Processing of packets is avoided in

communication within fractionated satellites which helps to

realize efficient routing and exchanging in satellites. This

process is completed in ERs and is transparent to routers and

nodes on satellites which maintains the compatibility to current

standard. The modularity of the satllites' function does help in

the development of satellites and ER plays a crucial role.

C. Globally addressing

To code the node address globally in the fractionated

satellites is advantageous to fast routing and switching within

satellites. The gateway on satellites could decide the destinated

node's location from the destinated address and can forward

the packet to ceratin egress port directly. Operation that need to

be performed to packets during routing process is reduced as

much as possible. Independent addressing surely benefit a lot

in scalability of fractionated satellites but it involves much

more operations in routing between them.

V. CONCLUSION

In this paper, we propose an heterogeneous architecture

HANDS in fractionated satellites. The main character of the

architecture is that it introduces Egress Router as the gateway

of the fractionated satellites. ER helps to realize networking

with identifier in satellites and transparent routing within the

fractionated satellites. The introduction of identifier is a

innovative way to satellite network and needs further research.

This architecture made least changes to current communication

standard on satellite and provide an solution to communication

in F6 scenario.

ACKNOWLEDGMENT

The work described in this paper is supported by the project

of National Science Foundation of China under grant

No.61202488, No.61103182, No.61379147 the program for

Changjiang Scholars and Innovative Research Team in

University (No.IRT1012).

REFERENCES

[1] Ong E, Brown O, Losinski M J. System F6: Progress to Date[J].

2012.

[2] Pan J, Jain R, Paul S, et al. MILSA: A new evolutionary

architecture for scalability, mobility, and multihoming in the

future internet[J]. Selected Areas in Communications, IEEE

Journal on, 2010, 28(8): 1344-1362.

[3] Shahriar A Z M, Atiquzzaman M, Rahman S. Mobility

management protocols for next-generation all-IP satellite

186

networks[J]. Wireless Communications, IEEE, 2008, 15(2): 46-

54.

[4] ECSS-E-50-12-C. SpaceWire Engineering: SpaceWire-Links,

node, routers and networks ESA-ESTEC. November 2008.

[5] ECSS-E-ST-50-51C. SpaceWire protocol identification. ESA-

ESTEC ,2010.

[6] SpaceNet-SpaceWire-RT Initial Protocol Definition. Space

Technology Centre School of Computing University of Dundee,

DD1 4HN Scotland, UK. October 2008.

[7] Qiao Liyan, Chen Libin, Peng Xiyuan, “Design of spacewirePCI

correspondence card based on IP core”, JOURNAL OF

ELECTRONIC MEASUREMENT AND INSTRUMENT,

Vol.24 No.10, pp.918-923, 2010.

187

Towards Software Defined SpaceWire Networks
SpaceWire Networks and Protocols, Short Paper

Jinzhen Bao, Baokang Zhao, Zhenghu Gong, Chunqing Wu, Wanrong Yu, Zhenqian Feng

School of Computer

National University of Defense Technology

Changsha, Hunan, CHINA

{Jinzhenbao, bkzhao, gong, wuchunqing, wlyu, zqfeng}@nudt.edu.cn

Abstract—In the recent few years, Software Defined Network

(SDN) brings a revolution to network technology. Comparing

with the traditional techniques, SDN has several distinguished

features, including fine-grained flows management, global view

of the network and centralized control, etc. Since SpaceWire is

becoming a standard for high-speed links and networks for use

onboard spacecraft, we argue that adopting the idea of SDN into

SpaceWire networks will bring several advantages, including

open network topology, fine-grained control and QoS, etc.

In this paper, we propose a new software defined SpaceWire

network architecture: SDSpW. In SDSpW, the core of

SpaceWire network contains three roles: controller, router and

end-nodes. The controller plays a center role in managing the

routing, switch within the whole network, while SDSpW router

adopts the control-forward separation philosophy. In the

forwarding plane, SDSpW integrates a fine-grained flow

technology by importing a multi-field flow table. With the

introduction of flow table, SDSpW make it easy to fine grained

flow control and ensures the end-to-end Quality of Service (QoS).

In the control plane, SDSpW controller and router run openSpW,

a customized protocol on top of SpaceWire - RMAP.

We also conduct several experiments in the environment of

mininet to evaluate the performance of SDSpW. Experimental

results show that the controller can monitor the state of whole

network in real time, which makes the maintenance and

management more easily. Moreover, the end-to-end QoS is

guaranteed.

Index Terms—SpaceWire, Software defined network, SDSpW,

Quality of Service.

I. INTRODUCTION

In the recent years, SDN technology has brought a

revolution to network technology. The purpose of SDN is to

make the network dynamic, manageable, adaptable to suit for

today’s network applications. Different from traditional

network architecture, SDN architecture decouples the control

plane from data plane. The basic SDN architecture is shown in

Fig. 1, which consists of data plane, control plane and

application plane. The data plane comprises network elements,

which expose their capabilities toward the control plane via

southbound interface. And it mainly focuses on packet

forwarding. The application plane communicates with control

plane via northbound interfaces in charge of network

management. The control plane is a logically centralized entity

which mainly focuses on (i) translating the applications’

requirements to data plane and (ii) providing the real-time

status of network to application plane.
[1]

SDN application SDN application

SDN northbound interfaces (NBIs)

SDN controller

SDN southbound interfaces (NBIs)

Network

element

Network

elementNetwork

element

Application plane

Controller plane

Data plane

Fig. 1. Basic SDN architecture

Comparing with the traditional network techniques, SDN

has several distinguished features, including fine-grained flows

management, global view of the network and centralized

control, etc.

And in the area of space, SpaceWire is becoming a standard

for high-speed links and networks for use onboard spacecraft.

But there still exists some problems in the SpaceWire network.

1) With the development of On-board system, the scale of

SpaceWire network is increasing. 2) The congestion of

network is still a problem caused by wormhole routing

mechanism. 3) The tasks of spacecraft sometimes change, so

the priority of nodes should change with the tasks to guarantee

the QoS of high priority tasks. The SpaceWire network lacks

feasible mechanism to support the changing.

In this context, we would adopt the idea of SDN into

SpaceWire networks. And we propose a new software defined

SpaceWire network architecture: SDSpW. There will bring

several advantages, including open network topology, fine-

grained control and end-to-end QoS guarantee, etc.

The rest of the paper proceeds as follows. Section 2

describes the architecture of SDSpW. Section 3 presents the

188

design and implementation of SDSpW. In section 4, we

evaluate the performance of SDSpW. And section 5 concludes

the paper.

II. AN OVERVIEW OF SDSPW

The overview of our software defined SpaceWire network

is shown in Fig. 2.

...

...

SpW

SpW

SpW

SpW

SpW

SpW

SpW

SpW

SpW

SpW

SpW

Controller

openSpWNodes

Nodes

SpaceWire Networks

Downlink

Processor

Sensor

Storage

Router

Control

flow

Fig. 2. Architecture of SDSpW

The SDSpW architecture contains three roles: controller,

router and end-nodes. The controller plays a center role in

managing the routing, switch within the whole network, while

the router and nodes take the role of data plane to forward

packets. In the control plane, SDSpW controller and router run

openSpW, a customized protocol on top of SpaceWire - RMAP.

And in the forwarding plane, SDSpW integrates a fine-grained

flow technology by importing a multi-field flow table. With the

introduction of flow table, SDSpW make it easy to fine grained

flow control and ensures the end-to-end Quality of Service

(QoS).

III. THE DESIGN AND IMPLEMENTATION OF SDSPW

In this section, we will give a detail description of the

design and implementation of SDSpW.

A. Data Plane

The data plane consists of SpaceWire router and nodes. The

packets in SpaceWire networks can be routed based on either

path address (range 0 to 32) or logical address (range 32 to

254). Considering the standard of SpaceWire network, we

would make litte modification to make the router and nodes

much more feasible and fine-grained control. We will consider

both the situation of path address logical addresss.

1) Path Addresses (PA)

The routing mechanism using path addresses is also called

wormhole routing. The SpaceWire networks use wormhole

routing to deliver packets as fast as possible with low-level

flow control. Wormhole routing has the advantages of

minimizing the amount of buffers and transmission latency.

However, the low-level flow control leads to link congestion

when a long packet occupying the router.

In SDSpW, the controller has an abstract view of the

network status. It can dynamically configure the node’s path

addresses to choose a better route. And the router in data plane

has the ability to support multi priority flows distinguished by

the ports, which also can be configured by the controller. The

combination of nodes and router will meet the requirements of

QoS.

The processing of a SpaceWire packets by nodes and

routers following the above functions is shown in Fig. 3. In this

redundant SpaceWire network, the packets are transferred from

node2 to node4 with the path addresses <4, 2, 1>. When the

controller monitors that router1 is congested, then it can

configure the path addresses of node2 to <5, 2, 1>. So the

packets can be transferred in real-time with multi-path

wormhole routing, which can ease the congestion phenomenon

and increase the bandwidth utilization.

Router3

1 2 3

4 5
Router4

1 2 3

4 5
Router5

1 2 3

4 5

Router1

1 2 3

4 5
Router2

1 2 3

4 5

PayloadEOP 421

Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8 Node9

H H HL L L L L L

L LL
L

H
H

Fig. 3. Multi-path wormhole routing

On the other hand, the modified router forwards packets

based on priority, as shown in Fig. 4. In Fig. 4(a), the packets

from low-priority port 2 are occupying the output port 3 while

the packets from high-priority port 1 are arriving. Different

from traditional priority mechanism, in which the high-priority

packets have to wait for an existing low-priority packet to

complete, the high-priority packets are immediately transferred

out, as shown in Fig. 4(b). This mechanism guarantees the high

priority traffic transferred in real-time. Moreover, the priority

of ports can be dynamically configured by the controller based

on tasks.

Router1

1 2 3

4 5

LH

Pay
lo

ad

E

3

Router1

1 2 3

4 5

LH

(a) (b)

E
3

E

E
3

E

E

Fig. 4. Priority scheduling

2) Logical Addresses (LA)

The routing mechanism using logical addresses is similar to

the algorithm used in ground routers. The complexity of path

addressing is mainly handled by the source nodes and the

routers are relatively simple. To support logical routing, each

189

router contains a routing table to forward packets which

simplifies the function of nodes. For a larger network, the

bandwidth utilization of wormhole routing is low since the path

addresses increases. On the contrary, the logical addresses

mechanism is suitable for a larger network.

In the conventional SpaceWire router, the routing table

contains two fields (Logical destination, Physical output port).

The router forwards packets only based on logical destination,

which cannot identify different flows. In SDSpW, the router

adopts a multi-field flow table as shown in Fig. 5, which

contains source address, destination address, priority, action

and counter.

Src Dest Priority Action Counter

Fig. 5. Multi-field flow table

 The router matches source and destination addresses to

identify different flows, and obtains the priority and output port

of the flow. The counter is used to record the status of the

network in different grain, such as flow level and port level. To

support this mechanism, the nodes should also be made little

modification. The header logical addresses add source address

following the destination address.

Router3

1 2 3

4 5
Router4

1 2 3

4 5
Router5

1 2 3

4 5

Router1

1 2 3

4 5
Router2

1 2 3

4 5

Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8 Node9

LA 41 LA 42 LA 43 LA 51 LA 52 LA 53 LA 61 LA 62 LA 63

PayloadEOP 5142

40
41

5143
5142

20
21

5143
5142

Fig. 6. Multi-field forwarding

The multi-field forwarding mechanism is shown in Fig. 6.

Packets are transferred form node 2 (logical address is 42) to

node 4 (logical address is 51). When receiving the packets, the

routers lookup flow table, and forward the packets based on the

output port and the priority. From the above figure, we can see

that the priority of flow <42, 51> is higher than flow <43, 51>.

The forwarding mechanism based on priority is familiar with

the algorithm shown in Fig. 4. The flow table and node can

also be dynamically configured which makes the SpaceWire

network more feasible and controllable.

B. Control Plane

In the control plane, SDSpW controller and router run

openSpW, a customized protocol on top of SpaceWire - RMAP.

The customized openSpW has an abstract view of the whole

SpaceWire network, and monitors the network’s status (such as

congestion, nodes’ failure). It can dynamically configure the

routers and nodes both in the situation of path addresses and

logical addresses.

IV. EVALUATION

In this paper, we evaluate the performance of SDSpW in

the environment of mininet. Our evaluation seeks to: 1) the

controller can monitor the state of whole network in real time,

2) the QoS of end-to-end is guaranteed. The topology of the

simulated network is shown in Fig. 7.

Router3

1 2 3

4 5
Router4

1 2 3

4 5

Router1

1 2

Router2

1 2

Node1 Node2 Node3 Node4 Node5 Node6

LA 41 LA 42 LA 43 LA 51 LA 52 LA 53

Fig. 7. The topology of evaluation SpaceWire network

As shown in Fig. 8, we establish the topology of simulated

network.

Fig. 8. The topology of established in Mininet

From the experiment, we find out that the controller can

real-time monitor the status of whole network by reading the

counters of the data plane. Moreover, as the bandwidth of link

is limited, the performance of SpaceWire network degrades

with the throughput increase of end-nodes. But in the priority

mechanism, the performance of high-priority flow is

guaranteed.

V. CONCLUSION

In this paper, we bring the thoughts of SDN technology into

SpaceWire network which has several advantages, including

open network topology, fine-grained control and QoS, etc.

Then we propose a new software defined SpaceWire network

architecture - SDSpW, which contains three roles: controller,

router and end-nodes. The dynamically routing mechanism

proposed in this paper achieves an adaptable, controllable

network. As the evaluation results show, the controller can

monitor the state of whole network in real time, and the end-to-

end QoS is guaranteed.

190

ACKNOWLEDGMENT

The work described in this paper is supported by the project

of National Science Foundation of China under grant

No.61202488, No.61103182, No.61379147 the program for

Changjiang Scholars and Innovative Research Team in

University (No.IRT1012).

REFERENCES

[1] ONF, SDN architecture. 2014.

[2] ECSS-E-50-12-C. SpaceWire Engineering: SpaceWire-Links,

node, routers and networks ESA-ESTEC. November 2008.

[3] ECSS-E-ST-50-51C. SpaceWire protocol identification. ESA-

ESTEC, 2010.

[4] Mininet. http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/M

ininet.

[5] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of

Lipschitz-Hankel type involving products of Bessel functions,”

Phil. Trans. Roy. Soc. London, vol. A247, pp. 529–551, April

1955. (references)

[6] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd

ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.

[7] I. S. Jacobs and C. P. Bean, “Fine particles, thin films and

exchange anisotropy,” in Magnetism, vol. III, G. T. Rado and H.

Suhl, Eds. New York: Academic, 1963, pp. 271–350.

[8] K. Elissa, “Title of paper if known,” unpublished.

[9] R. Nicole, “Title of paper with only first word capitalized,” J.

Name Stand. Abbrev., in press.

[10] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron

spectroscopy studies on magneto-optical media and plastic

substrate interface,” IEEE Transl. J. Magn. Japan, vol. 2, pp.

740–741, August 1987 [Digests 9th Annual Conf. Magnetics

Japan, p. 301, 1982].

[11] M. Young, The Technical Writer's Handbook. Mill Valley, CA:

University Science, 1989.

191

The SpaceWire Physical Layer Tester

(SPLT)
SpaceWire Test and Verification, Short Paper

Pete Scott, Alan Spark

STAR-Dundee Ltd.

Dundee, Scotland, UK

pete.scott@star-dundee.com, alan.spark@star-dundee.com

Paul Crawford, Steve Parkes

University of Dundee

School of Computing

Dundee, Scotland, UK

psc@sat.dundee.ac.uk, sparkes@computing.dundee.ac.uk

Abstract—The STAR-Dundee SpaceWire Physical Layer

Tester (SPLT) features hardware which enables it to perform

tests across the SpaceWire standard from the physical and signal

layer right up to the network and protocol layer. By

incorporating components from other established STAR-Dundee

products, including the Link Analyser Mk2 and Conformance

Tester, the SPLT is the perfect tool that can be used throughout

all stages of SpaceWire development from planning requirements

through to production testing of flight components.

The SPLT transmits SpaceWire LVDS signals at

programmable swing and common mode voltages, slew, skew and

bit speeds to test the capability of the Unit Under Tests (UUT) to

maintain a SpW link without disconnecting. To do this, the

SPLT can be configured as a SpaceWire interface on a SpW

router. Alternatively, the SPLT can be configured to be placed in

the middle of a SpW link between two SpW ports under test and

manipulate the SpW signals in both directions.

Software running on a host Personal Computer (PC) is used in

conjunction with STAR-Dundee’s STAR-System device drivers

and software to control the SPLT.

Index Terms—SpaceWire, Physical Layer, Signal Layer, Star-

System, Spacecraft Test and Development Equipment

I. INTRODUCTION

Throughout the specification, design, development and

testing of a SpaceWire system, it is important that the system is

tested and verified to the various levels of the standard. A

number of tools already exist for testing a system’s behaviour

and performance at these levels, as is illustrated in Figure I-1.

Any problems in the physical and signal layer of the SpW

system can be hard to detect and diagnose. This may be due to

underlying problems not manifesting themselves in consistent,

reliably reproducible symptoms. The SPLT’s specialised

hardware provides the capability to test and verify SpaceWire

systems at these levels [1] [2].

Network Level

Packet Level

Exchange Level

Character Level

Signal Level

Physical Level

Protocol Level

Sp
W

 L
in

k
An

al
ys

er

Sp
W

 C
on

fo
rm

an
ce

 T
es

te
r

Sp
W

 In
te

rfa
ce

Ba
sic

 S
pW

 P
hy

sic
al

 L
ay

er
 Te

st
er

Sp
W

 P
hy

sic
al

 L
ay

er
 Te

st
er

 w
ith

 O
pt

io
ns

Sp
ac

eW
ire

 S
ta

nd
ar

d

Figure I-1: Testing across the SpaceWire Standard

II. OVERVIEW OF THE SPLT

The front panel of the SPLT is shown in Figure II-1.

Figure II-1: Front panel of the SPLT

The SPLT features two Physical Layer Test SpaceWire

ports, capable of performing tests at the physical and signal

layers, as well as two normal SpaceWire ports. The

configuration of these ports is shown in Figure II-2.

192

Router

A
b

er
ra

ti
o

n
SpaceWire

Port 2
SpaceWire

Port 1
SpaceWire

Port 4
SpaceWire

Port 3

A
b

er
ra

ti
o

n

SMA
Connectors

Configuration
Control &

Status

USB 2.0

5 6

0

4 3 2 1

Figure II-2: Overview of the SPLT

The Physical Layer Tester is controlled by a USB 2.0

interface from a Host PC. This features two channels to the

SpaceWire Router, allowing one channel to be used for control

and configuration of the device and the other channel dedicated

to SpW traffic data.

The outputs of the Physical Layer Test SpaceWire Ports (1

and 2) feature aberration circuitry, which is able to control the

in-pair and data-strobe skew and jitter, as well as the slew,

amplitude and common mode voltage of the LVDS signals.

The inputs from the Physical Layer Test SpaceWire ports

are connected to high speed analogue buffers that allow easy

interface of an oscilloscope to record the eye pattern of the

SpaceWire LVDS signal received from the UUT.

III. SPLT SYSTEM OVERVIEW

The Physical Layer tester can be set up to interface to a

UUT in three basic modes. In all three modes, the SpaceWire

signals received from the UUT(s) can be buffered onto an

oscilloscope. If the Link Analyser capability is selected, then a

Logic Analyser may be interfaced to the mictor connector on

the rear of the device to read the decoded SpaceWire traffic in

a similar fashion to the STAR-Dundee Link Analyser Mk2 [3].

A. In-Line Margin Analysis

Figure III-1: In-Line Margin Analysis

The SPLT is placed in line with a SpaceWire link between

two UUTs, or two SpW ports of the same UUT, as shown in

Figure III-1. The SpaceWire data is passed transparently

through the SPLT, allowing the two UUTs to communicate

normally. Aberrations can be applied to the output SpW

signals of the SPLT in one, or both, directions to explore the

margins of either, or both, UUT devices.

B. Loop-Back Margin Analysis

Figure III-2: Loop-Back Margin Analysis

A test can be performed where a UUT’s transmitted SpW

data is looped back to the same port through port 1 of the

SPLT. Aberrations can be applied to the transmitted data to

explore the receive margins of the UUT.

C. Interface, Routing Margin Analysis

Figure III-3: Interface & Routing Margin Analysis

The SPLT can be configured in a similar way to the STAR-

Dundee Brick Mk2 with the USB 2.0 port interfaced either

directly to the four SpaceWire ports, or through a SpaceWire

router, as illustrated in Figure II-2. This allows SpW data to be

transmitted and received from the Host PC.

D. Conformance testing Analysis

If the Conformance testing option is selected on the SPLT,

then the full suite of SpaceWire conformance tests can be

performed from SpW link 1 [4]. The equipment is set up in the

same way as shown in Figure III-2. This arrangement will be

able perform a more comprehensive range of tests on the UUT

than the existing STAR-Dundee Conformance Tester by taking

advantage of the LVDS aberration capabilities of the SPLT.

UUT

#1

UUT

#2 SPLT

Logic Analyser

Oscilloscope

USB 2.0

SpW

Router

Port 1

S
M

A

S
M

A

SpW

Router

Port 2

UUT SPLT

Logic Analyser

Oscilloscope

SpW

M
icto

r

S
M

A

S
M

A

USB 2.0

UUT

#1

UUT

#2 SPLT

Logic Analyser

Oscilloscope

USB 2.0

SpW

SpW
 S

M
A

S
M

A

193

IV. TESTING WITH THE SPLT

The SPLT Software provides Margin and Production

testing modes, which were discussed in [2]. The control

software now features graphical representations of the

aberrations that are being applied. The user interface is shown

in Figure IV-1. The graphical representations are described in

sections IV.A and IV.B.

Figure IV-1: SPLT Control Software

A. Graphical representation of single aberrations

In order to assist the user in understanding the aberrations

that they are applying to the signals, a graphical representation

of the aberrations is provided in software. Figure IV-2 shows a

SpaceWire link running with Nulls.

Figure IV-2: SPLT configured without aberrations

The top two waveforms in Figure IV-2 show a software

representation of some SpaceWire transitions based on no

aberrations being present. The bottom screenshot shows a

measurement of the SpaceWire signal transmitted out of the

Physical Layer Test Port, measured at the termination resistor

on the other end of the link. Two vertical cursors have each

been placed on adjacent transitions of the Data and Strobe.

In all oscilloscope screenshots in this paper, the Data is

shown at the top of the oscilloscope screenshot, and the Strobe

is shown at the bottom. The timebase is 2 ns per division, and

the voltages are all shown at 200 mV per division. The scope

is 1MΩ AC coupled. Measured Voltages must be divided by 2

to correct for the ×2 gain of the SPLT buffers that were used to

obtain these waveforms.

A Skew of -2 ns is then set up in the software. The

graphical representation of this aberration is shown in Figure

IV-3. A dotted outline of the waveform shows how far from its

ideal position it’s being moved. In interactive mode, as the

skew slider is moved sideways, the graphical representation is

updated in real-time with the value of aberration and cursors to

demonstrate the magnitude of aberration being applied. The

user then commits this aberration to the SPLT by clicking “Set

Values”. In automatic mode, the graphical representation is

updated in real-time as the increasing value of the aberration is

sent to the SPLT.

Figure IV-3: SPLT configured with 2 ns Skew

B. Graphical representation of combined aberrations

Labelling multiple aberrations with cursors and markers

clutters the graphical representation. A second window is used

to show the effects of combined aberrations. This window,

along with the captured waveform, is shown in Figure IV-4

194

Figure IV-4: SPLT driving combined aberrations

The SPLT was configured to drive the following

aberrations in Figure IV-4:

 -1 ns Data to Strobe Skew

 -3 ns of Strobe Plus to Strobe Minus in pair skew

 1.16 Volts Common Mode

 200 mV of Swing

The Graphical representation at the top of Figure IV-4

shows the many different ways in which the LVDS signal

is now being deviated from its ideal parameters. The

oscilloscope confirms the poorly degraded signal that is

being driven out from the SPLT. Occasional disconnects

are observed under these conditions.

V. USER CALIBRATION OF THE SPLT

The SPLT’s physical layer test ports feature several

analogue components that are calibrated from the factory for

each individual unit. Users may wish to check this calibration,

which may need updating as the environment in which the

device is operated may vary, and as the components age. Users

may also wish to calibrate the SPLT to a particular cable that

they will be using with the SPLT.

The Software supplied with the SPLT includes a calibration

application. In order to use this, the SPLT must be configured

with a SpaceWire cable between ports 1 and 2 of the SPLT,

and an oscilloscope connected to the analogue buffers on the

receiver of the SPLT. This is shown in Figure V-1

Figure V-1: SPLT Calibration Software

In Figure V-1, the LVDS Swing driven by Port 2 is being

calibrated by the Calibration software. The SpaceWire cable

loops this data into Port 1 so that these signals can be

monitored on an oscilloscope. The calibration software steps

through a number of linear data points to increase the swing.

Measurements taken from the oscilloscope are entered into the

appropriate boxes indicated by the green arrow on the left hand

side of the current data point.

Once all of the data points are entered, the Software shows

the calibration constants taken from these measurements

against the factory calibration constants that the device was

initially despatched with. The user calibration data can be

uploaded to the SPLT for future use.

VI. CONCLUSION

The SPLT performs production and margin tests at the

physical and signal layer in addition to higher level tests on a

SpaceWire system. Protection against single point of failure in

the device makes it suitable for interfacing to sensitive flight

hardware. Such capability makes the SPLT one of the most

comprehensive pieces of SpaceWire test equipment on the

market.

VII. REFERENCES

[1] P. Scott, S. Parkes, P. Crawford and J. Ilstad, “Testing

SpaceWire systems across the full range of protocol levels with

the SpaceWire Physical Layer Tester.” International SpaceWire

Conference, San Antonio, USA, 8 - 10 November. 2011

[2] A. Spark, P. Scott, S. Parkes, P. Crawford “Margin testing of

SpaceWire devices” International SpaceWire Conference,

Gothenburg, Sweden, 10 - 14 June. 2013

[3] Pete Scott, Steve Parkes, “SpaceWire Link Analyser Mk2: A

New Analysis Device for SpaceWire Systems”, International

SpaceWire Conference 2010, St Petersburg, 22nd – 24th June

2010.

[4] Steve Parkes, Martin Dunstan, “Debugging SpaceWire Devices

using the Conformance Tester”, International SpaceWire

Conference 2007, Dundee, 17th – 19th June 2010.

195

AXI-based SpaceFibre IP Core Implementation
SpaceFibre, Poster Paper

D. Jungewelter, D. Cozzi, D. Kleibrink, S. Korf,

J. Hagemeyer, M. Porrmann

Cognitronics and Sensor Systems Group

CITEC - Bielefeld University

Inspiration 1, 33619 Bielefeld, Germany

djungewelter, dcozzi, dkleibrink, skorf,

jhagemeyer, mporrmann@cit-ec.uni-bielefeld.de

J. Ilstad

TEC-EDP, ESTEC

European Space Agency

Keplerlaan 1, 2220AG Noordwijk ZH, The Netherlands

jorgen.ilstad@esa.int

Abstract — The steadily increasing demand of high-throughput

interfaces, e.g., in satellite payload processing systems, drives the

development of faster data transmission systems. The emerging

SpaceFibre standard offers a multi-gigabit serial connection

which is specified on the physical and data link layer while

reusing the SpaceWire protocol specification on the higher

protocol layers, thus enabling compatibility on the software

layer. The AXI SpaceFibre IP core presented in this paper

combines the SpaceFibre CODEC IP core developed by STAR-

Dundee, a TLK2711 WizardLink Transceiver (meeting the

SpaceFibre specification with up to 2.7 Gbit/s), and a DMA

interface that connects the IP core to any AXI-based

reconfigurable system-on-chip using FPGAs. The IP core

configuration and initialization registers for the SpaceFibre RX

and TX channels are accessible via AXI4-lite slave interfaces

while the payload data is handled by a dedicated scatter/gather

AXI-DMA core, which is connected to AXI-Stream FIFOs to

provide the maximal possible payload transaction performance.

The SpaceFibre IP core can be configured to implement 1 to 8

virtual channels. To evaluate the performance of the SpaceFibre

IP core, we integrated it into the "Dynamically Reconfigurable

Processing Module" (DRPM), a multi FPGA platform for

satellite data payload processing. The AXI-based SpaceFibre IP

core was synthesized on a Xilinx Spartan-6 LX150, utilizing in

total 2668 slices and 36 BRAMs. For data segments larger than

1 kByte, a bandwidth of approximately 1.9 Gbit/s was achieved,

corresponding to 95 % of the possible bandwidth. The IP core

will be part of the ESA IP core repository.

Index Terms—SpaceFibre, SpFi, AXI, FPGA, IP core, DMA,

SoC, DRPM

I. INTRODUCTION

The continuous improvement and innovation in satellite

payload processing systems, often driven by advancements in

the data acquisition systems like synthetic aperture radar (SAR)

or hyperspectral imaging (HSI) systems, demands high

bandwidth communication interfaces suitable for applications

in the harsh space environment. An HSI frame with a typical

resolution of 4000x4000 or 4000x8000 has a data size

proportional to its resolution multiplied by its spectral

bandwidth (typically 80 channels), resulting in high bandwidth

requirements between the instrument and the processing

system. An SAR frame is constituted by sending out a directed,

pulsed radio wavefront and collecting the time delay,

amplitude and angle of the backscattered signals. The amount

of data per sample is comparatively small, but a complete SAR

frame is many times larger than one HSI frame, requiring a

high performance downstream payload processing system.

To meet this growing performance requirements, a new

SpaceWire [1] based specification called SpaceFibre was

developed by the University of Dundee together with the

European Space Agency (ESA) over the last years (currently

specification is Draft E1, [2]), offering serial high-speed data

transmission (2.5 to 10 Gbit/s) by changing the physical and

data-link layer of SpaceWire. Thus, SpaceFibre is compatible

to SpaceWire on the upper layers. On the data-link layer,

SpaceFibre introduces virtual channels (VCs). Each VC can be

seen as a SpaceWire link; therefore, a bundle of up to 256

SpaceWire links can be replaced by a single SpaceFibre link

resulting in a considerable mass reduction and a compacted

system setup. The physical layer of SpaceFibre is implemented

by utilizing high-speed Serializer/Deserializer (SERDES).

Many modern FPGAs integrate these SERDES as Hard-IP-

Blocks in their fabric. Additionally, discrete transceivers

implementing this functionality are available, e.g., Texas

Instruments provides a SpaceFibre compliant WizardLink

Transceiver ASIC (TI-TLK2711A [3]) that is also available in

a radiation tolerant package suitable for flight use.

The AXI SpaceFibre IP core, presented in this paper,

integrates the STAR-Dundee SpaceFibre CODEC IP-Core [4]

while using the TI-TLK2711A to implement the physical

interface. The system interface is realized using an

AXI4 [5] based interconnect. The AXI SpaceFibre IP core has

been developed in the scope of the “Dynamically

Reconfigurable Processing Module” (DRPM), a scalable

platform for satellite payload processing deploying dynamic

partial reconfiguration of FPGAs [6]. The DRPM is a

heterogeneous embedded multiprocessor system composed of

multiple external communication modules and processing

modules as depicted in Fig. 1. The DRPM system was built

based on the modular FPGA-based prototyping platform

RAPTOR [7]. The flexibility of the RAPTOR system allows

196

scaling the DRPM system by adding additional modules

(called daughterboards (DBs)) to the system.

The processing modules are equipped with a Xilinx

Virtex‑4 FX100 FPGA and a DDR2-SODIMM-Socket for

DDR2-Modules with up to 4 GByte. These daughterboards

represent the main payload processing modules of the DRPM

system. The FPGA available on a processing module can be

dynamically reconfigured to adapt the processing module itself

to changing environmental conditions. Furthermore, dynamic

run-time reconfiguration is used to detect and correct errors

caused by radiation (i.e., SEUs) by implementing a readback

scrubbing scheme. Up to five processing modules can be

connected in a DPRM to scale the processing power of the

system.

Fig. 2 depicts the main components of the communication

module, also referred to as DB-SPACE, which consists of a

SpaceWire-RTC AT7913E [13], based on a LEON2-FT CPU

(radiation hard, 50 MHz working frequency) as a fail‑safe

system controller, a Xilinx Coolrunner-II CPLD (XC2C384)

combined with a 1 Gbit NOR-FLASH device (Numonyx

PC28F00AP33EFA) acting as a configuration controller, and

two Xilinx Spartan-6 (XC6SLX150/100) as EXT/INT-COMM

FPGAs, which implement the external and internal

communication controllers. In the context of this paper we

focus on the external communication controller, which extends

the interfaces available on the SpaceWire-RTC (adding a

SpaceFibre link, four additional SpaceWire links, a MIL-STD-

1553B connection and 32 additional GPIOs).

To the best of our knowledge no AXI-based SpaceFibre IP

Core exists. In [8] and [9], pure implementations of the

SpaceFibre CODEC IP-Core on a Xilinx Virtex-5 FPGA have

been used to get performance evaluations and to do

interoperability tests. In [10], the SpaceFibre CODEC IP-Core

has been extended with a DMA controller on a Xilinx Virtex-4

FPGA which is directly connected to a commercial DSP. These

implementations are not suitable for reuse in other target

applications/embedded systems.

SpaceWire-RTC

Ext. Comm.
FPGA

Config. CPLD

External
Reconfiguration

Controller

SRAM

Working
Memory

Config. I/F

ADC/DAC
CTRL

FPU LEON2-FTMEM I/FFIFO I/F

Space
Wire (4x)

Space
Fibre

MIL-STD-
1553B I/F

GPIO
AXI

Local
Bus

Flash

Config.
Memory

Inter
FPGA

Inter
FPGA

AXI

Inter
FPGA

AXI

Inter
FPGA

Config. I/F

Communication
Module

DB-SPACE

DB-SPACE Frontpanel

DB-SPACE Frontpanel

CAN Timer
RS232/

422
DebugGPIO

Space
Wire
(2x)

Internal Comm.
FPGACDMA

FIFO
Bridge

MEM
Bridge

Config.
CTRL

Bridge

The following section (Section II) describes the architecture

of the AXI Spacefibre IP core as well as its integration in the

DRPM system. Section III is dedicated to the evaluation of the

IP core regarding performance and power. Section IV

concludes the paper.

II. ARCHITECTURE OF THE AXI SPACEFIBRE IP CORE

The AXI SpaceFibre IP core has been developed using

Xilinx EDK, which offers a top-down approach for the

implementation of an embedded system, comprising hardware

as well as software development. The complete EDK system

overview of the EXT-COMM FPGA is shown in Fig. 3. The

different IP cores in an EDK-based system design are called

PCores, they can be easily connected to an internal system bus

like the Processor Local Bus (PLB) or the Advanced

Microcontroller Bus Architecture (AMBA)-Advanced

eXtensible Interface (AXI) bus without the need to use a

hardware description language (HDL). Due to the advantages

of independent read/write channels, configurable register slices

and a powerful implementation of the interconnect matrix, the

EXT-COMM system uses the AXI4 interconnect solution. The

bus width is set to 32 Bit with a 100 MHz system clock

resulting in an internal bandwidth of 3.2 Gbit/s.

The AXI4 interconnect is represented by the bus in the

middle of Fig. 3. Both, the external rad-hard SpaceWire-

RTC [13] and the embedded MicroBlaze processor can work as

the central system controller. To connect the SpaceWire-RTC

to the system bus, two independent IP cores are bridging the

memory and FIFO interface of the SpaceWire RTC to the

AXI4 interconnect, whereby the FIFO Bridge mainly forwards

interrupts and mail-box messages. A central DMA (CDMA)

controller offloads the system controllers from copying data

between the external interface IP cores and the system

memory. Two instances of 64 kByte BlockRAM are available

as buffer memory for incoming and outgoing data streams.

Fig. 1 Overview of the Dynamically Reconfigurable Processing Module

Fig. 2 Components on the communication module DB-SPACE

197

As an alternative to the AXI SpaceFibre IP core

implementation described in this paper, a WizardLink IP core

has been implemented. The WizardLink interface is a simple

FIFO-based streaming communication core with minimal

protocol overhead utilizing the TI-TLK2711A. It implements

neither virtual channels nor bandwidth preservation or fault

detection mechanisms. It is used as a reference IP-Core for

later bandwidth evaluation and comparison.

In Fig. 4 a block diagram of the AXI SpaceFibre IP Core is

shown. The AXI-lite slave interface provides access to a

register bank for configuration and initialization as well as to a

broadcast process that transmits or receives broadcast (BC)

messages. BC receive messages are buffered in a FIFO, to

avoid loss of messages. A control/status register is mapped to

the TI-TLK2711A control and status signals to access all its

functionalities. The management and status interface of the

CODEC IP core signals is connected to a set of registers for

initialization and configuration purposes. Additional registers

are provided for interrupt handling.

Payload data is processed by a dedicated DMA

controller [11] with an integrated scatter/gather engine. This

allows achieving maximal performance using descriptor chains

filling the outgoing (MM2S) and reading the incoming

(S2MM) AXI-Streams. Two (data and control/status) streams

are implemented for transmit and receive directions. The

control/status stream is used to pass header information to/from

the SpaceFibre IP core, i.e., start and length of routing and

payload data as well as the VC to be used. Two finite state

machines take care of writing (S2MM-FSM) and reading

(MM2S-FSM) data to or from the FIFO buffers that connect

the SpaceFibre clock domain clocked at 62.5 MHz with the

AXI4 system clock domain at 100 MHz.

The MM2S-FSM handles the sequence of SpaceWire

routing path bytes, control/status and data streams into the

CODEC IP core. SpaceWire path routing bytes are defined in

the very first DMA descriptor chain element (D0) of each data

stream. Since the SpaceWire protocol allows an arbitrary

number of routing bytes in front of each packet, but the

receiver requires a 32 Bit aligned stream, a ReAlign unit shifts

all following control/status and data words. This is necessary

because D0 cannot simply be filled up with zeroes since routers

will delete their path information out of the stream byte by

byte. The aligned stream is forwarded to a virtual channel (VC)

selectable through the A0 app-field in the control stream,

whereby A1 contains the number of routing bytes and A4 the

number of payload data bytes. App-fields A2 and A3 are

reserved for future use. All app-fields registers are accessible

through the AXI-Lite interface. Fig. 5 shows the VC stream as

a composition of MM2S-Ctrl and Data Streams as discussed.

D1 to Dn are the descriptors for payload data.

AXI SpaceFibre Interface

AMBA AXI4

TLK2711 Wizardlink Transceiver

DMA Interface

AXI_LITE FIFO

MM2S-FSMS2MM-FSM

Config. RD/WR FSM

ReAlign

TLK2711 Interface

CONTROL-PROC

SpaceFibre

Control

Register

APP-

Field-Reg

S2MM/MM2S AXI-Stream FIFOs

D
M

A
-I

F

BROADCAST-PROC

SpaceFibre-CODEC IP Core

MGMT-IF BROADCAST-IF Virt. Channel IF (1-256)

TX_SERRX_SER

RX-REG-FSM

R
X

_SER
R

X

TX-REG-FSM

TX
_S

E
R

T
X

STATUS-FSM

Fig. 3 Xilinx EDK-based architecture of the external communication FPGA

Fig. 4 Overview of the SpaceFibre EDK PCore

198

The S2MM-FSM is directly connected to the VC receive

port of the SpaceFibre CODED IP core to fetch incoming data

and to split up the stream into DMA controller data and status

streams.

The TLK2711 Interface block connects the RX and TX

channels of the SpaceFibre CODEC IP Core to the WizardLink

Transceiver-IC. The data path is pipelined and utilizes FPGA-

specific registers in the input and output blocks (IOBs) close to

the pads to guarantee a small, deterministic input and output

delay/skew. Additionally, this implementation relaxes the

placement of the IP core relative to the IOs. Furthermore, the

32 Bit wide interface of the CODEC IP core is mapped to the

16 Bit wide interface of the TI-TLK2711A transceiver. Due the

different data path widths, the PHY interface needs to be

clocked at 125 MHz. Two different source synchronous clock

domains at 125 MHz for RX and TX channels are

implemented. While the TX clock is sourced by the FPGA, the

RX clock is recovered from the incoming data stream by the

internal PLL of the TI‑TLK2711A transceiver. A Status-FSM

monitors the Loss of Signal (LoS) condition of the TI-

TLK2711A.

The software API of the AXI SpaceFibre IP included in

the PCore allows configuring it in an easy way. Additionally, it

enables the user to properly configure the DMA for

scatter/gather transactions. Before a SpaceFibre read/write

operation, the user sets up multiple linked transfer descriptors

(a descriptor chain is created) which are then processed by the

DMA engine. The main advantage of the scatter/gather

transfers is the possibility to update the chain of descriptors

during an ongoing DMA transfer. Therefore, the time taken by

the processor for managing the descriptors can be hidden,

reducing communication overhead. Furthermore, the utilization

of the scatter/gather mechanism can be efficiently used to

exploit the virtual channel (VC) feature of the SpaceFibre core,

as it enables direct multiplexing of multiple SpaceWire

connections.

Resource Usage: The required FPGA resources of the AXI

SpaceFibre IP core are depicted in Table 1. The core has been

implemented with two, four and eight VCs, including the

dedicated AXI DMA IP Core that has been configured with a

maximum stream length of 8 MByte. The AXI SpaceFibre IP

Core configuration implementing eight VCs utilizes 12 % of

the 23,038 slices available in the used Xilinx Spartan-6 LX150.

68 % of these slices are used by the embedded CODEC IP

Core. For the implementations using 2 and 4 VCs, the number

of slices used by the enwrapped CODEC IP Core is also larger

than 60 %. Together with the dedicated AXI DMA IP core, the

AXI SpaceFibre IP core configured with 8 VCs uses a total of

4408 slices, consuming almost one fifth of the available slices

of the used Spartan-6 LX 150. In contrast to the resource

utilization of the SpaceFibre IP core, the WizardLink IP core

implementation requires only 480 Slices, summing up to 2097

slices including the AXI DMA IP core, which is less than one

tenth of the total available slices. The overall utilization of the

EXT-COMM FPGA implementing all components shown in

Fig. 3 is more than 92 %.

Table 1 FPGA resources of the AXI SpaceFibre IP core

Spartan-6 LX150 23,038 184,304 92,152 268 536 180

 S
L

IC
E

s

 R
E

G
s

 L
U

T
s

 B
R

A
M

_
1

6

 B
R

A
M

_
8

 D
S

P
s

1,617 4,687 3,813 8 4

7.0 % 2.5 % 4.1 % 3.0 % 0.7 %

1,922 4,889 5,202 24 2

[1,643] [2,989] [3,311] [9] [2]

2,207 5,492 6,219 28 2

[1,993] [3,414] [4,046] [13] [2]

2,791 6,693 8,183 36 2

[2,668] [4,260] [5,560] [21] [2]

12.1 % 3.6 % 8.9 % 6.7 % 1.1 %

4,408 11,380 11,996 8 40 2

480 1,060 1,204 2 8

2.1 % 0.6 % 1.3 % 0.7 % 1.5 %

2,097 5,747 5,017 10 12 0

AXI SpaceFibre IP core, incl. [SpaceFibre CODEC]

8 VCs

2 VCs

WizardLink IP core

AXI DMA

0

0

0

0

DMA + SpaceFibre (8VCs)

DMA + WizardLink

04 VCs

III. EVALUATION OF THE AXI SPACEFIBRE IP CORE

For performance evaluation of the AXI SpaceFibre IP Core,

the core, embedded into the EXT-COMM FPGA of the DRPM

system [6], has been analyzed, as discussed in the following.

DRPM1
DB-Space

 Local Bus

Host PC

PCI-X/
Local

Ext.
Comm.
FPGA

SpaceFibre
SpaceWire

(4x)

Inter-FPGA

Int.
Comm.
FPGA

Inter-FPGA LocalBus

DB-V4

PR FPGA

PLB

PR-Region

Inter-FPGA

DB-V4

PR FPGA

PLB

PR-Region

Inter-FPGA

DRPM2
DB-Space

 Local Bus

Host PC

PCI-X/
Local

Int.
Comm.
FPGA

Inter-FPGA LocalBus

DB-V4

PR FPGA

PLB

PR-Region

Inter-FPGA

DB-V4

PR FPGA

PLB

PR-Region

Inter-FPGA

DMA
Ext.
Comm.
FPGA

SpaceFibre
SpaceWire

(4x)

Inter-FPGA DMA

Fig. 5 MM2S stream composition

Fig. 6 Test environment used during evaluation

199

Fig. 6 shows the test setups used during benchmarking.

Two DRPM systems (DRPM 1 and DRPM2) were used. Apart

from a direct connection of the two DRPMs using SpaceFibre,

a StarFire Analyser [12] was used to check the correct behavior

of the link as well as the integrity of the SpaceFibre packets.

Additionally, each DRPM has a SpaceWire link connected to

the StarFire unit in combination with a SpaceWire USB brick

to enable easy SpaceWire/SpaceFibre interoperability testing,

i.e., testing of the SpaceFibre VC functionality.

The physical transmission of a SpaceFibre signal is based

on high-speed serial data transmission. In the DRPM system,

the transmission line comprises PCB traces as well as

connectors and twinax cables. Although each part of the

transmission line is impedance matched to a characteristic

impedance of 100 Ohms, the transition from one transmission

line to another causes signal reflections, reducing the opening

of the data eye.

Additional insertion loss, caused by the dielectric and

copper losses, is responsible for further reduction of the

vertical and horizontal data eye opening. To characterize the

signal degradation across the transmission line, the data has

been measured at four different positions, as indicated in Fig.

7. Position 1 is located directly at the sender, while position 2

and 3 are at the beginning and the end of the twinax cable.

Position 4 is located directly at the receiver. The different

horizontal and vertical eye openings are listed in Table 2

Table 2 Eye measurement data

0.5 m cable 1 m cable 3 m cable

Hor

eye

Ver

 eye

Hor

eye

Ver

 eye

Hor

eye

Ver

 eye

TLK2711

[Pos 1]
309 ps 1180 mV 300 ps 1120 mV 299 ps 1100 mV

FrontPanel

[Pos 2]
302 ps 619 mV 298 ps 644 mV 285 ps 617 mV

FrontPanel

[Pos 3]
200 ps 197 mV 236 ps 167 mV 196 ps 116 mV

TLK2711

[Pos 4]
N/A N/A N/A N/A N/A N/A

The length of the cable, represented by the increased

insertion loss, (difference between Position 2 and Position 3) is

clearly visible across the three different cables. Apart from the

cable itself, the transmission lines on the PCBs and the

connection from DB-SPACE to the frontpanel on both DRPM

systems have a considerable impact on the total loss of the

transmission line. In fact, the total additional length sums up to

1.5 m (excluding the cable length in Table 2), explaining the

additional losses. Although the data eye is completely closed at

the receiver for each cable, there are no data errors observed in

the system using a PRBS-7 (BER < 1E-14). This is due to the

use of equalizer techniques (i.e., decision feedback equalizer)

in the receiver.

The bandwidth utilization of the system depending on the

packet size is shown in Fig. 8. For packets bigger than 1 kByte,

a utilization of more than 90 % is archived. The utilization

saturates at about 95 % of the maximum bandwidth for large

packets. For packets with a size of less than 256 Bytes, only

half of the possible bandwidth is utilized due to the protocol

overhead of the SpaceFibre protocol. Compared to the

WizardLink implementation, the SpaceFibre implementation

shows a significant higher protocol overhead. The WizardLink

implementation however, as explained in Section II, only

implements a protocol for point-to-point connections, and does

not include features like virtual channels or error detection. The

WizardLink implementation converges to 98 % bandwidth

utilization for large packets.

The power requirements of the AXI-based SpaceFibre IP as

well as the WizardLink IP core are summarized in Table 3. The

values represent the power consumption of the IP cores under

working and idle conditions operating at a signaling rate of

2.5 GSPS (2 Gbit/s net data rate). While the power

consumption of the FPGA logic (Core Power) is reduced

during idle conditions, the IO-Power of the FPGA and the

power of the transceiver (TI-TLK2711A) stay nearly the same.

This is due to the transmission of alignment patterns when no

data is transferred. The small difference between the

SpaceFibre IP core and the WizardLink IP core reflects the

relatively large amount of power used by static infrastructure

inside the FPGA. The clock circuitries of the FPGA alone

(PLL and DCM) consume about one fourth of core power

listed in Table 3.

Fig. 7 Measurement positions the data eyes in the system

Fig. 8 Bandwidth utilization depending on packet size of SpaceFibre and

WizardLink packets

200

Table 3 Power requirements of the SpaceFibre IP core implementation

WORKING IDLE

SpFi Wizard SpFi Wizard

Core Power (FPGA) 0.28 W 0.20 W 0.18 W 0.14 W

IO Power (FPGA) 0.20 W 0.15 W

Transceiver Power 0.38 W 0.37 W

Total 0.86 W 0.78 W 0.7 W 0.66 W

The overall power consumption of the complete EXT-

COMM FPGA implementing all components shown in Fig. 3

is about 3.3 W. The complete DB-SPACE daughterboard,

including all components shown in Fig. 2 consumes 9.6 W

under full load conditions.

IV. SUMMARY

The AXI SpaceFibre IP core combines a WizardLink

Transceiver (TI-TLK2711A) suitable for flight use, the STAR-

Dundee SpaceFibre CODEC IP core, and an AXI4‑based

DMA controller. The IP Core is available as a Xilinx EDK-

based PCore, allowing easy system integration and software

development using the supplied API, maximizing IP reuse. The

AXI4-based implementation allows the usage of the IP core in

any AXI-based reconfigurable system-on-chip using FPGAs.

As detailed in Section II, the DMA-based implementation

features a scatter/gather unit for maximum performance and

efficiency. Synthesis results based on the Xilinx Spartan-6

LX150 FPGA shows a total usage of 4408 slices (almost one

fifth of the available slices) and 48 BRAMs (7 % of available

BRAMs) implementing a full featured version including 8

virtual channels (VCs). A comparison with a minimal

implementation using the WizardLink IP core results in only

2097 slices (about one tenth of the available slices) and 22

BRAMs.

As presented in Chapter III, the IP core has been tested and

characterized using third party analyzer tools, ensuring

interoperability with other SpaceFibre equipment. The IP core

has shown a sustained bandwidth of 1.88 Gbit/s for data

segments larger than 1 kByte, which corresponds to 95 % of

the theoretical bandwidth (2.0 Gbit/s). The power requirement

for the complete core including the external transceiver is

considerably less than 1 Watt.

REFERENCES

[1] European Cooperation for Space Data Standardization,

„ECSS-E-ST-50-12C,“ July 2008. [Online]. Available:

http://www.ecss.nl/.

[2] Steve Parkes, Albert Ferrer, Alberto Gonzalez and a. C.

McClements, “SpaceFibre Standard Draft E1” University

of Dundee, Sep 2012.

[3] Texas Instruments, “User Manual TI TLK2711 1.6 TO

2.7 GBPS TRANSCEIVER”, Texas Instruments, 2008.

[4] A. G. Villafranca and A. Ferrer Florit, SpaceFibre VHDL

IP Core User Manual, S. Ltd, Ed., STAR-Dundee Ltd,

Jan 2013.

[5] ARM, “ARM AMBA AXI Protocoll Version 2.0

Specification”, ARM, Ed., 2010.

[6] J. Hagemeyer, A. Hilgenstein, D. Jungewelter, D. Cozzi,

C. Felicetti, U. Rueckert, S. Korf, M. Koester,

F. Margaglia, M. Porrmann, F. Dittmann, M. Ditze,

J. Harris, L. Sterpone und J. Ilstad, “A scalable platform

for run-time reconfigurable satellite payload processing”

in Adaptive Hardware and Systems (AHS), 25-28 June

2012.

[7] Porrmann M, Hagemeyer J, Pohl C, Romoth J, Strugholtz

M. “RAPTOR – A Scalable Platform for Rapid

Prototyping and FPGA-based Cluster Computing”

In: Parallel Computing: From Multicores and GPU's to

Petascale, Advances in Parallel Computing. Vol 19. IOS

press; 2010: 592–599.

[8] Y. Otake, K. Hosokawa, Y. Sota, T. Tanaka, H. Hihara ,

“Performance evaluations and proposal to improve next-

generation SpaceFibre protocol”, SpaceWire Conference

2013, Goteborg.

[9] T. Masuzaki, M. Nakamura, T. Kato, Y. Ido, T. Sasaki

“Implementation and Interoperability Tests of

SpaceFibre”, SpaceWire Conference 2013, Goteborg.

[10] B. Yu, S. Parkes, J. Franklin, C. McClements, P. Scott,

D. Dillon, “High Processing Power Digital Signal

Processor with SpaceWire and SpaceFibre Interfaces”,

SpaceWire Conference 2013, Goteborg.

[11] Xilinx Inc., LogiCORE IP AXI DMA (v6.00a), PG021.

[12] A. Ferrer Florit, A.G. Villafranca, C. McClements, S.

Parkes, “STAR Fire: SpaceFibre diagnostic interface and

analyser”, SpaceWire Conference 2013, Goteborg.

[13] ESTEC, “SpW-RTC (AT7913E)”, June 2008, [Online].

Available: http://spacewire.esa.int/content/Devices/

RTC.php.

201

Study and Implementation of SpaceWire Network

Redundancy Technology Based on FPGA
SpaceWire Test and Verification, Short Paper

Chen Juan

School of Mechanical Engineering

and Automation, Beihang University

Beijing, P.R.China

Chen.juan@buaa.edu.cn

Yang Shuai

School of Mechanical Engineering

and Automation, Beihang University

Beijing, P.R.China

yshuai1990@gmail.com

Mei Hong

Beijing Aerospace Automatic Control

Institute

Beijing, P.R.China

13810921938@139.com

Abstract—In order to improve the reliability of SpaceWire Bus,

this paper makes a study of SpaceWire redundancy. In a

spacecraft where SpaceWire is used, Redundancy is an important

fault-tolerant technology to improve the reliability of the system.

However, the regulation of redundancy does not be involved in

the current standard of SpaceWire, so, it is necessary to study

redundancy technology of SpaceWire. In this paper, without

changing SpaceWire bus protocol, SpaceWire bus node with

redundant functions is designed and redundant switching

function is achieved on the node boards, routers and backbone

links. IP logic of SpaceWire node is implemented in the FPGA.

The scheme presents an Auto-Protection-Switch (APS) module

which makes two independent SpaceWire nodes linked as mutual

backup to achieve standby redundant switched function of

SpaceWire bus. Redundancy switching process is as follows: APS

continuously detects the working state of two mutual backup

SpaceWire nodes in one board. When the Loss of Signal for Node

A (LOS-A) is detected, APS uses Remote Defect Indicator for

Node B (RDI-B) to send switching request code to the remote end

through the altemate link. After receiving the switchover request

data code, spare receiver module in the remote end generates

switching signal to APS module at the same board and APS

module immediately switches to the standby SpaceWire bus. At

the same time, the confirming data is send to the local standby

node. Then, local APS switches to the standby SpaceWire bus.

Test results show that the switch time is 33us under the

conditions of 200MHz transmission rate.

Index Terms— Redundancy, Reliability, FPGA, node, Auto-

Protection-Switch.

I. INTRODUCTION

With the development of space technology, the width and

depth of space exploration is increasing, which requires

increasingly more higher performance of spacecraft. Some

low-speed buses like RS-422/485, CAN and MIL-STD-1553

cannot meet the growing demand for bandwidth of data bus as

the growth of satellite remote sensing data and payload data. In

order to achieve a kind of high-speed and universal payload

data processing system, a kind of high-speed, high reliability,

low power consumption, long life and universal bus

architecture, namely, SpaceWire bus is needed.

SpaceWire is a high-speed, point to point and full-duplex

serial bus network, which is based on two commercial

standards of IEEE 1355-1995 and LVDS. The standard of

SpaceWire is based on the advantages of 1394 technology,

ATM technology and Ethernet technology and takes into

consideration the characteristics of the space applications at the

same time. In addition to having a good EMC characteristic,

SpaceWire shows better performance in aspects of exception

handing, time deterministic, fault protection and detection.

However, technical specification of redundancy is not

involved in the standard of SpaceWire bus. In order to improve

the reliability of SpaceWire, this paper makes a study of

redundancy technology for key equipment of SpaceWire. In

this paper, the technical solution will be given to introduce how

it can be designed and implemented. Then, with the test and

analysis, the conclusion of redundancy will be given.

In fact, some experts have made some research on

redundancy of SpaceWire. In [1], a variety of fault-tolerant

methods are designed through the link, node and router in the

baseband data processing network of the fourth geostationary

meteorological satellite named FENGYUN. [2] shows that in

spite of the deficiencies such as some issues about link

bandwidth waste, bulky and power consumption, the

redundancy application can tolerates single point of failure. A

SpaceWire-based fault-tolerant solution with dual redundant

link is proposed in [3]. A redundant program that manages to

activate the correspondent backup link according to the error

cause is proposed in [4] and [5].

II. TECHNICAL SOLUTIONS

In the present SpaceWire bus protocol, there is not

specification about redundancy, so traditional SpaceWire bus

board, even though with two SpaceWire nodes, can only work

alone that either one node fails will leads the communication

failure directly. In order to achieve redundancy feature of

SpaceWire bus, another SpaceWire bus nodes with redundant

202

mailto:Chen.juan@buaa.edu.cn
mailto:yshuai1990@gmail.com
mailto:13810921938@139.com

functions will be designed without changing SpaceWire bus

protocol.

A. Redundant node

In order to achieve redundancy of SpaceWire bus, an Auto-

Protection Switch (APS) is proposed, which links the two

mutual backup SpaceWire nodes in one board to achieve

standby redundancy switchover function. This scheme greatly

improves the reliability of SpaceWire bus, as shown in

Figure.1.

Transmitter

Receiver

FSM

Tx FIFO

TIME

TxClk

Rx FIFO

RxClk

HCI

DoutA

SoutA

DinA

SinA

Transmitter

Receiver

FSM

Tx FIFO

TIME

TxClk

Rx FIFO

RxClk

HCI

DoutB

SoutB

DinB

SinB

PCI

APS

LOS-B

RDI-A
Primary SpW Node A

Redundant SpW Node B

Force

Switch

LOS-A

RDI-B

Fig. 1. SpaceWire bus board with APS

In this board, two independent SpaceWire nodes are linked

with an APS module. When the board is working, APS

continuously detects the working state of two mutual backup

SpaceWire nodes in one board. When Loss of Signal for Node

A (LOS-A) is detected, APS uses Remote Defect Indicator for

Node B (RDI-B) to send switching request data code to the

remote end through the alternate link. After receiving the

switching request data code, the receiver module in the remote

end generates switching signal to APS in the same board and

APS module in the remote end immediately switches

SpaceWire bus to the standby one. At the same time, the spare

sending module in the remote end sends switching

confirmation code to the local standby node and the standby

node generates local switching signal to local APS after

receiving switching confirmation code. At last, the local APS

immediately switches local SpaceWire bus to the standby one.

A redundancy switch is completed as shown in Figure.2.

When the link from the main sending module downstream

to the main receiving module upstream or the two-way link

between the master node upstream and the master node

downstream has a fault, the principle of switching process is

the shown in Figure 2. It is worth noting in the switching

process when the two-way link between the master node

upstream and the master node downstream has a fault,

switching interlock circuit is provided to preventing repeated

switching in bidirectional link.

SpW

B

SpW

A

SpW

B

SpW

A

Primary

Redundant

Host

Interface

Host

Interface

Upstream Station Downstream Station

Primary

Redundant

1

3

4

6

5

2

Fig. 2. Schematic diagram of APS switchover

B. Redundant network

According to the characteristics of SpaceWire bus protocol

and redundancy techniques existed, this paper makes a routing

switch-selected redundancy scheme of SpaceWire bus, as

shown in Figure.3.

SpaceWire

Router

（Primary）

SpaceWire

Router

（Redundant）

SpaceWire

Node 1

SpaceWire

Node 2

SpaceWire

Node 3

SpaceWire

Node 4
Actuator

PC Bus

1

2

3

7

4

5

6

8

Fig. 3. Redundant network solution

SpaceWire

Router

（Primary）

SpaceWire

Router

（Redundant）

SpaceWire

Node 1

SpaceWire

Node 2

SpaceWire

Node 3

SpaceWire

Node 4
Actuator

PC Bus

1

2

3

7

4

5

6

8

Fig. 4. Redundant network solution

As shown in Figure.4, when the network is working,

redundancy switchover process is basically consistent with the

switchover process shown in Figure 2. The only difference is

that the switching request data code should be transmitted

through the backup router to the appropriate switching node.

When the switching is finished, actuator working mechanism

remains the same as before.

203

III. DESIGN AND IMPLEMENTATION

if redundant network of SpaceWire wants to be set up, the

network equipment must be designed. The network equipment

of SpaceWire bus include network function node with

SpaceWire bus interface and SpaceWire router.

A. SpaceWire node

This scheme adopts a hierarchical design method. The

bottom-level includes all kinds of functional modules. On the

bottom-level, it is signal-channel node IP which includes all the

features of node and a highly versatile HCI host interface. It

doesn’t care about what kind of bus and processor host system

uses so that the signal-channel mode IP can be referred to as

SpaceWire node interface IP core. On the top-level, based on

the node IP, dual-channel SpaceWire interface logic with

LVDS signal-level is designed, which makes it convenient for

testing and usage. The cooperation of this three levels achieves

the protocol from physical layer to application layer of

SpaceWire terminal node completely, as shown in Figure.5.

SpaceWire

Controller 1

SpaceWire

Controller 2

FPGA

PCI

Interface

AHB

Interface

Data Buffer

LVDS

Interface

Converter 1
LVDS

Interface

Converter 2

SpaceWire

Connector 1

SpaceWire

Connector 2

PCI

Bus

Spurious

Logic

Fig. 5. Functional block diagram of node interface

Transmitter

Receiver

FSM

Tx FIFO

TIME

TxClk

Rx FIFO

RxClk

AHB

DoutA

SoutA

DinA

SinA

SpW Node

AHB

Interface

APB

Interface

Fig. 6. Overall block diagram of node interface

In Figure.6, transceiver pins of each link are configured as

LVDS mode. Each node IP contains following sub-modules:

Host Control Interface (HCI), Transmitter (with Credit-Counter

Module), Receiver (with Outstanding Counter Module), FSM,

Receive FIFO, Transmit FIFO and Time Code Module. Two

channels share a pll clock unit. The host system reads and

writes each register of each node through PCI bus to achieve

the control and data transmission of link state.

SpaceWire node device use card design with PCIEx1

interface, which can be plugged into the PCIEx1 slot of PC

board directly. PEX 8311chip of PLX Technology Company is

selected as PCIE bridge chip. IP logic of SpaceWire node is

implemented in the FPGA. Cyclone Ⅱ ’s EP2C20F484 of

Altera Company is selected as FPGA. MAX9152 chip is used

to drive LVDS signals and standard serial DB9 connector is

used as SpaceWire connectors.

Fig. 7. SpaceWire node card

B. SpaceWire router

Since this scheme is only used to verify redundancy of

SpaceWire, the router can be designed as a static manner. Each

router provides 8 bidirectional portsand one mirror port. The

mirror port is designed as one-way operation to detect the state

and instruction of node and the information of data

transmission in the network, as shown in Figure.8.

Switch Matrix

SpW

Port1

SpW

Port2

SpW

Port3

SpW

Port4

SpW

Port5

SpW

Port6

SpW

Port7

SpW

Port8

Control Logic

Port Setup

Table

Router

Table

Mirror

Interface

Fig. 8. block diagram of SpaceWire router

the core part of SpaceWire router is implemented in the

FPGA. Virtex5’s XC5VLX50T-667BGA of Xilinx Company

is used as FPGA and MPC852T_50MHz is selected as CPU.

Fig. 9. SpaceWire router

204

IV. TEST AND ANALYSIS

The test includes two parts. One is to verify the

performance of node card designed in this paper and the other

is to verify the redundancy of SpaceWire.

Since the node and router have used Cyclone Ⅱ ’s

EP2C20F484 of Altera Company and Virtex5’s XC5VLX50T-

667BGA of Xilinx Company, in addition to using traditional

high-speed oscilloscope to test signals, this paper also uses two

kinds of embedded logic analyzer from Altera Company and

Xilinx Company and Modelsim, a kind of professional

simulation tool.

After testing, the node board itself is turned out to work

properly and it can achieve the basic functions of SpaceWire

bus protocol. The test results of node board is not mentioned as

it is more important to focus on the analysis of redundancy test.

A. System Recovery Time

System RecoveryTime: the time test nodes uses to return to

normal working state after the overload.

Fig. 10. SpaceWire bus system recovery simulation test chart

The actual test result:

System Recovery Time = 54.24us (under the conditions of

200MHz transmission rate).

B. Bus Switching Time

When a fault is detected by the master bus, the bus can

switch automatically from the master bus to the alternate bus.

Bus switching time is the time interval between detecting the

fault and switching completely to make the communication

recovery. Bus switching time’s realistic expectation will be

milliseconds and less than 1ms.

Fig. 11. SpaceWire bus switching time actual test chart

The actual result:

Bus Switching Time = 33us (under the conditions of

200MHz transmission rate).

C. Latency Time

Latency Time: the time interval from test nodes receiving

the data to be transmitted to encapsulating the data as

SpaceWire data packet and forwarding it out.

Fig. 12. SpaceWire bus latency time actual test chart

The actua test result:

Latency Time = 5.97us (under the conditions of 200MHz

transmission rate).

D. Reset Time

System Reset Time: the time interval from test nodes

software reset or power off restart to working normally.

Fig. 13. SpaceWire bus reset time simulation test chart

The actual test result:

Reset Time = 88.9us (under the conditions of 200MHz

transmission rate).

From the test result, the SpaceWire node designed in this

paper fully meets redundancy requirements of SpaceWire.

Redundancy scheme used in this paper not only be feasible, but

has a good performance.

V. CONCLUSION

This paper achieves dual redundancy of node interface. The

system redundancy switching time arrives millisecond and the

data measured is 33us@200MHz; the actual transmission

distance arrives 33m@200MHz. The redundancy scheme in

this paper is feasible. Test results show that APS protection

switching function is efficient to the upper application, which

verifies the feasibility of APS on redundancy function of

SpaceWire. As a result, the scheme further improve the

reliability of SpaceWire bus.

205

ACKNOWLEDGMENT

First of all, I’d like to give great appreciation to my teacher

Professor Chen Juan to give a lot of guides. Secondly, I want to

show my gratitude to my friends Jia Jitao and Lu Yang, who

give me support and help during the research and paper writing.

REFERENCES

[1] Tian Hua, Design and Study for A New Data Transmission of

Generation of Geostationary Meteorological Satellite, Master

thesis, ShangHai: ShangHai JiaoTong University, 2008, pp. 9–

45.

[2] Steve Parkes, SpaceWire for Adaptive System, NASA/ESA

Conference on Adaptive Hardware and System, 2008, pp.78–82.

[3] Zhang Lei, Sun Caihong, Solution of Data Bus for Space Solar

Telescope, Astronomical Research Technology, 2rd,Vol.6,

2009, pp. 142–146.

[4] Dr. W. Gasti, A. Senior, Modular Architecture for Robust

Computation, International SpaceWire Conference, Osaka

University, Nara, June 2008.

[5] Muhammed Fayyaz, Tanya Vladimirova, Fault Tolerant

SpaceWire Routing Topology and Protocol, International

SpaceWire Conference, St PeterSburg, Russia, June 2010.

206

A design of on-board dual-channel data handling

method based on two FPGAs
SpaceWire Missions and Application, Short paper

Zou Yaopu

Key Laboratory of Infrared System Detection and Imaging

Technology

Shanghai Institute of Technical Physics, UCAS,

Shanghai, China

zouyaopu@126.com

Jiang Jiayou, Han Changpei

Key Laboratory of Infrared System Detection and Imaging

Technology

Shanghai Institute of Technical Physics, CAS

Shanghai, China

johnrita@163.com, changpei_han@mail.sitp.ac.cn

Abstract—SpaceWire is used on FY4 meteorological satellite as

on-board data-handling network. Based on SpaceWire, this

paper provides a design using two FPGAs and AT7911 chips for

the dual-channel data processing of a payload on FY4 to ensure

that data can be transported efficiently and reliably. This design

has proved to be feasible when tested on the ground.

Index Terms—SpaceWire, AT7911, data-handling, dual-

channel

I. INTRODUCTION

SpaceWire has been used on many space missions for its

high performance, and also be employed on FY4 weather

satellite. The atmospheric vertical interferometric detector,

one of the payloads of this satellite, has two data channels

transporting data separately at different speeds. Both channels

together with other science instruments communicate using

SpaceWire. In order to facilitate the usage of SpaceWire

protocol, and enhance the reliability of data transmission link,

two FPGAs are used on the data-processing board for

sampling, processing, and packing data, writing package to

DPRAM chips and notifying corresponding AT7911, a

radiation-tolerant chip developed by Atmel to support

SpaceWire, of where to transmit. The link status information

read from internal registers of AT7911 can be help to decide

whether to resend data or not, for the link between two nodes

can break off, as ensures the continuity of the transfer of data

packets. The link information are exposed to both FPGAS to

help the two channels exchange link information, and to help

operators know the real-time status of the two SpaceWire

links. Furthermore, superfluous data can be stored in free

FIFOs and DPRAMs temporarily when data transmission is

jammed in a short time, which increases stability and

flexibility of the system.

II. ARCHITECTURE OF DATA-PROCESSING SYSTEM

The atmospheric vertical interferometric detector is an

infrared Fourier spectrometer designed for meteorological

detection. It contains two channels named channel1 and

channel2 in the following paragraphs. Channel1 deals with the

data from the detector and transports the data in SpaceWire

format. At the same time, it throws the infrared data gained

from the detector directly to channle2 which compresses the

data for functional verification for the following satellites.

Data from all of the units will be processed in the data-

processing system showed in Figure1.

Fig. 1. Data-Processing System

The data-processing board, the core processing board, is

mainly made up of two FPGAs, two AT7911 chips, three 4 GB

mass SDRAMs and other appendages like clock generator,

storage chips, power module, and so on. Figure2 shows the

architecture of this data-processing system. The main FPGA

works for channel1 while the other compression FPGA

controlled by the main FPGA works for channel2.

This system chooses anti-fuse FPGA as main FPGA to

ensure its reliability when working in space. An external

SRAM is connected with the main FPGA to cache visible data.

An external DPRAM is used to cache packaged data for

AT7911. AT7911, also known as SMCS332SpW, provides an

interface between three SpaceWire links according to the

SpaceWire standard ECSS-E-50-12A specification and a data

processing node consisting of a Control Processing Unit and a

communication data memory [1]. All the chips mentioned

above are at high radiation hardened level.

207

mailto:johnrita@163.com
http://dict.youdao.com/w/verification/

Main FPGA

V
isib

le lig
h

t d
etecto

r

d
riv

e

Spacewire

RS422
26C31/26C32

TxRx

RS422

satellite house-keeping
computer

ADC

ADC

ADC

ADC

2-order

filter

SDRAM2

Main

amplifier

Main

amplifier

Main

amplifier

Main

amplifier

miduim wave

driver

Compression FPGA

V_mw1

V_mw2

V_mw3

V_mw4

MWIR
Detector

&
front

amplifier

Instrument
management

unit
Interferometer

Infrared data

SPACEWIRE
AT7911

Spacewire

Long wave
driver

Long wave circuit 1-16

SRAM

RS422
26C32

Rx

SDRAM1

SDRAM3

Long wave circuit 17-32

Long wave circuit 33-48

Long wave circuit 49-64

Long wave circuit 65-80

Long wave circuit 81-96

Long wave circuit 97-

102

Long wave circuit 103-

138

LWIR
Detector

&
front

amplifier

Visible data

cache

Read in order

Scan mirror
controller

Real-
time

signal

RS422
26C31/26C32

TxRx

RS422

Visible light detector

DAC

Infrared
data
cache

Calibration

analog signal

Main

amplifier

2-order

filter

AD

Single-ended

to

differential

R
ea

d
 i

n
 o

rd
er

AD
Control

EEPROM

RS422

PROM

Configration

Telemetry

SPACEWIRE
AT7911

DPRAM

2-order

filter

2-order

filter

2-order

filter

DPRAM

SelectMAP

Real-
time

signal

Calibration

analog signal

Fig. 2. Architecture of the Data-Processing System

Channel2 does the data compress job for which many

complicated algorithms need to be done, so SRAM FPGA

with plentiful resources, even enough to supply a large

internal DPRAM, is chosen as the processing chip. In addition,

plenty remote sensing data need to be cached, so three large-

capacity SDRAMs with 4Gbit capacity make up the Ping-

Pong buffer. High radiation performance would be considered

when chosen the chips, but there’s also a possibility that

components without anti-fuse structure will be faulty

radiated by high energy particles. In order to recover from

fault and update compression algorithm, configuration of

SelectMap mode is chosen as the configuration way.

Configuration is controlled by the main FPGA. PROM or

E2PROM is used for storing configuration information for the

compression FPGA. Data of channel1 and channel2 output

through the respective space-qualified 9-pin connectors.

Another part of this system is the detection data acquisition

and controlling unit. Long wave has 128 independent

detectors. It’s not the IRFPA architecture so front amplifiers is

needed to improve SNR (Signal to Noise Ratio). The long

wave circuits contain main amplifiers, AD and filter, which is

not shown in detail in figure. The visible light detector is

CCD-array detector and the medium wave detector is IRFPA

detector so they do not need front amplifiers as long wave

detector. Actually they have similar architecture except visible

light has a Single-ended to differential module. All the

detectors controlled by the main FPGA, and their detection

data read in order to the main FPGA.

RS422 is selected as the serial communication interface

between different components for its usability.

III. FUNCTIONAL DESCRIPTION

FY4 weather satellite is a geostationary meteorological

satellite. The atmospheric vertical interferometric detector

carried on FY4 weather satellite collects interference data

obtained by its core component Michelson interferometer. The

usage of long-wave and medium-wave panel detectors allows

the sounder gain three-dimensional remote sensing data [2],

and this would greatly increase data size. Data processing is

mainly handled on data processing board. As motioned above,

this board contains two channels. Its main function contains

data processing, telemetry and control, SpaceWire, and

configuration. These would be introduced in detail in the

following paragraphs.

A. Data Processing Tasks

1) Channel1

The main FPGA generates sampling sequence for medium

wave detector and long wave detector, receives the infrared

sampling data, and then caches the data in internal FIFOs.

Visible data receives from visible-light detector and it would

be stored in external SRAM. At the same time, auxiliary data

contains telemetry information produced by interferometer unit,

instruments management unit and scan control unit is gathered

208

http://dict.youdao.com/w/signal/
http://dict.youdao.com/w/to/
http://dict.youdao.com/w/noise/
http://dict.youdao.com/w/ratio/

by the main FPGA and packed together with the detection data.

Figure 3 shows the data flow of channel1.

Infrared data

Visible data

Long Wave
FIFO

midium
Wave FIFO

SRAM

CCSDS
PACKING

FIFO

Send to FPGA2

SPACEWIRE
PACKING

DPRAM

AT7911 Send to connector

ACTEL FPGA

Auxiliary Data

Send to FPGA2

Fig. 3. Data Flow of Channel1

Detection data and auxiliary data are packed twice before

sending outside. First time, infrared data read from long or

short wave FIFO, visible data read from SDRAM, and together

with auxiliary information are packed into CCSDS package.

The packages will be stored in a FIFO before packing into

short package in SpaceWire package format.

2) Channel2

As the core processor of channel2, the compression FPGA

deals with all the compression algorithms. It receives detection

data from FPGA1, and stores it in sdram. Because data

compression is implemented for several frames, large sdrams

with 4Gb capacity are employed. Figure4 shows the data flow

of channel2.

INFRARED DATA

SDRAM1

SDRAM2

SDRAM3

SDRAM
Controller

Algorithm
Processor

Preprocessor

DPRAM AT7911

Send to connector

XILINX
FPGA

Long Wave
FIFO

midium
Wave FIFO

Auxiliary Data
CCSDS

PACKING

FIFO

SPACEWIRE
PACKING

Fig. 4. Data Flow of Channel2

The strategy of SDRAM1 and SDRAM2 ping-pang cache

infrared data allows data transfer and compress to perform

simultaneously. SDRAM3 stores the half-compressed and

compressed data. For example, when data buffered in

SDRAM2, algorithm processor reads preprocessed data from

SDRAM1 and half-compressed data from SDRAM3, and these

two kinds of data would be calculated by the algorithm

processor. Compressed data or half-compressed data would be

written to SDRAM3. At the same time, compressed data is

read out from SDRAM3 to long wave FIFO and medium wave

FIFO respectively, and then sent to package module before

transfer to SpaceWire connector through AT7911. Data

package and sending process of channel2 are similar to

channel1, so they are not described in detail here for brevity.

Channel2 receives control instructions and some of the

telemetry informations from Channel1 through a serial port at

rate of 1Mbps, and returns its internal states through another

serial port every one second.

B. SpaceWire

The two channels both use SpaceWire interfaces in order to

obtain high speed and reliable data communications. Figure5

excerpted from reference [2] shows the block diagram of the

protocol chip, AT7911E. Both of the channels have their own

AT7911 chips, so it’s easier to control the SpaceWire data

transmission.

Fig. 5. AT7911E Block Diagram [2]

In this data-processing system, both channels use the same

application as Figure6 shows. The chips communicate with

other receivers using SpaceWire protocol. After power-up, the

two ends connect automatically, then they both enter the Run-

state and get ready to receive and send data. The processor,

here is the FPGA chip, write data to the registers of the chips

through the HOCI to command where and how many data

should be sent from DPRAM. Then a following judgement will

be made to determine whether resend or not.

209

Fig. 6. Application for AT7911 [2]

For more reliable control of the chip, several methods are

made to enhance robustness. First, if any errors are detected

during data transfer, full reset of the chip will be made.

Second, if register read acton lasts for too long, the FPGA

forces the chip to initial state. Third, if the DPRAM is almost

full, the FPGA stores the coming data into FIFO temporarily,

this strive for extra time for the receivers.

C. Configuration

Channel1 use FPGA with anti-fuse architecture as its

processor, so its configuration is done on ground. However,

channel2 implement its configuration under the control of

channel1 in SelectMap mode. Configuration data of channel2

is uploaded from ground to channel1, and stored in the

E2PROM before writed to the compression FPGA. This kind

of configuration ensuring that the compression FPGA, which is

a kind of SRAM FPGA, can be totally reconfigured when it

faulty radiated by high energy particles. And it will be also

easy updated. Original configuration information is stored in

PROM, so it’s another kind of configuration for channel2.

IV. CONCLUSION

This design which is based on two FPGA chips uses a

SpaceWire protocol chip AT7911 to manage the data

transmission and flow control. The test results prove that with

a good design on PCB layout, wiring and grounding, plus the

function of re-sending of a lost packet, this design works

efficiently and reliably.

References

[1] U.Liebstuckel, SMCS332SpW User Manual, ATMEL, 2007.

[2] ZhouYuan, Li Li, Zhang Jian-hua, Cui Wan-zhao, Zhao Jun-yi,

Using SpaceWire In a Intellectualized Data Processor, Proceedings of

International SpaceWire Conference, 2013

210

Thursday 25 September

211

 Networks & Protocols 2 (Long)

212

A SpaceWire router architecture
with non-blocking packet transfer mechanism

SpaceWire Networks and Protocols, Long Paper

Takayuki Yuasa
RIKEN The Institute for Physics and Chemical Research

2-1 Hirosawa, Wako, Saitama 351-0198, Japan
takayuki.yuasa@riken.jp

Tadayuki Takahashi
Institute of Space and Astronautical Science, JAXA,

3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210, Japan

Masaharu Nomachi
Osaka University,

1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan

Hiroki Hihara
NEC TOSHIBA Space Systems, Ltd.

10, Nisshin-cho 1-chome, Fuchu, Tokyo, 183-8551, Japan

Abstract—A new SpaceWire router architecture with packet
segmentation and multiplexing capability is presented. The aim is
to resolve a blocking phenomenon, or an increase of packet
transfer latency, that can happen in a SpaceWire network
formed by ordinary SpaceWire routers. To resolve the blocking
of packet transfer in a router caused by worm-whole routing of a
preceding packet, we designed, implemented, and tested, a non-
blocking packet transfer mechanism that uses the SpaceWire-R
protocol for segmentation of packets, acknowledgement,
multiplexing of segments, and management of an end-to-end
communication channel. The mechanism is implemented as an
extension to an existing SpaceWire router. The SpaceWire-R
part is implemented as an extension module to the existing
SpaceWire router VHDL IP core, and we do not modify
SpaceWire router specification at all. Details of the architecture,
implementation result, and performance evaluation result are
shown in the present paper.

Index Terms— SpaceWire-R, packet segmentation, latency-
constrained network.

I. INTRODUCTION
The worm-hole routing mechanism specified in the

SpaceWire standard can cause a so-called blocking when two
(or more) packets flowing into a router share the same out-
going SpaceWire port; one of the packets can go through the
port first, and only after completion of transmission of the first
packet, the "blocked" packet(s) can be transferred. This could
lead to an unlimited increase of packet transfer latency of the
blocked packet because the maximum packet length is not
constrained in the standard, making the whole network
undeterministic in the worst case.

To maintain the worst-case latency below an acceptable
level, the maximum length of SpaceWire packet transfered in
an onboard network is usually defined as a system-level
specification. This is an approach taken by the SpaceWire-D [1]

to complete a packet transfer within a single time slot, and thus
to create a deterministic data transfer network.

In the present paper, we describe a new SpaceWire router
architecture with a built-in capability of the maximum packet
length limitation based on a packet segmentation mechanism
and non-blocking data transfer mode where multiple packets
can share the same out-going SpaceWire port. This new router
architecture provides a “gateway” functionality which
separates a SpaceWire network into an ordinary blocking
SpaceWire subnetwork and a maximum-latency-constrained
non-blocking subnetwork. The basic idea of this architecture
was presented as [2] in the 18th SpaceWire Working Group
meeting. Figure 1 shows a conceptual diagram of the gateway
router and the network separation.

In the following sections, details of the proposed
architecture and its implementation in VHDL are described
followed by the performance measurement result showing how
the worst-case latency is reduced by the architecture.

Latency-constrained
subnetwork

Ordinary SpaceWire network

Gateway

Existing
SpaceWire
Router

Fig. 1. Conceptual diagram showing an ordinary blocking SpaceWire
subnetwork and a maximum-latency-constrained non-blocking

subnetwork separated by a gateway router of which functionality
the present paper descibes.

213

II. SEGMENTATION AND VIRTUAL CHANNELING
Packet segmentation is a key to achieve the worst-case

latency constraint in a SpaceWire network as noted above.
Therefore, the gateway router that sends a payload packet
coming from the ordinary SpaceWire network to the non-
blocking network should have capability to segment a packet
into multiple relatively small segments, and the receiving
gateway has to unsegment the segments forming a complete
SpaceWire packet. To avoid congestion within the non-
blocking subnetwork, an end-to-end (i.e. gateway-to-gateway)
flow control should be carried out by the gateway modules.

To realize these within the SpaceWire standard, we applied
the SpaceWire-R upper-layer protocol [3] which is a successor
of the NASA GOES-R Reliable Data Delivery Protocol
(RDDP) and the Sandia Natinal Laboratory Joint Architecture
Standard RDDP [4,5]. SpaceWire-R provides a packet
segmentation function and end-to-end flow control, as well as
communication channel control, i.e. Open/Close of a segment
transmission channel between a pair of gateway modules.

Since SpaceWire-R is an upper-layer protocol of
SpaceWire, all necessary communication between a pair of
non-blocking gateways is performed using SpaceWire packets.
Within the non-blocking (segmented packet transfer)
subnetwork, all links operate as ordinary SpaceWire links but
packet transfer is performed with segmented packets whose
size does not exceed the predefined maximum segment length,
thus allowing system designers to estimate the worst-case
packet transfer latency in the subnetwork. Management of
communication channel and packet segmentation/un-
segmentation take place automatically in the “gateway” routers
at the entrance and the exit of the non-blocking subnetwork,
and therefore, no modification is required to existing standard
SpaceWire devices connected to the non-blocking network.

Hereafter, we refer a packet tranfer using the SpaceWire-R
segmentation and the end-to-end channel control mechanisms
as the non-blocking packet transfer mode. The ordinary packet
transfer using the existing SpaceWire routers is referred to as
the blocking-mode packet transfer.

A functional block diagram of the gateway router is shown
in Figure 2. In addition to ordinary SpaceWire ports, there are
several additional modules to achive SpaceWire-R based
packet transfer; SpaceWire-Conversion module which consists
of the Framing and the De-Framing submodules. The Framing

submodule carry out a segmentation of a SpaceWire packet
creating multiple SpaceWire-R Data packets, and the De-
Framing module unsegments them into a SpaceWire packe,
and transfers to a destination SpaceWire port in the same router.
All communication including channel control
(Open/Close/Control Ack) and data transfer (Data/Data Ack)
are performed using SpaceWire-R packets of which packet
format is shown in Figure 3. The SpaceWire-R packet is a

Cross-bar
Switch

SpaceWire
CODEC

SpaceWire
CODEC

Configuration
Port (Port 0)

MUX

SpaceWire-R
Conversion (Port 0)

SpaceWire
CODEC

SpaceWire-R
Conversion (Port 1)

SpaceWire-R
Conversion (Port 2)

SpaceWire-R
Conversion (Port 4)

MUX

SpaceWire-R
Conversion (Port 0)

SpaceWire
CODEC

SpaceWire-R
Conversion (Port 1)

SpaceWire-R
Conversion (Port 2)

SpaceWire-R
Conversion (Port 3)

Port 1

Port 2

Port 3

Port 4

SpaceWire-R PortsOrdinary
SpaceWire
ports

Framing module

De-Framing module

MUX

SpaceWire-R Conversion

SpaceWire-R
Packet Generator

Sliding Window

SpaceWire-R
Packet Interpreter

Sliding Window

To
 C

ro
ss

-b
ar

 S
w

ith

Control Ack
Data Ack

Open Command
Close Command
Data

To
 S

pa
ce

W
ire

 C
O

DE
C

(v
ia

 M
UX

)

Open Command
Close Command
Data
Control Ack
Data Ack

Da
ta

 A
ck

Fig. 2. Block diagram of the gateway router which transfers SpaceWire
packets using the SpaceWire-R segmentation and end-to-end channel

control mechanisms.

SCDHA 151-0.2

12

Figure 4-2: Structure of an SpW-R Packet

4.2.3. SPW-R PACKET HEADER

4.2.3.1. General

The Header of an SpW-R Packet shall consist of the following fields, positioned contiguously, in the following
sequence:

a) Destination SLA (1 octet);

b) Protocol ID (1 octet);

c) Packet Control (1 octet);

d) Payload Length (2 octets);

e) Channel Number (2 octets);

f) Sequence Number (1 octet);

g) Address Control (1 octet); and

h) Source Address (N+1 octets).

For all the Packet types specified in 4.2.1, the same Header shall be used.

4.2.3.2. Destination SLA

As specified in 5.2.1 of [A5], the first octet (octet 0) of the Header shall contain the SpaceWire Logical Address
(SLA) associated with the TEP to which the Packet is being sent.

4.2.3.3. Protocol ID

As specified in 5.2.2 of [A5], the second octet (octet 1) of the Header shall contain the Protocol ID of this
protocol, which is to be assigned by the European Cooperation for Space Standardization (ECSS) at a later time.

4.2.3.4. Packet Control

4.2.3.4.1. General

Octet 2 of the Header shall contain the Packet Control field.

SCDHA 151-0.2

12

Figure 4-2: Structure of an SpW-R Packet

4.2.3. SPW-R PACKET HEADER

4.2.3.1. General

The Header of an SpW-R Packet shall consist of the following fields, positioned contiguously, in the following
sequence:

a) Destination SLA (1 octet);

b) Protocol ID (1 octet);

c) Packet Control (1 octet);

d) Payload Length (2 octets);

e) Channel Number (2 octets);

f) Sequence Number (1 octet);

g) Address Control (1 octet); and

h) Source Address (N+1 octets).

For all the Packet types specified in 4.2.1, the same Header shall be used.

4.2.3.2. Destination SLA

As specified in 5.2.1 of [A5], the first octet (octet 0) of the Header shall contain the SpaceWire Logical Address
(SLA) associated with the TEP to which the Packet is being sent.

4.2.3.3. Protocol ID

As specified in 5.2.2 of [A5], the second octet (octet 1) of the Header shall contain the Protocol ID of this
protocol, which is to be assigned by the European Cooperation for Space Standardization (ECSS) at a later time.

4.2.3.4. Packet Control

4.2.3.4.1. General

Octet 2 of the Header shall contain the Packet Control field.

D e s t i n a t i o n l o g i c a l
address taken from the
original (unsegmented)
packet.

Data Frame (Data/Data Ack),
Control Frame (Open/Close)

Sequence number of the
data segment.

Pseudo logical address of source SpaceWire-R port which performed
segmentation of this packet. This logical address will be used to return
Ack packet from the destination SpaceWire-R port to the source
SpaceWire-R port. Prefix (= path address) will not be used.

Fig. 3. Packet structure of the SpaceWire-R data transfer protocol [3]. All the packets transferred within the Non-blocking SpaceWire network have this packet
structure, being either of Open Command, Close Command, Control Ack (Open/Close Ack), Data, and Data Ack.

214

subclass of the SpaceWire packet, and can be tranfered using
existing SpaceWire routers without any modification inside the
non-blocking subnetwork.

Figure 4 schematically shows the packet transfer procedure
in the non-blocking mode. Below, we describe it by breaking
down it into multiple steps.

1. A SpaceWire packet arrives, from the ordinary
SpaceWire network, at the gateway router, and it is routed to a
port connected to the non-blocking subnetwork. The gateway
router constructs destination information based on the logical
and path address in the header of the SpaceWire packet, and
route the packet to one of the SpaceWire-R Conversion module
of the outgoing SpaceWire-R ports. When a packet is written to
the Sliding Window of the Framing module (Figure 2 lower
panel), the module creats and send an Open command to a
destination gateway router. The Open command packet, and
also following Data-segment packet and a Close command
packet, are routed within the non-blocking subnetwork based
on the path address and logical addresses like ordinary
SpaceWire packets. The Open command will be written to the
De-Framing module of a SpaceWire-R Conversion module
which corresponds to the destination SpaceWire port of the
packet. The De-Framing module returns a Control Ack packet

to acknowledge the command. To route this returning packet to
the correct Framing module, it is necessary to identify the
source Framing module that emtited this Open command using
the source SLA (SpaceWire Logical Address) field. In the
present architecture, we assign pseudo logical addresses to
each SpaceWire-R Conversion module, and fill its specific
value when a Framing module sends SpaceWire-R packet. A
receiving gateway router and interleaving routers should have a
look-up table entry corresponding to the pseudo logical address
so that they can properly route Ack packets sent from a De-
Framing module with logical addressing; the pseudo logical
address filled in the SLA field is used as the logical address
values of Ack packet, and the packet is returned to the Framing
module using logical addressing.

2. Following the establishment of a communication channel
between two SpaceWire-R Conversion modules, the Framing
module starts sending Data segments. The segment size and the
depth of the Sliding Window are parameters that should be
determined in the system-level design as summarized in the
SpaceWire-R specification document [3].

3. On receive of a Data segment, the De-Framing module in
the destination SpaceWire-R Conversion module reconstruct
the original SpaceWire packet, and outputs it to routed

Cross-bar
Switch

SpaceWire
CODEC

SpaceWire
CODEC

MUX

SpaceWire-R
Conversion (Port 0)

SpaceWire
CODEC

SpaceWire-R
Conversion (Port 1)

SpaceWire-R
Conversion (Port 2)

SpaceWire-R
Conversion (Port 4)

Port 1

Port 2

Port 3

SpaceWire-R PortsOrdinary
SpaceWire
ports

. . .

. . .

Cross-bar
Switch

SpaceWire
CODEC

SpaceWire
CODEC

MUX

SpaceWire-R
Conversion (Port 0)

SpaceWire
CODEC

SpaceWire-R
Conversion (Port 1)

SpaceWire-R
Conversion (Port 2)

SpaceWire-R
Conversion (Port 4)

Port 1

Port 2

Port 3

SpaceWire-R PortsOrdinary
SpaceWire
ports

. . .

To other gateway routers

SpaceWire
 packets SpaceWire-R

Data packets

. . .

In the De-Framing module of the
d e s t i n a t i o n S p a c e W i r e - R
Conversion, Received Data
packet will be unsegmented to
form a SpaceWire packet.

Reconstructed SpaceWire packet has the
same destination logical address as the
original SpaceWire packet. Some path
addresses might have been stripped when
routed in the non-blocking network.

Each segment holds the same path
address and logical address as the
o r ig ina l SpaceWi re packet . Pa th
addresses may be stripped by interleaving
routers in the non-blocking network.

Multiplexer alternatively sends segments
from each SpaceWire-R Conversion
modules when they have ready-to-send
segments.

Fig. 4. Block diagram of the gateway router which transfers SpaceWire packets using the SpaceWire-R segmentation and end-to-end channel control
mechanisms.

215

SpaceWire port selected based on a path address or a logical
address available in the Data packet. If interpretation of the
Data packet and reconstruction of payload data are successuful,
a Data Ack packet will be returned making Sliding Window
pointer to slide.

4. When all outstanding Data segments were transferred
and acknowledged, the Framing module sends a Close
command to finalize the opened channel. When a Close Ack
packet returns to the Framing module, procedure for transfer of
a single SpaceWire packet completes. The Framing module can
start processing another incoming SpaceWire packet.

These procedures can be concurrently proceeded by
multiple SpaceWire-R Conversion modules in a SpaceWire-R
port of a gateway router unless the same destination
SpaceWire-R Conversion module is targeted. Thus, multiple
large SpaceWire packets sent via the same SpaceWire link do
not block each other except for short blocking period caused by
transmission of Data segment. Duration of the short blocking
can be controlled by changing the segmentation size
parameterso as to fulfill the system requirement on the worst-
case latency.

III. IMPLEMENTATION
We performed an R&D study on this non-blocking network

architecture from 2013 to 2014. After the conceptual study, the
above described mechanism was implemented as additional
modules for the existing open-source SpaceWire router VHDL
IP core. The major functionalities of the added modules include
SpaceWire-R packet generation and interpretation, sliding
window, transmission/receive-end-point control. Since the
purpose of the present implementation is to validate the
concept of the non-blocking packet transfer, the number of
SpaceWire ports was limited at 3; two ports are ordinary
SpaceWire ports, and the other is a port which transfers
SpaceWire-R packets (segments). The SpaceWire-R port
should be connected to a SpaceWire network where the worst-
case latency is guaranteed by the tranfer of segmented
SpaceWire-R packets. This routing switch can be regarded as a
gateway from the ordinary SpaceWire network to the latency-
guaranteed segmented network.

We confirmed that this newly developed IP core properly
work on an FPGA (Xilinx Spartan-6 in our case), achieving the
maximum SpaceWire link frequency of 100MHz (with a 50-
MHz internal system clock for routing and SpaceWire-R-
related processes). The logic footprint increase from the
original router IP core is dominated by the memory used in the
Sliding Window module and the crossbar switch structure; note
that the number of cross-bar end points significantly increases
because each SpaceWire-R port needs to implement
SpaceWire-R Conversion modules for ports other than itself.

Technically, there is no limitation other than the maximum
port number limitaion in the SpaceWire standard, and the
number of SpaceWire and SpaceWire-R ports can be increased
as long as the logic elements are available. The segment size is
a parameter of the IP core, and selectable from available
options of 128, 256, 512, and 1024 bytes in our implementation.

IV. PERFORMANCE
To measure data transfer performance of the Non-blocking

architecture, we simulated packet transfer using the newly
implemented Non-blocking-mode SpaceWire routers in a
VHDL testbench. Figure 5 shows a simulation configuration,
and Table 1 lists parameters used therein. In the simulation,
two packets are simultaneously generated by the Packet Source
nodes, and transferred to the first router via 100-MHz
SpaceWire links. The packets are routerd to Port 3 of the router
which is connected, via a 100-MHz link, to the other router
which the Packet Sink nodes are connected via 100-MHz link.
For referring to the data transfer path between a pair of Source
and Sink nodes, we use Channels 1 and 2 (see figure). We also
performed the similar simulation using the existing ordinary
SpaceWire router IP core same as the one used to implement
the present Non-blocking architecture. It is obvious that the
router-router link is shared by the two channels, a simultaneous
transmission of packets from the two Source nodes will cause
the blocking phenomenon in the first router.

“Latency” is defined, in the present analysis, as the time
duration between the start of packet transmission in the Packet
Source node (more specifically, first write to the Tx FIFO of
SpaceWire CODEC) and the start of the receival in the
corresponding Packet Sink node (receive of the first byte from
the Rx FIFO of SpaceWire CODEC).

Figure 6 shows waveforms obtained in the blocking mode
and non-blocking mode simulations with a packet size of 1024
bytes. A segment size of 256 bytes was utlitied in the non-
blocking mode. Time duration where Packet Source and Packet
Sink nodes are sending/receiving packets are indiacted with
horizontal arrows. In the blocking mode, upper panel of Figure
6, transmission of the second packet (packet transferred from
Source 2 to Sink 2) is suspended while the first packet (from
Source 1 to Sink 1) is passing through the router-router link.
This is a simple example of the blocking phenomenon.

Packet Source

100 MHz

Router

Router

100 MHz 100 MHz

12
Packet Sink

12

3

12

3

12

100 MHz 100 MHz

Channel 1Channel 2

Fig. 5. Configuration of the simulation. Green and blue arrows show data
transfer paths used by Packet Source 1 and 2. As the “Router”

components in the diagram, a pair of ordinary SpaceWire routers or the
newly implemented rouers with the Non-blocking data transfer mode

was used depending on the simulation cases (see text).

216

In the non-blocking mode simulation, however, two packets
are concurrently received by the two Sink nodes. A single
packet is segmented into four 256-byte segments and
alternatively transferred via the router-router link. This is why
data are received intermittently (and alternatively) in the Sink
nodes. Although the horizontal scales are not the same in these
two pictures, one can note that smaller latency is achieved in
the non-blocking mode.

We executed multiple simulations of these two cases with
different packet sizes ranging from 16 bytes to 16kBytes.
Observed latency values are summarized in Table II and
plotted in Figure 7. Since the present non-blocking data
transfer architecture requires an end-to-end Open/Close control
before and after trasmitting a packet, and this is an overhead of
this archtecture. Impact of this overhead time is particularly
large for latency of preceing (first outgoing) packets shorter

Packet Source 2
sending a 1024-byte packet

Packet
Source 2

Packet
Sink 2

Packet
Source 1

Packet
Sink 1

Packet Sink 1
receiving the 1024-byte packet

Packet Sink 2
receiving the 1024-byte packet

Latency

Wait due to “blocking” in the router

Packet Source 2
sending a 1024-byte packet

Packet Source 1
sending a 1024-byte packet

Packet Sink 2
receiving the 1024-byte packet

Packet Sink 1
receiving the 1024-byte packet

Two packet are multiplexed and simultaneously
transferred via the shared router-router link.

Latency

Packet Source
2

Packet
Sink 2

Packet Source
1

Packet
Sink 1

Blocking transmission

Non-blocking transmission

Packet Source 1
sending a 1024-byte packet

Fig. 6. Latency obserbed when two packets were simultaneously routed to the same port of a router in the Blocking mode (top) and the Non-blocking mode
(bottom). In the bottom panel, the same results for the Blocking mode are also shown, in lighter colors, for easier comparison.

217

than a segment size; e.g. in the case of 16-byte packet, the non-
blocking mode resulted 1.8µs of latency, but it increases to
10.44µs in the non-blocking mode (a factor of 5.8 increase.

On the other hand, in packet sizes that are larger than that
of the segment size (256 bytes in this case), latency saturates

at a constant value (68.2 µs and 102.44 µs for the two packets),
and reduction from the blocking mode result is significant; e.g.
in the 16-kByte packet case, a factor of 20 reduction is
achieved, and higher for longer packets.

 Figure 8 shows a reduction of latency achieved when the
segment size is halved to 128 bytes. In the blocking mode
(ordinary SpaceWire router), latency observed in a blocking
phenomenon linearly scales with the total size of the packet
that impeding the transmission of the blocked packet. The non-
blocking mode shows latency that is proportional to the
segment size, and the worst case latency can be easily
configured by setting an appropriate segment size to the
gateway routers although this is not easily possible in the
ordinary (unsegmented) SpaceWire networks requiring
modifications of individual packet sending and receiving nodes.

To compare efficiency of bandwidth utilization of the
shared link, we calculated throughput by dividing the total
payload size (i.e. sum of the two packets) with a duration
between the data send start time (when the first byte is written
to the Source Tx FIFO) and the data receive end time (when
the EOP is received by the Sink node). Results are tabulated in
Table III and plotted for the blocking and the non-blocking
cases in Figure 9. In short-payload cases, reduction is
significant as expected, and reaches e.g. ~80% in the 16-byte
case. This is explained as the overhead caused by extra time
necessary for SpaceWire-R Open, Data Ack, and Close control.
As the payload size increases, throughput reduction saturates at

1

10

100

1000

10000

16 64 256 1024 4096 16384

Latency (Non-blocking mode)

m
ic

ro
 s

ec
on

d

Payload bytes

1

10

100

1000

10000

16 64 256 1024 4096 16384

Latency (Blocking mode)

m
ic

ro
 s

ec
on

d

Payload bytes

Blocking mode

Channel 2

Channel 1

Channel 1

Channel 2

Non-blocking mode

Fig. 7. Latency obserbed when two 1024-byte packets were simultaneously
routed to the same output port of a router in the Blocking mode (top) and
the Non-blocking mode (bottom; the same results for the Blocking mode

are also shown, in lighter colors, for easier comparison). The segment
size of 256 bytes was used in the Non-blocking mode simulation.

0

30

60

90

120

64 256 1024 4096 16384

Sement size depencende

m
icr

o
se

co
nd

Payload bytes

×0.52
102.44→53.8 μs

256-byte case 128-byte case

×0.52
68.2→35.8 μs

Fig. 8. Reduction of latency observed between segment sizes of 256 byts and
128 bytes. In the Non-blocking mode, latency is proportional to the
segment size (c.f. it is proportioanl to the total packet length in the

Blocking mode).

0

2

4

6

8

16 64 256 1024 4096 16384

Throughput

M
By

te
s/

s

Payload bytes

Blocking mode
Non-blocking mode (256B)
Non-blocking mode (128B)

Reduction
6.8%
9.6% @ 16kB

Fig. 9. Throughput calculated for each packet transferred between the
Source-Sink pairs. Green and blue lines are for the blocking case, and

red and orange lines are for the non-blocking case (256-byte
segmentation).

�PARAMETERS USED IN THE SIMULATION

Parameter Value
Segment size 256 bytes

Sliding window depth 3
Incoming packet size 16, 64, 256, 1024, 4096, and 16384 bytes

Link frequency all links operated at 100 MHz

218

~6.8% and ~9.6% of the blocking-mode case, and depending
on the system requirement these values could be acceptable.

V. CONCLUSION
The non-blocking packet transfer architecture based on the

SpaceWire-R upper-layer protocol is presented. VHDL
simulation showed that the implementation works as designed,
transfers multiple SpaceWire packets concurrently avoiding the
blocking phenomena observed in the ordinary SpaceWire
router. The worst-case latency reduction is effective in
particular for relatively large SpaceWire packets for example
longer than 10 kB. The worst-case latency is a controllable
parameter that is proportionally dependent on the segment size
and the link frequency.

This architecture is appilicable to those systems that carries
sensor modules which output large telemetry data as a single
(long) packet, and transferred to a mass memory via a shared
network. If SpaceWire-D is applied to the network to maintain
the determinism, the sensor nodes should implement time-
division multiplexing. However the presented non-blocking
architecture offloads the costs necessary to modify the sensor
nodes, and the gateway routers assure the determinism by
liming the worst-case latency. Thus, this architecture could be
an option where there is a requirement to reuse existing devices

and components with a network that is required to be highly
reliable.

ACKNOWLEDGMENT
This work has been partially supported by the Special

Postdoctral Reseacher program of RIKEN.

REFERENCES
For papers published in translation journals, please give the

English citation first, followed by the original foreign-language
citation [6].
[1] Parkes, S., “SpaceWire-D draft specification”, available from

SpaceWire Working Group website.
[2] Nomachi, M., “Non-blocking SpaceWire network”, 18th

SpaceWire Working Group meeting, April 23, 2012.
[3] Yamada, T., “SpaceWire-R SCDHA 151-0.3”, Institute of Space

and Astronautical Science, Japan Aerospace Exploration
Agency.

[4] NASA Goddard Space Flight Center GOES-R Project, “GOES-
R Reliable Data Delivery Protocol”, 417-R-RTP-0050, 2008

[5] Gardner, M., et al., “Joint Architecture Standard (JAS) Reliable
Data Delivery Protocol (RDDP) Specification”, SAND2011-
3500, 2011.

 RESULTS OF PACKET TRANSFER SIMULATION WITH THE BLOCKING AND THE NON-BLOCKING MODES. VALUES ARE IN MICRO SECONDS.

 Blocking mode Non-blocking mode
256-byte segment

Non-blocking mode
128-byte segment

Payload Channel1 Channel2 Channel1 Channel2 Channel1 Channel2
16 4.3 1.8 10.4 48.6 10.4 32.4
64 10.4 1.8 30.3 20.2 30.3 20.2

256 34.7 1.8 102.4 68.2 53.8 35.8
1024 131.7 1.8 102.4 68.2 53.8 35.8
4096 521.1 1.8 102.4 68.2 53.8 35.8

16384 2077.6 1.8 102.4 68.2 53.8 35.8

TABLE III. THROUGHPUT CALCULATED FOR EACH PACKET TRANSFER. VALUES ARE IN UNITS OF MBYTES/S.

 Blocking Non-blocking mode Reduction
from Blocking mode

Payload 256B 128B 256B 128B
16 4.88 0.62 0.98 87.3% 79.9%
64 6.84 3.32 3.32 51.4% 51.5%

256 7.60 3.78 4.78 50.4% 37.1%
1024 7.84 6.02 6.34 23.2% 19.1%
4096 7.88 7.04 6.9 10.7% 12.4%

16384 7.90 7.36 7.14 6.8% 9.6%

219

SpaceWire-D on the Castor Spaceflight Processor
SpaceWire Networks and Protocols, Long Paper

David Gibson, Steve Parkes

Space Technology Centre

University of Dundee

Dundee, Scotland

{dzgibson, smparkes}@dundee.ac.uk

Chris McClements, Stuart Mills, David Paterson

STAR-Dundee

Dundee, Scotland

Abstract—SpaceWire-D is a deterministic extension to the

SpaceWire protocol designed to satisfy hard real-time constraints

on a SpaceWire network. This allows a single SpaceWire

network to be used for both control applications and payload

data-handling.

The Atmel AT6981 Castor device is a LEON2-FT based

system-on-chip with multiple integrated peripherals including an

eight-port SpaceWire router and three internal SpaceWire

engines each containing three DMA channels, an RMAP

initiator, and an RMAP target.

This paper describes the SpaceWire-D protocol; the design of

RTEMS networking software to test the protocol using the

AT6981 system-on-chip; and the results of those tests.

Index Terms— SpaceWire, SpaceWire-D, deterministic

networks, spacecraft onboard processing, AT6981

I. INTRODUCTION

SpaceWire-D is a deterministic extension to the SpaceWire

on-board data handling network [1] being designed by the

University of Dundee for ESA [2] [3]. To provide a

deterministic capability, SpaceWire-D uses time-division

multiplexing and slices network time into a series of time-slots

in which RMAP [4] transactions are executed. These

transactions are grouped into a virtual bus system, where each

bus consists of an initiator node, one or more target nodes, and

the set of links that make up the paths between the nodes.

Figure 1 shows an example of a virtual bus with an

initiator, three targets, and five links. The semi-transparent

nodes and links are not part of the virtual bus.

Due to the wormhole routing used by SpaceWire enabled

routers, if there are multiple data-flows in a SpaceWire

network there is a possibility of a packet being blocked if one

of the SpaceWire links it requires is already in use. There may

be more than one initiator operating in a SpaceWire-D network

at the same time, so a set of initiator schedules is required to

constrain traffic such that no two virtual buses are active in the

same slot if there is a chance that they could have a colliding

transaction i.e. if they have any shared links.

II. SPACEWIRE-D

The following subsections briefly describe the features of

SpaceWire-D. For more in-depth coverage, see the standard

draft [2] and [3].

A. Time-Division Multiplexing

In a SpaceWire-D network, the end of the current time-slot

and the beginning of the next time-slot is signaled by the

arrival of the next valid time-code. SpaceWire time-codes

contain a 6-bit time value, so there are 64 slots in a SpaceWire-

D schedule beginning at slot 0 and ending at slot 63.

Additionally, a local timer can be used to synchronise with the

arriving time-codes to provide redundancy in case a time-code

fails to arrive.

Each time-slot can be assigned a single virtual bus.

However, this is not a symmetric relationship because

depending on the type of virtual bus, a bus may be assigned to

multiple time-slots or adjacent sequences of time-slots called

multi-slots, as described in the following sections.

When a new time-slot begins, if there is a virtual bus

assigned to the time-slot, the group of transactions associated

with the virtual bus is executed.

B. Static Bus

The SpaceWire-D protocol provides services to open, load,

execute, and close four different types of virtual buses. The

first and simplest virtual bus is the static bus.

Each static bus is assigned to a single time-slot or single

multi-slot. Once opened, the user application can then load the

static bus with a group of RMAP transactions. During the

loading operation, the transaction group’s worst-case execution

time (WCET) is checked before the transaction group is

accepted into the static bus. If the WCET of the transaction

Fig. 1. Example of a virtual bus with three targets and five links

220

group exceeds the duration of the time-slot or multi-slot it may

interfere with the next slot’s transactions, so the transaction

group is not loaded and an erroneous response is sent to the

user application.

A transaction group can be loaded as a repeating group in

which case it is repeated every time the bus’s time slot occurs

until the bus is reloaded or closed, or as a single shot group

where the transaction group is unloaded after a single

execution.

C. Dynamic Bus

A dynamic bus can be assigned to multiple time-slots or

multi-slots. When a transaction group is loaded, its WCET is

checked, like the static bus, before it is accepted. If a

transaction group is accepted and loaded into a dynamic bus, it

is executed in the next time-slot or multi-slot assigned to the

bus. This results in less predictability than a static bus because

a transaction group could be executed in one of multiple time-

slots.

D. Asynchronous Bus

As with a dynamic bus, an asynchronous bus can be

assigned to multiple time-slots or multi-slots.

However, unlike the static bus and dynamic bus, which are

based around loading groups of transactions, the asynchronous

bus works on a single transaction basis. When a user

application loads an asynchronous bus, it sends a data structure

describing a single transaction along with the transaction’s

priority. The asynchronous bus maintains a prioritised queue of

transactions, and in each available time-slot or multi-slot

assigned to the bus, a subset of the highest priority transactions

is removed from the queue and executed. The subset of

transactions to be executed in the next available time-slot or

multi-slot is updated whenever the user application loads a new

transaction.

E. Packet Bus

The packet bus is a bi-directional channel between an

initiator node and a target node. Receiving packets from and

sending packets to a target are controlled by the initiator via

RMAP read and write operations, respectively.

An initiator node can open multiple channels to targets and

a target can open multiple channels to initiators. When the

channel has been opened on both the initiator and target side,

the packet bus is ready to handle RMAP transactions between

the two nodes.

When a packet bus’s time-slot or multi-slot begins, the

status of all channels is checked to make sure a channel is not

busy before it is used by the packet bus. This allows multiple

initiators to open a channel to the same target and reserve it for

exclusive use.

Optionally, the packet bus can use segmentation to split the

transmission or receiving of a large packet over multiple time-

slots or multi-slots.

F. Schedules

The source of unpredictability in a SpaceWire network is

the possibility of packets being blocked by wormhole routing.

Wormhole routing enables a packet to be switched from an

input port to an output port quickly, but only if the output port

is not already in use. If it is in use, the packet is blocked until

the output port is released.

In order for traffic in a SpaceWire-D network to be

deterministic, the possibility of blocking must be removed.

This is done by ensuring that in each time-slot, the set of links

used by an initiator’s virtual bus is distinct from the set used by

every other initiator’s virtual bus operating within the same

time-slot. If no link is used by two buses at the same time, then

the blocking of SpaceWire packets cannot occur. This means

that for each initiator, a schedule must be created that

simultaneously satisfies this constraint and meets the

bandwidth demands of a mission.

Research into the configuration of schedules for

SpaceWire-D networks is ongoing at the University of Dundee

and elsewhere [5] [6].

Figure 2 shows an example schedule for a single initiator

with 64 time-slots and a combination of different virtual bus

types [3].

III. AT6981 CASTOR SYSTEM-ON-CHIP

The Atmel AT6981 Castor system-on-chip [7] is a LEON2-

FT (SPARC V8 ISA) based flight processor with multiple

integrated peripherals including extensive SpaceWire support.

Figure 3 shows a photo of the cPCI variant of the prototype

AT6981 board, with three SpaceWire cables connected to the

router

Time-Slot Bus

0 Static 0

1 Dynamic 1

2 Static 2

3 Async 3

4 Static 4

5 Async 5

6 Async 5

7 Dynamic 7

8 Empty

9 Dynamic 1

10 Dynamic 7

11 Packet 11

12 Packet 11

13 Packet 11

14 Packet 11

…

61 Static 61

62 Dynamic 7

63 Static 63

Fig. 2. Schedule for a single initiator with 64 time-slots [3]

221

The following subsections briefly describe the relevant

SpaceWire peripherals, and features in the prototype board

used for this research.

A. SpaceWire Router

The SpaceWire front-end for the AT6981 board is a

SpaceWire router with eight external ports and three internal

ports connected to the SpaceWire engines. The internal ports

have physical addresses 9, 10, and 11 which connect to

SpaceWire engines 1, 2, and 3 respectively.

B. SpaceWire Engines

Connected to the SpaceWire router, the three SpaceWire

engines each contain three DMA channels, an RMAP initiator,

and an RMAP target. The SpaceWire-D tests described in this

paper use only the RMAP functionality in the engines.

In order to allow a SpaceWire packet to address individual

DMA channels, RMAP initiator, or RMAP target, the

SpaceWire engines use a de-multiplexer. The de-multiplexer

matches up to four bytes of the incoming packet against a

pattern and mask configured by the user in the engine’s

registers. It then uses this matching to filter the packet into the

correct DMA channel, RMAP initiator, or RMAP target. This

allows the RMAP initiator and target to have their own logical

addresses.

The execution of RMAP commands are offloaded to the

SpaceWire engines, reducing the demands on the LEON2-FT

processor. The user application holds a list of data structures in

memory describing the required RMAP commands and then

writes the memory address of the list to the RMAP initiator’s

registers. Consequently, if the list of commands is unchanging

over time as in the case of a static bus with a repeating

transaction group, the processing required to begin executing

the transactions is minimal.

C. Memory and Processor

The prototype AT6981 board has 128Kbyte of SRAM and

256MByte of DRAM and the LEON2-FT processor clock rate

is 33MHz, while the production board will run at 200MHz.

D. Debug Support Unit

Loading and debugging a program is done via the LEON2-

FT debug support unit (DSU). The DSU provides a simple

protocol to read and write to memory on the board directly

through hardware. This allows software running on the

development machine to load a program directly into the

AT6981’s memory without the requirement of a bootloader. To

debug a program, a STAR-Dundee software module on the

development machine acts as a GDB remote protocol server

and translates GDB commands into interactions with the DSU,

allowing a simple method for debugging. The AT6981

prototype board provides a USB to UART bridge for

connecting a computer to the DSU.

IV. RTEMS SUPPORT

The tests described in this paper use version 4.10.2 of the

RTEMS real-time operating system, which is an open-source

project being used in many space applications as well as in

other industries [8]. The following subsections describe our use

of RTEMS and its relevant features.

A. Board Support Package

A board support package (BSP) was designed to port

RTEMS to the AT6981 board [9]. The basic BSP consists of

the minimum requirements to run the basic RTEMS tests and

examples. This includes the board initialisation code, a UART

console driver, a clock driver, and support files such as a linker

script file. There exists a BSP for an existing LEON2 device in

the RTEMS source tree, however, the AT6981 is sufficiently

different that it requires a separate BSP.

The AT6981 BSP uses the LEON2-FT’s on-chip UARTs

and timers with slightly modified drivers from the existing

LEON2 BSP. Like the DSU UART, the LEON2-FT on-chip

UARTs are accessible through USB to UART bridges on the

prototype board.

As the AT6981 shares an interrupt between SpaceWire

DMA and RMAP engines in the primary interrupt controller,

the interrupt handling has been extended to allow an interrupt

service routine (ISR) to be registered for either DMA or

RMAP interrupts. When an interrupt is raised on the primary

controller, the interrupt handler then filters it to the relevant

ISR. This allows for separate device drivers for DMA and

RMAP engines.

B. RTEMS Features

RTEMS is a real-time multi-task operating system with a

unified address space. It provides features common in most

operating systems such as tasks, interrupt handling, inter-

process communication, synchronisation, standard data

structures, and a device driver framework. RTEMS also

provides in-depth compile time customisation.

A real-time operating system is designed to value

predictability above other features [10]. As RTEMS is a real-

time operating system, it provides task scheduling algorithms

relevant to a real-time environment. In our case, we are using

the default priority based pre-emptive scheduler which will

Fig. 3. cPCI variant of the prototype AT6981 board

222

switch context to a higher priority task if one becomes

available at any time.

V. NETWORKING SOFTWARE

RTEMS based networking software is responsible for

providing the SpaceWire-D API to the user application,

managing the virtual buses, managing the transition between

time-slots, and dispatching RMAP commands.

The following subsections describe the different modules of

the SpaceWire-D test software.

A. SpaceWire-D API

The SpaceWire-D API provides a public interface to the

user application and enables an application to initialise the

other SpaceWire-D modules, open a virtual bus, load a virtual

bus, and close a virtual bus. During initialisation, the API

creates tasks for the other modules as well as a task for itself

and uses the RTEMS message queue manager in order to listen

for requests from user applications. These requests are then

handled by the virtual bus manager.

B. Virtual Bus Manager

All functionality related to the opening, loading, and

closing of virtual buses is controlled by the virtual bus

manager. It also contains the data structures describing the

parameters of a virtual bus and its transactions.

C. Time Manager

The time manager is responsible for transitioning between

time-slots, based on the arrival of valid time-codes. In this

version, we are using only time-codes to signal the beginning

and end of time-slots. However, the standard also describes the

use of local timers to synchronise with the arrival of time-codes

for redundancy in case a time-code fails to arrive.

During initialisation of the time manager, we enable

interrupts for the receiving of time-codes using a simple device

driver for the AT6981 SpaceWire router. We then install a

callback function which is called during the router driver’s

ISR. The callback function uses the RTEMS event manager to

send an event to the transaction dispatcher, signalling the start

of the next time-slot.

D. Transaction Dispatcher

When the SpaceWire-D API initialises the other modules, a

task is created for the transaction dispatcher. This task begins

and then blocks, waiting for an event to be received from the

time manager. The task wakes up when the event is received

and, if there is a virtual bus assigned to the time-slot, executes

the virtual bus. For example, if there is a static bus assigned to

the time-slot, the bus’s transaction group will be executed,

assuming one is loaded.

A simple RMAP driver was designed to provide three

features: the first is a function to start a group of RMAP

transactions, the second is an ISR to handle RMAP initiator

interrupts, and the third is a function to initialise one of the

AT6981’s RMAP targets to act as a target node for the purpose

of the experiments.

VI. EXPERIMENTAL SETUP

For our experiments we used two different network

architectures. The following subsections describe and illustrate

both architectures, and the additional supporting hardware and

software used.

A. Single Initiator Architecture

The single initiator architecture as shown in Figure 4, uses

a single AT6981 board as an RMAP initiator and RMAP

target. The AT6981 is connected to a development machine for

loading and debugging programs. The board’s router loops

back to itself with a STAR-Dundee SpaceWire Link Analyser

Mk2 in the middle, to view the transactions and time-codes

flowing through the links. A STAR-Dundee SpaceWire-USB

Brick Mk2 is connected to the AT6981 and acts as the time-

code master. The Link Analyser Mk2 and the Brick Mk2 are

connected to a second laptop for ease of use. The Brick’s time-

code generation is controlled via STAR-Dundee’s STAR-

System software [11]. In this architecture, all SpaceWire links

are operating at 100Mbps.

VII. MULTIPLE INITIATOR ARCHITECTURE

The multiple initiator architecture shown in Figure 5 is

similar to the single initiator architecture shown in Figure 4

with the exception that the loopback through the Link Analyser

is removed and replaced by a link between both AT6981

boards, again through a Link Analyser. In this architecture, the

first AT6981 board’s SpaceWire links are operating at

100Mbps and the second board’s links are running at 50Mbps.

Fig. 4. Single initiator architecture

223

Figure 6 shows a photo of the hardware used in the multiple

initiator architecture setup. From left to right, the hardware is

the first AT6981 prototype board, a STAR-Dundee SpaceWire

Link Analyser Mk2, the second AT6981 prototype board, and a

STAR-Dundee SpaceWire-USB Brick Mk2

VIII. EXPERIMENTAL RESULTS

The following subsections describe the experiments carried

out to test the SpaceWire-D static bus with both single and

multiple initiator architectures, and presents the results

obtained.

A. RMAP Driver

The first iteration of the RMAP driver used by the

transaction dispatcher utilised the UNIX-like device file driver

framework provided by RTEMS. Within this framework, every

device is treated as a file and a driver provides initialise, open,

close, read, write, and ioctl functions to be used with standard

system calls.

After performing some initial tests and measuring the

performance of the driver, it was found that the overhead

required by opening a device file and using an ioctl system call

when dispatching a transaction group was too expensive. By

allowing the transaction dispatcher to call the driver functions

directly instead of through the ioctl system call interface, the

processing time between a time-code being received and the

first RMAP transaction leaving the router was reduced from

741µs to 389µs.

Further optimisation was introduced by simplifying the

event handling when a time-code is received. Originally, the

time manager would receive an event from the router ISR, then

forward the event to the transaction dispatcher. By sending the

event directly from the time manager’s callback function, the

processing time was further reduced from 389µs to 201µs.

Reducing the initiator processing time between a time-code

being received and the first RMAP transaction leaving the

router from 741µs to 201µs allows the SpaceWire-D network

to run at the minimum slot duration of 1ms. With the

production version of the AT6981 running at 200MHz,

compared to the prototype’s 33MHz, and with additional

software optimisations, the initiator processing time should be

further reduced.

B. Single Initiator Experiments

In the single initiator architecture, the AT6981 board acts as

both the RMAP initiator and the RMAP target. During the test

setup, the SpaceWire-D API is initialised, the RMAP target is

initialised, and the test static buses are opened and loaded with

a transaction group.

The first experiment involved opening a single static bus in

slot 0 and loading it with a transaction group containing 32

RMAP write-with-reply commands with a data size of 1KB.

The Brick is generating time-codes every 10ms.

Figure 7 shows a screenshot of the Link Analyser status

counter display interface for the first experiment. In this

interface, the number of various types of characters received

per second are displayed. The first column is the Link Analyser

port that the RMAP headers are transmitting through, and the

second column is the RMAP replies. We can see that there are

32 RMAP transactions being executed by viewing the number

of EOP characters and confirming that the commands were

executed successfully by viewing the packet display interface

within the Link Analyser software. The number of data

characters being transmitted per second can be verified by

calculating the size of the RMAP headers and replies. For the

header, there is 1 physical address at the head of the packet, a

21 byte RMAP header, and 1024 bytes of data. This results in

1046 data characters multiplied by 32 which is 33472 data

characters per second. The reply has 1 physical address at the

head of the packet, and an 8 byte reply, which results in 9 data

characters multiplied by 32, giving 288 data characters per

second.

Fig. 6. Photo of the multiple initiator architecture

Fig. 5. Multiple initiator architecture

224

Next, we opened a static bus on all 64 slots and loaded

them with the same transaction group as the previous

experiment.

Figure 8 shows the results from opening a static bus on all

64 slots. Again, the number of data characters transmitted can

be verified by multiplying 1046 data characters by 3200 in this

case, which is 3,347,200 data characters per second. Similarly

the data characters per second for the replies is calculated by

multiplying 9 data characters by 3200 which is 28800.

In both cases of the single slot and the 64 slot schedule, the

observed WCET of the transaction group is 4182µs. The

observed worst-case processing time of 201µs can be added to

this to give a total static bus execution time of 4383µs.

C. Multiple Initiator Experiments

In the multiple initiator architecture, there are two AT6981

both acting as initiators and as targets for each other. The

schedule in this experiment is split between the two boards. In

all of the even numbered time-slots, the first board opens a

static bus. The second board opens a static bus in all of the odd

numbered time-slots. Each static bus is loaded with the same

transaction group as the single initiator experiments, 32 RMAP

write-with-reply transactions with a data size of 1KB.

Figure 9 shows a screenshot of the Link Analyser status

counter display for the multiple initiator architecture

experiment. In this case, both RMAP headers and RMAP

replies are travelling bidirectionally through both links. To

verify the number of data characters being transmitted per

second for each side of the Link Analyser, we can add the data

characters for both the RMAP headers and the replies. In this

case, there are 1600 transactions being executed every second

by each initiator. This results in 1600 multiplied by 1046 data

characters for the RMAP headers, which is 1,673,600 data

characters per second. For the RMAP replies, there is 1600

multiplied by 9 data characters, which is 14400 data characters

per second. Summing the two gives 1,688,000 as supported by

the screenshot.

IX. FUTURE WORK

The experiments described in this paper were focused on

parts of the static bus of SpaceWire-D networks. Further work

is required to test the remaining features of the static bus such

as transaction group execution time calculation and multi-slot

buses. Additionally, the remaining virtual bus types: the

dynamic bus, the asynchronous bus, and the packet bus require

similar experimentation and testing. Future research will be

carried out to fulfil these goals.

As mentioned in Section 2, the schedulability of

SpaceWire-D networks is an important problem. Research is

being carried out to investigate scheduling methods for the

latest draft of the standard.

X. CONCLUSIONS

This paper has briefly described the latest version of

SpaceWire-D [3] and presented the results from experiments

using the AT6981 [7] prototype board, an RTEMS port for the

AT6981 [9], and RTEMS based networking software to test the

static bus functionality of SpaceWire-D.

The results show that the AT6981 prototype board can be

used to operate a SpaceWire-D network using the static bus

with schedules utilising single slots and all 64 slots. An

experiment was successfully carried out to test a SpaceWire-D

network with two AT6981 boards acting as RMAP initiators

operating in alternating time-slots.

ACKNOWLEDGMENTS

The research leading to these results has received funding

from the European Space Agency under ESA contract number

4000107346/12/NL/LvH/fe. We would also like to thank

David Jameux the ESA project manager for the SpaceWire-D

related activity.

REFERENCES

[1] ECSS Standard ECSS-E-ST-50-12C, “SpaceWire – Links,

nodes, routers and networks”, Issue 2, European Cooperation for

Space Standardization, 31 July 2008, available from

http://www.ecss.nl

[2] S. Parkes, A. Ferrer Florit, A. Gonzalez Villafranca, C.

McClements, “SpaceWire-D Deterministic Control and Data

Delivery Over SpaceWire Networks”, Draft C, April 2012,

available from http://spacewire.esa.int/WG/SpaceWire

Fig. 7. Link Analyser output for a single slot schedule

Fig. 8. Link Analyser output for a 64 slot schedule

Fig. 9. Link Analyser output for the multiple initiator architecture

225

http://www.ecss.nl/
http://spacewire.esa.int/WG/SpaceWire

[3] S. Parkes, D. Gibson, A. Ferrer, “SpaceWire-D: Deterministic

Data Delivery over SpaceWire”, Data Systems in Aerospace,

Warsaw, Poland, June 2014

[4] ECSS Standard ECSS-E-ST-50-52C, “SpaceWire - Remote

memory access protocol”, Issue 1, European Cooperation for

Space Standardization, 5 February 2010, available from

http://www.ecss.nl

[5] D. Raszhivin, Y. Sheynin, A. Abramov, “Deterministic

Scheduling of SpaceWire Data Streams”, International

SpaceWire Conference, Gothenburg, Sweden, June 2013

[6] Y. Chen, M. Takada, R. Kurachi, H. Takada, “A Scheduling

Method of RMAP Packets for SpaceWire-D”, International

SpaceWire Conference, Gothenburg, Sweden, June 2013

[7] S. Parkes, C. McClements, G. Mantelet, N. Ganry, “The Next

Generation of Spaceflight Processors: Low Power, High

Performance, with Integrated SpaceWire Router and Protocol

Engines”, International Astronautical Congress, Beijing, China,

September 2013

[8] RTEMS, “RTEMS Applications”, Available at:

http://rtems.org/wiki/index.php/RTEMSApplications

[9] D. Paterson, D. Gibson, S. Parkes, “An RTEMS Port for the

AT6981 SpaceWire-Enabled Processor: Features and

Performance”, International SpaceWire Conference, Athens,

Greece, September 2014

[10] J. Stankovic, R. Rajkumar, “Real-Time Operating Systems”,

Real-Time Systems, vol 28.2-3, pp. 237-253, 2004

[11] S. Mills, A. Mason, C. McClements, D. Paterson, I. Martin, S.

Parkes, “Developing SpaceWire Devices with STAR-Dundee

Test and Development Equipment”, International SpaceWire

Conference, Gothenburg, Sweden, June 2013

226

http://www.ecss.nl/
http://rtems.org/wiki/index.php/RTEMSApplications

 SpaceFibre (Short)

227

An Experimental Evaluation of SpaceFibre

Resource Requirements
Session: SpaceFibre, Short Paper

Matthew Rowlings, Martin Suess

ESTEC, European Space Agency

Noordwijk, The Netherlands

mr589@york.ac.uk

martin.suess@esa.int

Abstract— SpaceFibre is the next generation of high speed

interconnects for spacecraft communication networks. However

the high performance and advanced features mean that

SpaceFibre interfaces have an inherently high level of

complexity, rendering implementation in some FPGA systems

difficult due to limited hardware resources. This paper presents

an investigation into the hardware resource characteristics of

SpaceFibre through an experimental evaluation using the

StarDundee IP core, including discussion of functionality

tradeoffs that can be made when designing an interface for a

limited number of hardware resources. A simple SpaceFibre

interface optimised for a high-throughput instrument is

subsequently described, with a specific focus on resource savings

achieved when implementing for the RTAX2000 FPGA.

Index Terms— SpaceFibre, Networking, FPGA, Spacecraft

Electronics.

I. INTRODUCTION

SpaceFibre [1] is a multi-gigabit spacecraft network

standard supporting the future of high performance spacecraft

communication network requirements. It improves on

SpaceWire by offering data rates of up to 5Gb/s, several

channel interfaces per link via a Virtual Channel (VC) service,

support of mixed mode networks through Quality of Service

(QoS) mechanisms and error free data reception through the

use of a retry scheme.

Naturally these additional features result in an interface that

is significantly more complex than a standard SpaceWire

interface. As the SpaceFibre development matures this will

eventually result in standalone SpaceFibre interface products

implemented as an Application Specific Integrated Circuit

(ASIC) (e.g. [2]), where this increased complexity is not an

issue due to the high density of logic elements available in an

ASIC technology. In the meantime, and always available as an

additional option for system designers, the interface can also be

integrated as part of a System on Chip (SoC) within Field

Programmable Gate Array (FPGA) technology. Such

implementations are typically designed for a radiation

hardened FPGA, coupled with a space qualified

Serialiser/Deserialiser. An issue with this approach is that

currently available FPGAs suitable for spaceflight (for example

the RTAX-S family [3]) lack the high number of logic

elements required to implement the full interface and ensure

that a sufficient amount of FPGA resources are still available

for the implementation of other elements of the data handling

SoC.

 This paper describes a series of tasks undertaken with the

SpaceFibre IP core developed by StarDundee to gain

understanding of how features of the SpaceFibre standard

affect FPGA resource requirements, followed by an

experimental exploration into how the standard can be

implemented to minimise resource requirements.

An investigation architecture based on Microblaze and

implemented on a Virtex-6 FPGA is used to undertake analysis

of the FPGA resource usage and performance of the IP core.

Experimental data on how key parameters of the IP (e.g.

number of virtual channels) relate to resource requirements is

presented. These findings are then used to guide some

experimental modifications to the IP core that explore reducing

functionality of the interface with the prospect of achieving a

considerable reduction in the amount of hardware resources

required.

Finally an implementation of the SpaceFibre standard is

presented that uses the previous findings to produce a minimal

adaption optimised to the typical interface requirements of a

high data rate spacecraft instrument. This results in an

specialised interface that is better suited for implementation

within the current generation of flight FPGAs, whilst still

maintaining compatibility with standard SpaceFibre interfaces.

II. HARDWARE RESOURCES EVALUATION

To facilitate investigation into the hardware resource

requirements of the SpaceFibre interface, a test architecture

based on Microblaze and implemented on a Virtex-6 FPGA

was created as detailed in Fig 1. This system provides versatile

manipulation of the Management and Virtual Channel

interfaces of the SpaceFibre IP, allowing a range of test

parameters to be set on the Management interface and full

loading of the virtual channels at a net data throughput of 1.94

Gbps from a 2.5Gpbs line rate with 8b/10b encoding. The IP

core also provides several hardware parameters that allow the

core to be customised; the number of virtual channels and the

size of the retry buffers are of particular interest to resource

requirements.

228

MicroBlaze

microprocessor

UART

SpFi IP Core

TX PLB
VC Arbitrator

PLB I/F

Data Generator

CDC

FIFOs T
X

 V
C

In
te

rf
ac

e

R
X

 V
C

In
te

rf
ac

eRX PLB

VC Arbitrator

PLB I/F

Data Checker
CDC

FIFOs

S
E

R
D

E
S

62.5 MHz

125 MHz

125 MHzManagement

Interface

PLB I/F

BRAM

VC RX Buffer

SDRAM

VC TX Buffer

VC RX Buffer

BRAM

VC TX Buffer

MB PLB

To MB PLB

 Figure 1 Investigation Test Architecture

Several designs were implemented to explore the range of

each hardware parameter in turn, with the resource

requirements for the SpaceFibre IP taken from the Xilinx

mapping report.

A. Number of Virtual Channels

Each virtual channel provides a “FIFO-style” external

application interface, requiring each virtual channel to include

a transmit buffer and a receive buffer. The QoS is responsible

for multiplexing the transmit buffers together according to the

QoS scheme configured. Therefore we expect each virtual

channel added to the interface to require two memory elements

and an increasing amount of logic to integrate with the QoS.

Fig 2 illustrates the resource requirements for interfaces with 2,

4, 8 and 16 virtual channel interfaces.

Figure 2 Scaling of FPGA resource with number of Virtual Channels

From this graph we see the expected increase in the number

of buffers, implemented as Block RAMs (BRAMs). As the

number of virtual channels is increased from 2 to 16, the

number of BRAMs required also increases by a difference of

28 from 9 to 37. This is of note as it confirms that each virtual

channel will require two distinct memory elements, with the

observation that the size of the buffer may as well be set to the

maximum size of the BRAM element as any size smaller will

result in wasted memory resource that cannot be used in any

other buffer.

The sharp increase in registers and Look Up Tables (LUTs)

required is due to the QoS logic required for each virtual

channel; this includes not only the monitoring of QoS

parameters for each VC (such as the bandwidth used), but also

the large interconnect between all of the virtual channels and

the logic that uses the QoS parameters to select which virtual

channel to transmit from. Thus an effective minimisation is to

ensure that the number of virtual channels is optimised to the

needs of the application.

B. Size of Retry Buffers

There are three retry buffers on the transmit side of

SpaceFibre which are necessary to facilitate prioritised retry of

broadcast frames, Flow Control Tokens (FCTs) and data

frames that all could be corrupted during transmission. Each

primitive has a different unit size: broadcast frames are four

words, FCTs are a single word and a data frame is up to 66

words (including the Start of Frame and End of Frame control

words: SDF and EDF). Therefore there is a lot of scope for

individual retry buffer size optimisation. However, as with the

virtual channel buffering, a fundamental issue is that if a

memory element is used then the minimum size is bounded by

the size of the embedded memory element on the

implementation device. This is illustrated by Fig 3, whereby an

increase in virtual channel retry buffer size does not increase

resource requirements until the buffer is larger than one Block

RAM element.

Figure 3 Scaling of FPGA resources with size of VC Retry Buffer

The characteristics for the broadcast and FCT buffers are

the same, but they can benefit from their small unit size. If only

a small broadcast buffer is used, say two broadcast frames (8

words) as the user application rarely sends broadcasts, then this

can be implemented into Look-Up Table RAM (LUTRAM)

instead of requiring a full memory element. A similar

optimisation exists for the FCT buffer, in a system with a small

amount of virtual channels it is unlikely that more than a few

FCTs will be waiting for acknowledgement at any one time

(aside from directly after link start-up).

III. EXPERIMENTAL MODIFICATIONS

From the evaluation above we can see that there are several

optimisations that can be made by simply modifying the

hardware parameters of the SpaceFibre IP. To further this

work, it was considered that modification of the IP itself could

gain more significant resource reductions by reducing the

performance of the interface. The following modifications were

explored:

229

A. Heterogeneous VC Buffer Sizes

B. Single Virtual Channel Interface

C. Unbuffered Retry Scheme

All modified interfaces were compared to the resource

requirements of the IP core set to the minimal hardware

configuration suggested by StarDundee [4]; this minimal

interface was also used as base implementation for each

modification.

A. Heterogeneous VC Buffer Size

The SpaceFibre IP has the restriction that all virtual channel

buffers are set to the same size, removing the opportunity of

optimising the buffer size to the nature of the traffic using the

virtual channel. This would typically not be an issue as if an

embedded memory element has to be used for the buffer then

the whole memory element may as well be used. However if

we consider the case where a virtual channel is used

exclusively for small and infrequent control packets, then a

small virtual channel buffer would be more optimal and could

be implemented as a small LUTRAM instead of using

embedded memory resources (where most of the embedded

memory block would be wasted anyway as only a small buffer

is required).

This proposition was examined by modifying one of the

virtual channels to use a sub-frame size of only 8 words for its

transmit virtual channel buffer (the sub-frame size is allowed

on the transmit side if each small packet is terminated with an

EOP within the 8 words). Unfortunately as each FCT

represents a frame of data (64 words), the receive buffers are

bounded to this size. Regardless, this modification resulted in a

saving of a Block RAM resource over the reference minimal

interface at the expense of a 37% increase in LUTRAM

required (from 64 LUTRAMs to 88).

B. Single Virtual Channel

As we saw with the scaling of the number of virtual

channels in the interface, the logic for the QoS functionality is

inherently complex. Therefore if a SpaceFibre interface was

reduced to a single virtual channel then we would not require

this complexity, but we would keep the flow control and high

priority broadcast capabilities; such an interface could be

suitable for high data-rate instruments that only require a single

high speed link to a processing unit or mass memory. The

interface was fixed to a single virtual channel and the QoS and

multiplexing was removed. This resulted in savings of 16% in

sequential logic, 33% in combinatorial logic and of course the

two Block RAMs that the second virtual channel required

previously.

C. Unbuffered Retry Scheme

Another source of buffering in the interface is within the

Retry layer. Three seperate buffers exist to store data frames,

broadcast frames and FCTs when transmitted until an

acknowledgement token (ACK) is received from the remote

side. If instead a negative acknowledgement token (NACK) is

received then the data within these retry buffers is re-sent. In

the case where the application can handle some loss of data

frames, then this retry buffer is not strictly required. Indeed if a

data source is generating data at a similar rate to the line rate of

the interface, then some data loss is unavoidable while the retry

is being undertaken unless sufficient buffering is provided

upstream to handle the pause in transmission.

Instead of resending the frames on receipt of a NACK, the

unbuffered retry scheme sends an Error End of Packet (EEP)

and spills the data from that virtual channel until an EOP is

encountered. This eliminates the need for the virtual channel

retry buffer without sacrificing compatibility with a remote

interface that may implement the whole codec.

Whilst this modification did remove the virtual channel

retry buffer and its associated Block RAM, a small buffer was

also required to keep track of which virtual channels had been

waiting for acknowledgement when the NACK was received

and so which should be spilling. Therefore we see a 3%

increase in the amount of sequential elements required,

however the simpler retry mechanism does succeed in reducing

the number of the combinatorial elements by 14%.

IV. A MINIMAL SPACEFIBRE INTERFACE FOR INSTRUMENTS

A. Interface Functionality Requirements

The results from the experiments above show that we can

modify some parts of the interface to save hardware resources,

but simply modifying resource heavy parts of the interface

does not drastically reduce enough resource requirements to

warrant the reduce in functionality. Therefore a more

substantial modification to the investigated interface

implementation will be required to produce an even smaller

interface. If we consider a minimal interface required for a high

data-rate instrument, the functional requirements could be

fulfilled using only two virtual channels: one for the high

throughput instrument data and a second, much smaller buffer

for transmitting housekeeping data and for the instrument

commanding. With such a virtual channel partition it can also

be seen that only a single channel would be sufficient on the

receive side for receiving command packets, eliminating the

need for the receive buffer on the high throughput instrument

data virtual channel.

Some degree of QoS is required within this interface to

ensure that command and housekeeping channel data can be

transmitted even if the high throughput channel is saturating

the link. We saw previously that the full QoS functionality

requires a large amount of resources and so a much simpler but

less flexible scheme could be used to cover this requirement,

especially as housekeeping data typically only requires a small

proportion of the link bandwidth. A similar issue applies to the

retry layer; supporting lossless transmission is desired as the

application is unknown, but the buffering and control logic

requires a considerable amount of hardware resource.

A caveat of any substantial modification of these layers is

that they still have to be fully compatible with the full

SpaceFibre standard as the remote node has to be assumed to

implement a fully featured interface. Most of the modifications

discussed involve the higher levels of the transmit side and so

we can keep as much as of the lower levels of the interface

230

unmodified as possible to ensure link-level compatibility with

other interface implementations. The receive side of the

interface shall also stay largely intact to ensure compatibility,

the only modification shall be the reduction of the receive

virtual channel level to a single virtual channel. As there are

cases where there is no need for an instrument to transmit

broadcast packets, the broadcast transmit logic and the

associated retry buffer shall also be removed, although by

keeping the receive side intact we do not sacrifice the ability to

receive broadcast frames.

In summary, these restrictions lead to a transmit interface

with the following specifications:

1. A high throughput, single ended data virtual channel.

2. A low throughput command virtual channel.

3. Simple QoS between these channels.

4. Retry scheme to resend data from these channels.

5. No broadcast transmit functionality.

6. FCT transmit and retry support as specified in the

standard.

B. Architectural Design

From these specifications, a transmit interface was

designed to perform the specified functionality for a minimal

hardware resource requirement. A major architectural feature is

the combination of the virtual channel and the retry buffers,

allowing efficient storage of virtual channel retry data and

optimal storage of frames as they are stored pre-framing,

removing the need to store an SDF and EDF word for each

frame. This results in a retry functionality distributed between

the virtual channel and retry layers, requiring a slight

modification to the dataflow through the interface as retried

packets must also pass through the framing layer, as displayed

in Fig 4.

VC0

Buffer
VC Retry

Pointer Buffer

FCT Control

Idle Generator

Framing

FULL Insert

ACK/NACK Insert

Sequencer

Insert

RETRY Insert

VC1

Buffer

RETRY

Control

To CRC Inserter

From RX

From RX

Housekeeping

Data

Instrument

Data

Figure 4 Dataflow of transmit side of instrument SpaceFibre interface

To keep the quality of service as simple as possible it is

accepted that all data to be sent from the command and

housekeeping virtual channel is of a higher priority than the

high throughput instrument data, therefore whenever

housekeeping packets are ready to be sent they are always

selected over instrument data frames. In the case of the data

virtual channel failing as a babbling idiot, this priority scheme

ensures that data from the housekeeping channel will always

dominate over this babbling idiot data.

Each virtual channel buffer now has three pointers to

manage dataflow into and out of the channel: a write pointer, a

read pointer and a retry pointer. The read and write pointers are

used as a standard FIFO implemented in a circular buffer, the

retry pointer however shows how much of the buffer is being

used for storage of retry frames; as illustrated in Fig 5. The

retry pointer is set by a separate retry pointer buffer. This

buffer is appended to by the framing layer each time a SDF is

added at the start of a new frame with the start address of the

packet. The buffer is popped every time an ACK is received by

the difference between the ACK sequence number and the

previous ACK'd sequence number, thus the retry pointer

always points to the start address of the oldest frame that has

not been ACK'd yet.

In the case of a NACK, the buffer is popped by the

difference in NACK value as with the ACK case and then all

stored addresses but the current value of the buffer are flushed,

as they will be reinserted into the buffer by the framing layer

during the retry. Now the read pointer is set to the address of

the retry pointer (i.e. the start of the last frame not ACK'd) and

transmission is performed as with a standard data frame. This

has the side effect that contiguous small packets may be

repacked into a single frame when they may have been

originally sent as separate frames, which is why it is important

that the retry pointer buffer is flushed. Data sequence within a

virtual channel is preserved however, with priority given to

retry operations on the housekeeping virtual channel (as with

nominal operation).

Flow Control Tokens are also subject to retry requests, but

to eliminate the need for a buffer only one at a time is sent,

buffered and the sequence number stored. When an ACK is

received covering this sequence number, the interface can now

handle the next FCT request. In the case of a NACK that

covers the FCT sequence number, the buffered FCT is re-sent

and the stored sequence number updated. This is unlikely to

cause performance limitations on the link as FCTs are typically

sent periodically, and with only two virtual channels it is

unlikely that multiple FCTs will be requested to be sent in a

small time frame; the only time this happens is directly after

link initialisation where such a performance drop in FCTs is

assumed to be tolerated.

Retry Pointer

Read Pointer

Write Pointer

Sent data waiting for

acknowledgement

Data waiting to be sent

Free buffer

space

Figure 5 Combined virtual channel and retry buffer structure

231

C. Implementation Results

The proposed architecture was implemented and integrated

into the SpaceFibre IP, replacing all the transmit circuitry up to

the CRC inserter of the existing retry layer (the CRC inserter is

the last step before the lane layer). The receive side was also

restricted to only include a single virtual channel and the FCT

arbitration removed. A number of functionality tests were also

carried out, in simulation at first but then in hardware with the

adapted IP interfaced to the StarFire test unit. This verified that

the nominal and retry functionality of the minimal interface

behaves correctly and that compatibility with the standard

implementation is maintained.

As with the earlier modifications the investigation interface

resource requirements are compared with the reference

minimal implementation of the SpaceFibre IP core. Table 1

shows these results for the Virtex-6 implementation, where the

required numbers of each logical element type are presented:

 Sequential
Logic

Combinatorial
Logic

LUTRAM Block
RAM

Reference
Minimum

2409 2993 64 7

Investigatio
n Minimum

1569 1749 12 5

Reduction 35% 42% 81% 29%

Table 1 Instrument interface resource requirements for Virtex-6

These results show that the lightweight optimisation of the

interface was successful, both in terms of reducing the

buffering required in the interface (shown by the reduction in

Block RAM and LUTRAM) and in terms of simplifying more

complex parts of the codec (represented by the reduction in

sequential and combinatorial elements).

As the primary motive for this study was to propose an

minimal interface suitable for implementation within a current

space qualified FPGA, implementation for a Virtex-6 is not a

realistic use case. Therefore the investigation interface and the

minimal standard interface were also synthesised for the

MicroSemi RTAX2000 radiation-tolerant FPGA. This FPGA

has a significantly smaller number of logic resources available

than the Virtex-6 [3] [5] and so it is crucial that the fraction of

the overall FPGA resource dedicated to the high speed

interface is minimised. Table 2 shows the raw logic resource

usage and the percentage of the RTAX2000 total resources

required for each interface implementation.

 Sequential

Logic

Combinatorial

Logic

Embedded
RAM

Reference
Minimum

2692 5156 10

RTAX2000
Resource %

25% 24% 15%

Investigation
Minimum

1633 3052 6

RTAX2000
Resource %

15% 14% 9%

Reduction 39% 41% 40%

Table 2 Instrument interface resource requirements for RTAX-2000

Due to differences in the FPGA architectures, some

variance between the resource requirements are to be expected.

Being an antifuse based FPGA, the RTAX does not support

small memories embedded within look-up tables, therefore all

buffers are implemented in Embedded RAM blocks. This

results in a significant saving of RAM blocks in the

investigation architecture, with only six buffers required for the

SpaceFibre interface. The sequential and combinatorial

elements show a similar reduction to the Virtex-6 results, but

when this reduction is compared to the total number of

resources available in the device we see a very significant

reduction in the required resources: from 25% to only 15% of

the sequential logic elements and from 24% to 14% of the

combinatorial logic elements available on the RTAX2000.

V. CONCLUSIONS AND FUTURE WORK

The SpaceFibre standard contains a number of parameters,

such as the number of virtual channels, that can be tailored in

an implementation while still maintaining compatibility with

other SpaceFibre implementations. This can be used to reduce

to the implementation complexity of the SpaceFibre interface.

This tailoring was further extended to demonstrate an interface

architecture targeting a simple high-speed instrument requiring

only one high throughput downstream data channel and one

high priority channel for commanding and housekeeping data.

The resulting SpaceFibre interface implementation uses only

15% of the RTAX2000 hardware resources.

There are still further optimisations that could be made to

the interface however. These primarily concern the receive side

of the interface. A buffer exists for holding data frames whilst

the CRC is checked before being passed out of the retry layer.

Closer integration with the receive virtual channel buffer could

be performed here to remove the need for this buffer. Likewise

a design could be undertaken to also merge the elastic buffer

into the virtual channel buffer, but care must be taken when

communicating with the transmit side of the retry layer as the

receive side would then be clocked by the recovered clock.

Alas the extent of any modifications to the CRC functionality

or lane layer (other areas of high complexity) is very limited as

these layers are fundamental for compatibility with remote

interfaces.

It is important to acknowledge that the reference IP core

from StarDundee was created to aid the development of the

SpaceFibre standard, and is not as yet optimised to minimise

hardware resource requirements.

REFERENCES

[1] S. Parkes et al. “SpaceFibre Standard Draft F3”, University of

Dundee, 10th September 2013.

[2] S. Parkes et al. “A Radiation Tolerant SpaceFibre Interface

Device”, 5th International SpaceWire Conference, 2013

[3] Microsemi Corporation, “RTAX-S/SL and RTAX-DSP

Radiation-Tolerant FPGAs”, January 2013

[4] STAR-Dundee Limited, “SpaceFibre VHDL IP Core User

Manual”, 23rd November 2012

[5] Xilinx Inc. “Virtex-6 Family Overview”, 2012

232

Network Layer Support in SpaceFibre Protocol
SpaceFibre, Short Paper

Nadezhda Matveeva, Elena Suvorova
Saint-Petersburg State University of Aerospace Instrumentation

SUAI
Saint-Petersburg, Russian Federation

nadezhda.matveeva@guap.ru, suvorova@aanet.ru

Abstract— The SpaceFibre standard has appeared relatively
recently. Also SpaceFibre standard supports several “Quality of
Service” mechanisms. It includes best effort, bandwidth reserved,
scheduled and priority based qualities of service. It is implemented
by means of virtual channels. Standard does not fully describe
network layer in the latest version (ECSS Draft F3). The rules for
transferring data at the network layer also affect the quality of
service.

In this paper we present analysis and an implementation of the
SpaceFibre network layer. The switch matrix’s channels quantity
connected to port (connection point) is one. Low priority packet
transmission can be interrupted, if a packet with a higher priority is
received. Interruption rules will be described, data transmission
latency characteristics and performance will be evaluated. Analysis
and modeling of the proposed network level implementation will be
demonstrated. Data packets of different sizes were used during
simulation. Number of virtual channels is 4 for the research.

Index Terms— SpaceFibre, Quality of service (QoS), Network
level.

I. INTRODUCTION
Performance of modern embedded systems depends on

network architecture and structure. Existing embedded
networks support data transmission with Quality of Service
(QoS) [1]. Currently many different standards are widely used
in design of network. For example – RapidIO [2], SpaceWire
[3] and etc.

For our research we chose different approaches to
implementation technology of virtual channels [4]. The first
allows transferring data at the same time from different virtual
channels of a port. The second – only one virtual channel of a
port can transfer data. The third - virtual channel with higher
priority can interrupt the transmission of data with lower
priority. These approaches are not associated with a specific
standard. It can be used in the construction of different
embedded networking technologies [5].

We will use SpaceFibre in our case study. SpaceFibre is the
modern standard in space industry. This technology also can be
used for construction embedded networks.

SpaceFibre provides a coherent quality of service (QoS)
mechanism able to support best effort, bandwidth reserved,
scheduled and priority based qualities of service [6]. Quality of
service parameters [7] that can be provided by routers with

SpaceFibre ports depend not only on the SpaceFibre protocol
characteristics and port specific implementation but also on a
network layer implementation. In this article we analyze
different implementation of network layer SpaceFibre.

II. DIFFERENT APPROACH OF NETWORK LEVEL
IMPLEMENTATION

In this paper we will compare some approaches of network
level implementation. They differ from each other in hardware
costs and data transmission principles.

In 1st way of router’s network layer structure switch matrix
includes a separate channel for connection of each input virtual
channel with the correspondent output virtual channel.
Quantity of connection points to the switch matrix (hereinafter
– connection points) for every port of a router is equal to the
virtual channels number in this port, Fig. 1 (only one data
transmission direction is represented). This way was
recommended by the SpaceWire-RT specification draft [8]. In
such router structure data flows can compete with each other
only within one virtual channel in output port of router. In this
case timing characteristics in the network layer depend only on
arbitration rules. In all other cases timing characteristics of data
flows are not influenced by the router network layer. However,
such router structure results in an essential hardware cost.

Fig. 1 The first way of router’s network layer implementation

According to 2nd way of router’s network layer structure,
the quantity of connection points for every port is less than
number of virtual channels in the port. There is one connection
point. In our research we suppose that data flows from every
virtual channel can be transmitted via one connection point of
the correspondent port, Fig. 2. Hardware cost of this router

233

structure is essentially less, than hardware cost of the previous
one. But in this way, data flows from different virtual channels
share switch matrix channels. Therefore, an impact between
data flows and corresponding disturbance of its timing
characteristics in this case in this router structure is more
essential than in the previous one.

Fig. 2 The second way of router’s network layer implementation

The 3rd way of router’s network layer structure is similar to
2nd way. The difference between these ways is possibility of
lower priority data transmission interruption. Condition of data
transmission interruption can be different. Packet transmission
can be interrupted after N byte transfer or special time interval
after the start of transmission. The following situations can
cause interruption of packet transmission: 1) frame with higher
priority comes to virtual channel buffer or 2) no data is
transmitted during K clock. K and N are software installed
parameters. Output ports unavailability or empty virtual
channel buffer in specified port can cause data transmission
impossibility. When setting N or K parameter, it is necessary to
avoid situations when too frequent lower priority data
transmission interruption occurs. For example, at the beginning
1 byte of lower priority packet is transmitted, than higher
priority packet is transmitted. Thereafter 1 byte of lower
priority packet is transmitted and lower priority data
transmission interruption occurs again. Interval of data
transmission interruption should be comparable to time of
channel reset.

III. NETWORK MODEL
Timing characteristics estimation was done on the basis of

the models, which are depicted in Fig. 3.

Fig. 3 Network model

The Network model comprises a router with 4 ports, each
of which can work with 4 virtual channels. Terminal nodes
generate packets in a random time moments. At these random
moments the terminal node sends the generated packets to each
virtual channel. The destination nodes for each virtual channel
are also chosen randomly and can be different for the virtual
channels. This configuration can lead to a potential possibility
of data packets flow concurrency in the output port.

IV. SIMULATION RESULTS
The network was simulated on the adapted DCNSimulator

model [9]. In this case we used the router and node models
which comprise only the Virtual Channel and the Network
Layers (this gave an opportunity to reduce the simulation time
and to obtain more detailed results). The link bandwidth in the
model is set to 1 Gbit/s.

The results of the simulation can significantly depend on
the router model implementation features such as local clock
frequency and link capacity within the router.

Let us consider the case when each virtual channel has its
own particular priority level, which corresponds to the virtual
channel number: VC1 – the highest priority, VC4 – the lowest.
The packet length does not exceed the frame length. Fig. 4-
Fig. 8 shows the simulation results for the 1st, 2nd and 3rd way
of router implementation for each virtual channel, when size of
data packet is 250 bytes. Fig. 9 - Fig. 13 shows the simulation
results for the 1st, 2nd and 3rd way of router implementation for
each virtual channel, when size of data packet is 750 bytes. In
these cases packets for VC4 were sent first, then for VC3,
VC2, VC1 successively. The time between packets generation
for different virtual channel is 100 ns. N is 256 bytes. Average
data transmission delay of high priority (VC1) packets is
similar when we use 1st and 3rd way of router implementation.

The 2nd implementation of network layer differs by a large
delay value of high priority packet as you can see on figures.

Fig. 14 shows the simulation results for the 1st, 2nd and 3rd
way of router implementation for virtual channel 1, when size
of data packet is 750 bytes and there are interruptions the
transmission of data with lower priority in 3rd way with
different N. In this case packet generation time has exponential
distribution. Delay is bigger for the 2nd way of the router
implementation than for 1st, 3rd way. The smallest average data
transmission delay of high priority (VC1) packets is observed
in situations where packet transmission with lower priority is
interrupted after 32 or 64 bytes transfer.

234

Fig. 4 Comparison of the packet transmission time via VC1 (the packet
size = 250 bytes) in case of different implementations of network layer

Fig. 5 Comparison of the packet transmission time via VC2 (the packet
size = 250 bytes) in case of different implementations of network layer

Fig. 6 Comparison of the packet transmission time via VC3 (the packet
size = 250 bytes) in case of different implementations of network layer

Fig. 7 Comparison of the packet transmission time via VC4 (the packet
size = 250 bytes) in case of different implementations of network layer

Fig. 8 Bar chart of the average packet transmission time via VC1, VC2,
VC3,VC4 (the packet size = 250 bytes)

Fig. 9 Comparison of the packet transmission time via VC1 (the packet
size = 750 bytes) in case of different implementations of network layer

0 1 2 3 4 5 6 7 8 9 10

x 106

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Simulation time, ns

D
el

ay
 V

C
1,

 n
s

VC1-2way
VC1-1way
VC1-3way

0 1 2 3 4 5 6 7 8 9 10

x 106

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Simulation time, ns

D
el

ay
 V

C
2,

 n
s

VC2-2way
VC2-1way
VC2-3way

0 1 2 3 4 5 6 7 8 9 10

x 106

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Simulation time, ns

D
el

ay
 V

C
3,

 n
s

VC3-2way
VC3-1way
VC3-3way

0 1 2 3 4 5 6 7 8 9 10

x 106

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Simulation time, ns

D
el

ay
 V

C
4,

ns

VC4-2way
VC4-1way
VC4-3way

0 1 2 3 4 5 6 7 8 9 10

x 106

1

2

3

4

5

6

7

8
x 10

4

Simulation time, ns

D
el

ay
 V

C
1(

si
ze

 p
ac

ke
t =

 7
50

 b
yt

e
),

ns

VC1-2way
VC1-1way
VC1-3way

235

Fig. 10 Comparison of the packet transmission time via VC2 (the packet
size = 750 bytes) in case of different implementations of network layer

Fig. 11 Comparison of the packet transmission time via VC3 (the packet
size = 750 bytes) in case of different implementations of network layer

Fig. 12 Comparison of the packet transmission time via VC4 (the packet
size = 750 bytes) in case of different implementations of network layer

Fig. 13 Bar chart of the average packet transmission time via VC1, VC2, VC3,
VC4 (the packet size = 750 bytes)

Fig. 14 Bar chart of the average packet transmission time via VC1 (the
packet size = 750 bytes). Exponential distribution of packet generation

time.

V. CONCLUSION
The comparison of the achievable timing characteristics for

different ways of router implementation showed that if the
packet size is smaller than the frame size then the average
packet transmission time for 3rd way is almost similar to 1st
way. The 1st way of router structure hardware is essentially
constrained [10].

Delay of the high priority traffic grows faster for the 2nd
way of the router implementation. Therefore, the 2nd way of
the router implementation can be used for the networks with
the packet length shorter than frame size. In this case it will
provide scheduled, bandwidth reserved and priority qualities of
service. The packet lengths larger than the frame size while
using the 2nd way of the router implementation result in
degradation of the timing characteristics in comparison with
the 1st and 3rd way. This degradation of characteristics grows
proportionally to the packet’s length of the virtual channels of

0 1 2 3 4 5 6 7 8 9 10

x 10
6

1

2

3

4

5

6

7

8
x 10

4

Simulation time,ns

D
el

ay
 V

C
2(

pa
ck

et
 s

iz
e

=
75

0
by

te
),

ns

VC2-2way
VC2-1way
VC2-3way

0 1 2 3 4 5 6 7 8 9 10

x 10
6

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5
x 10

4

Simulation time,ns

D
el

ay
 V

C
3(

pa
ck

et
 s

iz
e

=
75

0
by

te
),

ns

VC3-2way
VC3-1way
VC3-3way

0 1 2 3 4 5 6 7 8 9 10

x 10
6

1

2

3

4

5

6

7

8
x 10

4

Simulation time,ns

D
el

ay
 V

C
4(

pa
ck

et
 s

iz
e

=
75

0
by

te
),

ns

VC4-2way
VC4-1way
VC4-3way

0

5

10

15

20

25

30

A
ve

ra
ge

 d
el

ay
, u

s

VC1_1way

VC1_3way(Interrupt
256)

VC1_3way(Interrupt
128)

VC1_3way(Interrupt
64)

VC1_3way(Interrupt
32)

VC1_3way(Interrupt
16)

VC1_2way

236

low priorities. Consequently, the 2nd way of the router
implementation in networks where long packets are transmitted
is possible only when there are no hard real time requirements.
The 3rd way of the router implementation essentially decreases
these disadvantages. The average packet transmission time and
achievable link utilization in this case are almost similar to the
1st way of the router implementation.

Delay is 10% bigger for the 2nd way of the router
implementation than for 1st way, when the packet length
shorter than frame size and delay is 1% bigger for the 3rd way
of the router implementation than for 1st way. Delay is 50%
bigger for the 2nd way of the router implementation than for 1st
way, when the packet length longer than frame size and delay
is 17% bigger for the 3rd way of the router implementation than
for 1st way. Therefore, the achievable characteristics for the
scheduled service and delay value for this 2nd way of router
implementation are lower.

ACKNOWLEDGMENT
The research leading to these results has received funding

from the Ministry of Education and Science of the Russian
Federation under contract n° 14.578.21.0022

REFERENCES
[1] S. Balandin, M. Gillet, “Embedded Network in Mobile

Devices”, International Journal of Embedded and Real-Time
Communication Systems (IJERTCS), Issue 1(1), pp 22-36. 2010.

[2] D. Bueno, “Simulative analysis of the RapidIO embedded
interconnect architecture for real-time, network-intensive
applications”, in Local Computer Networks, 29th Annual IEEE
International Conference, Nov. 2004, pp. 710 – 717.

[3] S. Parkes, "SpaceWire for Adaptive Systems", ahs 2008
NASA/ESA Conference on Adaptive Hardware and Systems,
pp.77-82.

[4] J. Duato, S. Yalamanchili and L. Ni, Interconnection Networks.
An engineering approach. San Francisco: Morgan Kaufmann
Publishers, 2003.

[5] J. Fleischmann, “Prototyping networked embedded systems”,
Computer., vol.32, Feb. 1999, pp. 116 – 119.

[6] S. Parkes, A. Ferrer, A. Gonzalez, C. McClements, D3.2-
SpaceWire-RT Updatated Specification. Annex 1 SpaceFibre
Standart, Febrary 2013

[7] W. James Dally, Principles and Practices of Interconnection
Networks. San Francisco: Elsevier, 2004.

[8] S. Parks, C. McClements, M. Dunstan, A. Ferrer, A. Gonzalez.
SpaceFibre.SpW WG, October 2012

[9] A. Eganyan, E. Suvorova, Y. Sheynin, A. Khakhulin, I. Orlovsky.
DCNSimulator – Software Tool for SpaceWire Networks
Simulation. International SpaceWire Conference 2013, June
2013

[10] N. Matveeva, E. Suvorova, V.Olenev, I. Lavrovskaya, I.
Korobkov, A. Eganyan. SpaceFibre Quality of Service Features
Support in the Network Level. International SpaceWire
Conference 2013, June 2013

237

SpaceFibre Demonstrator: Demonstration and

Testing

SpaceFibre, Short Paper

Paul Rastetter, Tim Helfers (Authors)

Astrium GmbH

Munich, Germany

Paul.Rastetter@astrium.eads.net

A. Antonakou, G. Dramitinos, C. Papadas

Integrated Systems Development S.A.

Athens, Greece;

Steve Parkes
University of Dundee,

Dundee, United Kingdom

Abstract — Currently Astrium GmbH and Intergrated Systems

Development (ISD) S.A. are planning the development of a

demonstrator for SpaceFibre. The SpaceFibre demonstrator

will be used to execute functional performance tests and EMC

(Electro Magnetic Compatibility) tests. University of Dundee

is program prime contractor and provides Astrium with the

SpaceFibre IP core.

The work is shared between the two partners in the following

way:

 Astrium: Prime Contractor and Technical Coordination;

FPGA Design; EMC Testing

 ISD: Development of Demonstrator Board including

housing, development of test bed and functional

performance testing

The driving requirements for this development are:

 SpaceFibre performance, while implementing it into

space equivalent components

 Design and MAIT of the demonstrator in such a way

that representative EMC testing is possible

I. DEMONSTRATOR TEST-BED

The demonstrator test-bed will include the following items:

 STAR Fire unit from STAR-Dundee Ltd,

 personal computer connected to the STAR Fire unit

via USB executing the SpaceFibre Link Analysis

software,

 standard logic analyzer providing PODs able to

interface standard connectors,

 oscilloscope able to monitor the eye diagram of the

receiving differential signals using contact-less

probes and

 clock generator used to provide an external clock

signal

The STAR Fire embedded link analyser that exposes the

decoded 8B/10B signals on the respective connector and the

Logic Analyser that will capture these signals will enable

monitoring of frame transfers and analysing traffic. The

external clock generator will allow system validation under

various traffic conditions.

Each test will utilize one or more pieces of the above

mentioned equipment. Moreover, each test may utilize either a

single demonstration board or multiple demonstration boards

in a daisy chain configuration.

The test-bed configuration for board-level, functional and

performance testing is shown in figure 1.

Figure 1: Demonstrator Test Bed

II. FUNCTIONAL AND PERFORMANCE TESTS

For the functional and performance tests three different test

modes will be implemented:

 Virtual channel loopback

 Packet generator and packet checker

 External host interface

USB cable

STAR Fire

Clock Generator

SpaceFibre

Electric Cable

SpaceFibre

Fibre Optic Cable

Oscilloscope

Logic

Analyzer

Data

Address

Control

Demo Board

 C

A

D

Demo Board

Rx

Tx

Rx

Tx

Tx

Rx

Tx

Rx
C

A

D

238

The functional testing will be done in several steps using the

different test modes.

The performance test will show the upper limit of the speed of

the SpaceFibre Demonstrator.

III. EMC TESTING

The diagram of the test setup for the EMC testing is shown in

figure 2. The board located in the EMC chamber is

accommodated in a mechanical housing (box), which is just

penetrated by the SpaceFibre and power supply connector.

The data traffic is generated by the setup externally of the

EMC chamber, which can be controlled via the STAR Fire

test equipment. The Demonstrator Board within the EMC

chamber just loops back the data. In this way, data traffic is

generated in each direction, without the need for another

external interface. Therefore, no additional external interface

is required on the demonstrator board, penetrating the housing.

USB cable

STAR Fire

SpaceFibre

Electric Cable

SpaceFibre

Fibre Optic Cable
Data

Address

Control

Demo Board

C

A

D

Demo Box

Rx

Tx

Rx

Tx

Tx

Rx

Tx

Rx

C

A

D

EMC-Chamber

USB cable

STAR Fire

SpaceFibre

Electric Cable

SpaceFibre

Fibre Optic Cable
Data

Address

Control

Demo Board

C

A

D

Demo Box

Rx

Tx

Rx

Tx

Tx

Rx

Tx

Rx

C

A

D

EMC-Chamber

Figure 2: EMC Demonstrator Test Setup

The following EMC tests are planned:

 Conducted Emission tests

 Radiated Emission tests, Electric field

 Conducted Susceptibility Test

 Radiated Susceptibility Test, Electric field

 Electro-static Discharge

239

Advanced Oversampling Techniques for

the SpaceFibre
SpaceFibre, Short Paper

Vladimir Goussev, Dmitri Skok, Mikhail Maksimovskij, Tatiana Solokhina, Jaroslav Petrichkovich

RnD ELVEES

Moscow, Russia

vgoussev@elvees.com, dskok@elvees.com, mmaksimovskij@elvees.com, tanya@elvees.com

Abstract — The SpaceFibre provides numerous advantages

over the SpaceWire: QoS, FDIR, high transmission rate, galvanic

isolation, lower cable mass. At moderate speeds, e.g.

10-200 Mbps, the SpaceFibre interface implementation can be

significantly simplified with oversampling techniques, which does

not require PLLs and analog CDR blocks. It makes possible fully

digital implementation of the SpaceFibre interface in a simple

ASIC or FPGA.

This paper presents an oversampling technique based on

digital signal processing. The technique allows to enhance

transmission rate, operational distance, phase/amplitude

distortion tolerance and higher noise immunity in compare with

the traditional edge detection method.

Index Terms — SpaceWire, SpaceFibre, oversampling, clock

and data recovery.

I. INTRODUCTION

The successor of the SpaceWire – SpaceFibre [1], a.k.a.

SpaceWire2 - brings a number of advanced features to the

spacecraft aboard networking: Quality of Service, Fault

Detection, Isolation and Recovery, Low-latency signaling,

Multi-lane connection, High speed, Low mass cable. Many of

the above features are provided by the usage of single

differential pairs (Rx and Tx) per lane direction with the NRZ

signaling and 8b/10b encoding at the physical level.

Typical implementation of the NRZ signaling requires

specially designed analog circuits, e.g. PLL-based clock-data

recovery [2-4]. Unfortunately, these circuits are not always

available for space-grade FPGAs and ASICs technologies. To

avoid this limitation, an oversampling SpaceFibre mode was

suggested at lower speeds (up to 200-400 Mbps) [5]. The

oversampling technique can be designed as a digital domain

circuitry, which simplifies SpaceFibre implementation and

allows to combine the functionality of the SpaceFibre and the

design simplicity of the SpaceWire in the space-grade FPGAs

and ASICs.

Another benefit of the suggested oversampling mode is that

it opens room for digital signal processing of oversampled data

to enhance performance of the communication in terms of

transmission distance, transmission rate, immunity to EMI

noise or immunity to transmission media quality. An advanced

approach based on digital signal processing of single-bit

oversampled data is presenter in this paper.

II. DIGITAL OVERSAMPLING TECHNIQUE

The digital oversampling technique for the NRZ signaling

is presented on Fig.1 (architecture block diagram) and Fig.2

(waveform).

Fig. 1. Oversampling architecture block diagram

Fig. 2. Oversampling waveform

The differential receiver converts analog transmission line

signal to digital domain, so all further processing is performed

with digital circuitry. The key element of the circuitry effecting

on the receiver performance is the transition detector.

In the simplest case, the transition detector treats signal

transitions as a time base for next data samples using known

oversampling ratio – the relation between transmission bit rate

and sampling rate. For example, if the transmission rate is

200 Mbps and the sampling rate is 1 GHz then the

oversampling ratio is 5, so once a transition is detected next 3rd,

8th, 13th etc samples are selected as data samples as long as next

transition is detected. A slight modification of this method does

not use data selection, as time intervals between the

consequence transitions are enough to reconstruct data bits.

240

mailto:vgoussev@elvees.com
mailto:dskok@elvees.com
mailto:mmaksimovskij@elvees.com
mailto:tanya@elvees.com

As almost everything simple and straight forward, the

above methods are not good on practice because of transition

jitter and multiple transition at bit interval boundaries caused

by inter-symbol interference and signal noise. Robust digital

oversampling methods suggest different techniques for

transition filtering and bit interval boundaries calculation [6].

One of the most important question is oversampling ratio,

which is a trade-off between transmission bit rate, transition

performance (distance, noise immunity, BER) and transition

detector complexity. Larger oversampling ratio provides more

options for transition detector to achieve better performance

and/or have simpler implementation. At other side, the

maximum sampling rate depends on the technology used for

implementation, so it directly limits transmission bit rate. The

minimum oversampling ratio can be estimated using the eye

diagram, as it shown on Fig.3 for the SpaceFibre – there have

to be at least one sample in the eye opening.

Fig. 3. SpaceFibre oversample ratio

As it can see from the figure, the minimum SpaceFibre

oversampling ratio should be greater than 2.5 in the ideal case

(zero-noise differential receiver, jitter-less generator). In the

real world, the minimum oversampling ratio of up to 6 is

required, depending on real values of the differential receiver

noise and generator jitter.

III. SUGGESTED DIGITAL SIGNAL PROCESSING TECHNIQUE

Let the following assumptions:

 The transmitter sends 8b/10b (or any other DC-

balanced code with the limited run length of 0's and

1's) data Bn at the transmission bit rate Fbit;

 Transmission media is described by the linear causal

operator whose pulse response function is h(t).

 Reasonably good initial estimate of h(t), h'(t) is

provided: h(t)=0, t<0; h(t)<, t>Th.. Since h(t) never

becomes identity zero, we chose some finite

reasonably small .

 The receiver samples the output of the media at the

sample rate Fs, returning the sign of its input Vin, so

that '0' denotes Vin<0 and '1' – Vin ≥ 0, Fs>Fbit;

 Nominal relation Fbit/Fs is known, but the exact ratio is

unknown in advance and is time-varying.

 Optionally, the receiver input is affected by the

additive Gaussian noise with the standard deviation σ.

Then the signal at the input of the receiver I(t) is the unity

amplitude rectangular pulse of width 1/Fbit modulated by Bn

convolved with h(t):

 thk
F

t
UbBt,Ξ=tI

bit

N

=k

k

0

12

Where:

.>t

t

<t

=tU

10,

1,1,0

0,0,

is rectangular pulse and “*” denotes the convolution.

The example of the measured U(t)*h(t) sampled with the

frequency of 128 Fbit is shown on Fig.4.

Fig. 4. Bit response relative to the bit interval

The receiver determines the sign of its input at frequency

Fs, resulting in the sequence C={cn}:

cn=S(I ,n , τ)≡sign(I (
n

Fs
+ τ))

Where:

sign (x)={
0, x<0,

1, x≥0 . }

Let denote the concatenation of two sequences A={xn}n=a

b

and B={yk }k=c

d

 by {A, B}, i.e.:

{A,B}={xa, ..., xb , yc ,... , yd}

The goal is, given the C and the hint {bk, ..., bk+p}, to

determine {bn} starting with n=p+1.

241

Let define the error functional:

2

1

k

eτC,f,E
k=k

k

Where:

otherwise.,
F

k
+τf

>–c
F

k
+τiff

=e

s

k

s

k 2

0,0.50,

A. Noiseless case.

In the absence of noise, E(I, C, 0) = 0 and E(I, C, d) > 0 for

|d| > > 0. Also:

 00ˆ
:1:0 >,c,c,cI,E n+kkk

for any k, provided that B and h(t) are “good enough” in some

sense.

B. Initial phase estimate.

As previously mentioned, before we can start receiving data

bits, we need a hint {bk – bk+p}. In practice, this is the case,

because the communication begins with the known sequence of

symbols, “comma”, in the case of SpaceFibre. What we need to

do is to determine the initial phase of the sequence, i.e. to

determine the position of the next bit to decode relative to C.

 This can be done in the following way. As h'(t) is given, a

fragment of the signal P'(t) input to the receiver can be

constructed as the convolution of the rectangular pulse of

duration 1/Fbit, modulated by the {bk, ..., bk+p}, and h'(t)

(operator Ξ’ is similar to Ξ in (1), but uses h'(t) instead of h(t)):

p+kk b,,Bt,Ξ'=tP' ...

Since Th can span many bit intervals 1/Fbit, the beginning of

P'(t) is affected by the unknown bits bn, n<k. Similarly, the tail

of the P'(t) is affected by bm where m>k+p. Let Nh is Th

expressed in the bit intervals: Nh = [Th Fbit]. To get the pattern

P(t), that is defined only by the known bits from {bk, ..., bk+p},

just cut off the head of length Nh/Fbit and the tail of the same

length from P'(t): P(t)=P'(t+Nh/Fbit), t<p/Fbit. Since we need

reasonably long useful bit pattern to reliably determine initial

phase, say, 20 bits, it follows than p should be p>20+Nh/Fbit.

Let u=p-Nh/Fbit is the number of “useful” bits that define the

pattern P(t). Then the number of the receiver samples for the

duration of P(t) is:

bit

s

F

F
u=l

With P(t) at hand, find the minimum E(P, {cs, ..., cs+l},τ) ,

where 0 ≤ τ ≤ 1/Fbit and 0 < s < Dsrch, Dsrch being the depth of

the search. Then, τ and s define the position of the start of the

1'st bit in P(t) in terms of index in C and time offset.

C. Next bit extraction.

To extract the next bit from the sequence C, let consider the

two families of hypotheses:

 dk T,'',Bt,ΞtH 00

 dk T,'',Bt,ΞtH 11

Td denotes all the 2d combinations of d bits.

Since the operator h(t) is causal, we need only finite d. In

practice, with realistic h(t), we only need d equal to 1 to 3,

since later bits influence rapidly vanishes. The following cases

are possible:

1. There exists exactly one n and the corresponding

sample cn, such that all hypotheses in H0(tn) have the

same sign, and all hypotheses in H1(tn) have the

opposite sign. Then, the value of cn unambiguously

identifies the right family of hypotheses and the value

of the next bit.

2. There are no n the above is true. It means that no

receiver sample hits the eye opening (or no open eye

exist). It can also occur when the oversampling ratio

Fs/Fbit is insufficient for the given h(t). For this case,

the same sequence C can correspond to at least two

different B, and no further processing of C can select

the right one.

3. More than one n satisfy the above condition. The case

when all such n resolve to the same bit value is trivial.

The opposite can take place when h(t)≠h'(t) or in the

presence of noise (σ > 0). The resolution of this is

discussed in chapter F.

The key concept discussed above is illustrated on Fig.5.

Fig. 5. Bit extraction concept

When the next bit is discovered, it is attached to the string

of known bits and the step repeats.

242

D. Phase and frequency lock

As the oversampling rate Fs/Fbit is not known exactly and

varies over time, we must adjust it accordingly to keep phase

synchronization. This can be done by adding a small delta to

the current value of the oversampling rate and phase offset

depending on the sign of the instant phase error. To get the

latter, take a pattern P(t)) = Ξ(t, B) of m recently discovered

bits B and compare E(P, C, -1/10Fbit) and E(P, C, 1/10Fbit). If

the former is greater than the latter, then decrease the

oversampling rate and phase by the small step, else increase

both.

The number of bits in B should provide at least one value

transition. From the properties of the 8b/10b, 10 bits would be

the adequate amount.

E. h'(t) extraction.

From implementation perspective, it may be more efficient

to store the bit response r'(t)=U(t/Fbit)*h'(t) instead of h'(t)

alone. It can be done in the form of vector r'n of the sampled

values of r': r'n=r'(n/(128*Fbit)). Then, the computation of Ξ in

the sampled form would be:

 kn

N

=k

kn r'b=Bξ 128

0

12

One of the simplest algorithms to make r'n to converge to rn

would be, whenever the computed value of ek is nonzero,

adjust the corresponding r'n by the small delta in the direction

that decreases ek.

F. Noise estimation and handling.

In the presence of noise with the standard deviation σ, the

probability of incorrect value of the comparator output is equal

to that of instant noise value exceeds the distance from zero to

the corresponding hypothesis value at the given point of time.

Since both hypotheses are deterministic in the assumption that

hint bits are decoded correctly, the reliability of each receiver

sample can be computed. And vise versa, measuring the

receiver error rate at particular samples and knowing their

corresponding reliability, one can estimate noise sigma. So that

the decoding algorithm would continually estimate the noise

level and adjust weight of different comparator samples

accordingly.

IV. CONCLUSION

In the 'classic' blind oversampling technique we use the

fixed phase in the bit interval to sample data. This is OK for the

environment, where additive random noise is small enough and

can be neglected. The proposed method provides a 'dynamic

phase' of sampling, i.e. the received samples set is chosen on

the bit-by-bit basis, depending on the de-facto media properties

and the previous bit pattern. This provides more samples to

decode every single bit, together with the information of the

reliability of each sample. As only a little fraction of data bits is

defined by one or two samples, total BER in the environment

with noise and dispersion can be improved by an order of

magnitude or so.

As a side result, the method provides background

measurement of the pulse response of the media and the noise

level.

Although the efficient hardware implementation left

beyond the scope of the paper, rough estimate shows that the

complexity is not expected to be too high and forms the order

of dozen 8-bit additions and table lookup per sample. The

memory requirement basically defined by the storage of h'n,

some 1 K bytes or less.

The method can be applied with the minimum

modifications to the multi-level sampling case (ADC instead of

the comparator) as well.

REFERENCES

[1] S. Parkes, A. Ferrer, A. Gonzalez, C. McClements, “SpaceFibre

Standard Draft F3”, University of Dundee, September 2013

[2] R. Walker, “Clock and Data Recovery for Serial Digital

Communication”, Agilent Laboratories, ISSCC Short Course,

February 2002

[3] B. Razavi, “Challenges in the design high-speed clock and data

recovery circuits”, IEEE Communications Magazine, Volume

40, Issue 8, August 2002, pp. 94 – 101

[4] M. Hsieh, G. Sobelman, “Architectures for Multi-Gigabit Wire-

Linked Clock and Data Recovery”, IEEE Circuits and Systems

magazine, fourth quarter, 2008

[5] S. Parkes, “SpaceWire-RT Update”, SpaceWire Workgroup

meeting #19, presentation, October 2012

[6] S. I. Ahmed, Tad A. Kwasniewski, “Overview of oversampling

clock and data recovery circuits”, Carleton University, 2009

243

 Onboard Equipment & Software (Short)

244

The draft ECSS SpaceWire Backplane Standard
SpaceWire Onboard Equipment and Software, Short Paper

Alan Senior, John-Paul Coetzee

Thales Alenia Space (UK)

Bristol, United Kingdom

alan.senior@thalesaleniaspace.com

john-jaul.coetzee@thalesaleniaspace.com

Jørgen Ilstad

European Space Agency, ESTEC

Noordwijk ZH, Netherlands

jorgen.ilstad@esa.int

Abstract— The SpaceWire standards are maintained and

issued formally as ECSS documents (e.g. ECSS-E-ST-50-12C)

and this means that equipment designed by different agencies is

interoperable, which has significant benefits.

SpaceWire is mainly used between instrument units, however

to facilitate a high level of integration of onboard systems it is

proposed that an ECSS SpaceWire Backplane standard should

be created and adopted, the backplane offering power, signal and

impedance-matched connectivity for high-speed serial links such

as SpaceWire and SpaceFibre.

The SpaceWire Backplane standard will assist in the aim of

creating a common onboard infrastructure to be used across

many different mission applications by encouraging design

reusability at the sub-unit (PCB plug-in module) level. A key

advantage of a SpaceWire Backplane is the scalability of the

design.

A draft SpaceWire Backplane ECSS standard has been created

by TAS-UK as part of an ESA contract. It is based around the

Smiths Connectors Nexus modular connector which can be

populated with a variety of different contact inserts for power,

signal and high-speed data and thus can be tailored to a

particular application.

The standard will specify the physical dimensions, connectors

and electrical interfaces of the unit backplane and plug-in

module. Units and plug-in modules will then be interoperable, so

for example a module produced by one vendor will correctly fit

into a unit from another vendor and interface correctly with the

backplane electrical signals. It permits both non-redundant and

redundant units to be built and does not dictate the backplane

SpaceWire network architecture. Recommendations are made to

assist in the creation of reliable fault-tolerant systems.

It is intended that this ECSS document takes advantage of

specifications already existing, namely other ECSS and also

ANSI/VITA VPX standards. The principal VITA standards are

referenced include VPX (VITA 46), OpenVPX (VITA 65) and a

new draft standard SpaceVPX (VITA 78). It is anticipated that

there will be a harmonisation activity in future between the

SpaceVPX and this ECSS document before the formal ECSS

standard release.

This paper is a walk-through of the ECSS Backplane standard,

it describes the thought processes and rationale behind it and the

anticipated advantages of adopting it.

Index Terms— SpaceWire, SpW, SpaceFibre, SpFi, ECSS,

SpaceVPX, Backplane, Networking, Avionics, Spacecraft

Electronics.

I. INTRODUCTION

A draft SpaceWire (SpW) [1] Backplane standard has been

created using the ECSS drafting rules; the document is one

output of an ESA contract performed by Thales Alenia Space

UK (TAS-UK, formerly SEA Space Division). It is anticipated

that the draft will evolve as part of a future ESA contract.

The draft does not currently constitute an official

document, although it may at a future date be submitted to

ECSS for publication. It is anticipated that there will be a

harmonisation activity between the SpaceVPX specification

and this ECSS document before the formal ECSS standard

release.

To maximize flexibility a particular network architecture is

not mandated, however a design based on the outputs of the

ESA Modular Architecture for Robust Computing project [2] is

recommended. The SpW backplane may be either passive or

active [3].

II. AVIONICS APPLICATIONS

In a spacecraft avionics unit the Printed Circuit Boards

(PCBs) or modules are typically connected together via a

backplane (Fig.1).

Fig. 1. Backplane within a Spacecraft avionics unit

245

The electrical interfaces at the backplane interface used are

typically non-standard, consisting of parallel busses, discrete

lines at different voltage levels and device/technology

dependant busses. The mechanical interfaces also vary between

equipment suppliers.

It is anticipated that a SpW backplane standard will assist in

creating a common onboard infrastructure to be used across

many different mission applications by encouraging design

reusability at the sub unit (PCB plug-in module) level.

A key advantage of employing SpW is the scalability of the

design and the simplification of Assembly Integration and Test

(AIT) activities (Fig. 2).

P
o
w

e
r

P
ro

c
e
s
s
o
r

M
a

s
s
 m

e
m

o
ry

A
d
a

p
te

r

A
c
tu

a
to

r
A

in
te

rf
a
c
e

s

SpW Active Backplane

Spacecraft A unit

EGSE

interface

Emulation PC

USB

SpaceWire

EGSE

USB

SpW

Router

SpW link for sensor

emulation

SpW

link

Fig. 2. A SpW backplane simplifies AIT activities

The modules are commonly:

 Power supply – provides internal unit power but may

be commanded (e.g. on/off) and provides

housekeeping telemetry (e.g. on/off and trip status,

voltage, current, temperature).

 Processor – provides the computing resource for

complex decision making and data processing. Gathers

telemetry and controls system elements.

 Mass Memory – provides a repository for science data,

application software images and intermediate products

from data processing.

 Sensor (input) interfaces – provides interfaces to

multiple sensors types (e.g. switches,

temperature/voltage/current sensors, scientific

sensors).

 Actuator (output) interfaces – provides outputs for

control purposes (e.g. heaters, thrusters pulses, on/off

signals).

Clearly all these module types have different electrical

interface requirements that need to be supported by the

standard.

III. BACKPLANE STANDARD - SUMMARY

The aim is that the standard specifies the physical

dimensions, connectors, thermal and electrical interfaces of the

unit and plug-in module. Units and plug-in modules designed

to the standard will then be interoperable, so for example a

plug-in module produced by one vendor will correctly fit into a

unit from another vendor and interface correctly with the

backplanes electrical signals.

The standard permits both non-redundant and redundant

units to be built, it does not dictate the backplane SpW network

architecture but provides recommendations to assist in the

creation of reliable fault tolerant systems.

The standard may be tailored for the specific characteristics

and constraints of a space project in conformance with ECSS-

S-ST-00, however the aim should be that interoperability is not

compromised.

Fig. 3. Smith Connectors (Hypertac) module Nexus connector

The standard is based upon the Smiths Connectors

HYP_6890 “Nexus” connector [4] shown in Fig. 3, it has with

22 insert bays, additional connector designs are anticipated to

be available in due course. The key advantage of this connector

is that it can be populated with a variety of different contact

inserts, thus it can be tailored to a particular application.

IV. CONNECTOR DESIGNATIONS

The Smiths Connectors HYP_6890 contains 22 insert bays,

there are 4 connector insert variants used in the backplane

standard, plus one blank insert (Fig. 4). The pin numbers are

allocated as defined in Fig. 5.

0375 0550 1002 0402 0000

Pin count

Current rating (7.5A)

Fig. 4. Connector insert designations

1

2

3

4

5

1

2

3

1 2

3 4

5 6

7 8

9 10

1

2

4

5

6

3

7

Signal Shield

Fig. 5. Plug insert pin designations

The module interface is via either 1 or 2 connectors

designated as shown in Fig. 6 and Fig. 7 respectively.

246

Single connector

module
P2 S2

Module Backplane

Fig. 6. Single connector module

Two connector

module

P2

P1 S1

S2

Module Backplane

Fig. 7. Two connector module

An example module level pin designation is presented in

Fig. 8.

S1-4-6

Connector – bay - pin

P1-4-6 PCB module connector

Backplane connector

Fig. 8. Two connector module

V. MODULE INTERFACES

The insert configurations have been defined for 3 module

types:

 Power

 Router

 Cluster (input/output module)

The Power Module configuration is presented in Fig. 9.

This provides:

 Power connections (7.5A and 5A rated)

 2 SpW links

 LVDS clock and sync signals

 Low rate serial input/output (I/O)

 Logic I/O

 Analogue I/O

Fig. 9. Power Module insert allocation

The Router Module interface (Fig. 10) has a lower number

of power and discrete I/O pins but supports 8 SpW links in a

single connector to support its role as a SpW router function.

Using two connectors on a double Eurocard means the module

could support 16 SpW links.

Fig. 10. Router Module insert allocation

The Cluster Module (Fig. 11) provides:

 Power

 4 SpW links

 LVDS clock and sync signals,

 Logic discrete I/O

 Analogue discrete I/O

Fig. 11. Cluster Module insert allocation

The pin allocations of each insert type are defined in the

standard, four examples are given in Table I. Compliance with

this pin allocation will ensure compatibility at the insert level

so that other combinations of insert configurations could be

defined.

247

TABLE I. EXAMPLE INSERT PIN ALLOCATIONS

Function
Insert

type

Insert

pin
Signal allocation

28V main bus 0375
1
2

3

+28V nominal
NC

0V (+28V)

+5V and 0V 0505

1

2

3
4

5

0V (+5V)

+5V +/-10%

0V (+5V)
+5V +/-10%

0V (+5V)

SpW X S in/out 0402

1

2

3
4

5

6
7

SpW_X_Sout+

SpW_X_Sout-

Shield
SpW_X_Sin+

SpW_X_Sin-

Sheild
sheild

VI. MODULE PHYSICAL

The Module physical size is based around the Single and

Double Eurocard sizes (Fig. 12) and a non-standard “half

height” module size. The mechanical and thermal interfaces

specified will be elaborated in a future release of the standard.

Fig. 12. Chassis and module slot details

VII. FUTURE STANDARD DEVELOPMENT

It is intended that standard will take advantage of

specifications already existing, namely the ECSS and

ANSI/VITA VPX standards. The principal VITA standards

that are potentially applicable are VPX (VITA 46), OpenVPX

(VITA 65) and a new draft standard SpaceVPX (VITA 78). At

the time of writing the SpaceVPX standard is at an early draft

and is not on general release.

It is also noted that additional details will need to be added

to this ECSS standard to specify the tailoring of the VPX

specifications for the SpW Backplane application, this tailoring

being based on real needs, mechanical and thermal design,

analysis and testing.

VIII. KEY ADVANTAGES OF A SPW BACKPLANE

Employing a SpW backplane within an Avionic unit has

the following key advantages:

 SpW is a well specified and supported standard

 Common electrical interface for all modules

 Compatibility between vendors

 Reduction of interconnection count to a board

 Support devices available (Router etc.)

 IP Cores are available (SpW, RMAP)

 Test equipment is readily available and well supported

 Software interface specification is easier…

 It permits a scalable architecture

 High rate data transfer rates (compared to Mil-Std-

1553, UART, CAN, SPI, RS422 etc)

REFERENCES

[1] ECSS-E-ST-50-12C, “SpaceWire – Links, nodes, routers and

networks”, Issue 2, 31st July 2008

[2] A. Senior, W. Gasti, O. Emam, T. Jorden, R. Knowelden, S.

Fowell, “Modular Architecture for Robust Computation”,

International SpaceWire Conference 2008

[3] A. Senior, P. Worsfold, “A SpaceWire Active Backplane

Specification for Space Systems”, International SpaceWire

Conference 2010

[4] A. Senior, K. Boxshall, J. Ilstad, S. Sharma, “A Modular

Connector for High Speed Backplanes”, ESA Space Passive

Components Days 2013

248

Integrating STAR-Dundee SpaceFibre Codec with TI

TLK2711
Onboard Equipment and Software, Short Paper

Bruce Yu, Alberto Gonzalez-Villafranca, Albert Ferrer

STAR-Dundee Ltd

STAR House, 166 Nethergate

Dundee, DD1 4EE, UK

bruce.yu@star-dundee.com

Chris McClements, Steve Parkes

Space Technology Centre, University of Dundee,

Dundee, DD1 4EE, UK

sparkes@computing.dundee.ac.uk

Abstract—The SpaceFibre Codec IP (beta version) was

released by STAR-Dundee at the end of 2013. The SpaceFibre

standard and the codec IP are designed in the way that it shall

work with TI TLK2711-SP – a space qualified SERDES device

[1]. This paper presents the work where the Codec IP and the

TLK2711 are used to implement a SpaceFibre link. Firstly the

SpaceFibre Codec and the TLK2711 device are introduced,

especially the power-on reset and signal detection operations of

the TLK2711 for they are fundamental for the SpaceFibre link.

Experiments on link initialisation are presented with results and

analysis.

Index Terms— SpaceFibre Codec IP, TLK2711, SpaceFibre

Link, Link Initialisation

I. INTRODUCTION

SpaceFibre is a very high speed serial communications link

which is being designed for use on board spacecraft. As

SpaceFibre is compatible with SpaceWire at packet level, a

SpaceFibre link can transfer a SpaceWire packet but at a much

higher speed. It also provides a broadcast mechanism similar to

SpaceWire time-codes but offering much more capability.

SpaceFibre is a complementary technology to the currently

popular SpaceWire, and applications developed for SpaceWire

can be readily transferred to SpaceFibre.

SpaceFibre is designed to have a link speed of 2.5 Gigabits

per second, as is achievable with current space qualified

technology. It is possible to reach even higher speed, 20

Gigabits per second, with future technology, and multi-laning.

Beside the high performance in speed, SpaceFibre has more

worthy features, such as low latency, integrated Quality of

service (QoS), and integrated FDIR capabilities.

A SpaceFibre Codec VHDL IP core has been developed at

STAR-Dundee to evaluate and validate the SpaceFibre

standard. A beta version of the Codec IP core was released

around the end of 2013. The Codec IP is able to operate with

an external SerDes device with minimal glue logics, including

the Texas Instruments TLK2711-SP Wizard Link device.

Together with a Microsemi Rad-Tolerant RTAX-2000 device,

the Codec IP and the TLK2711-SP are ready to build a flight

qualified SpaceFibre System.

TLK2711-SP is a Space qualified component, with flight

heritages. Its commercial counterpart is TLK2711A, and they

are functionally equivalent.

For the HPPDSP (High Processing Power Digital Signal

Processor) project, high-speed data I/O interfaces are desired

for which the SpaceFibre technology is a perfect fit. Designed

for this project, the prototyping board is equipped with a Xilinx

Virtex-4 FPGA and three TLK2711A devices, which are used

for the implementations of three SpaceFibre interfaces. The

STAR-Dundee SpaceFibre Codec IP has been successfully

implemented on the FPGA, connected to the TLK2711A

devices. Each of the interfaces has a number of virtual

channels.

This paper firstly introduces the IP core and the TLK2711

device. Then the integration design is presented. Finally some

experimental results are given and analysed.

II. STAR-DUNDEE SPACEFIBRE CODEC IP

The STAR-Dundee SpaceFibre Codec IP core was

developed as part of the standard development for its

evaluation and validation. It is in the form of VHDL source

codes, and it is highly configurable giving flexibility through

generics, such as the number of virtual channels.

The CODEC is organized in layers that are defined in the

standard, with interfaces between each layer. It doesn’t include

the physical and serialisation layers. For the encoding layer, it

can be configured to include or exclude the 8B10B

encoding/decoding module, or more specifically to have a

special interface to the TLK2711 device. This enables the IP

core with capability to connect with different technologies.

SpaceFibre Codec can transmit and receive SpaceWire

packets encapsulated within Virtual Channel data frames, and

also Broadcast frames and control words used to provide the

QoS and the FDIR capabilities. This information is passed to

the SpaceFibre interface via the Virtual Channel interface, the

Broadcast interface, and the Management interface as shown in

Fig. 1.

249

Fig. 1. Overview of STAR-Dundee SpaceFibre Codec IP Core

III. TI TLK2711 DEVICE

The TI TLK2711-SP Wizard Link device is a Space

qualified multigigabit transceiver. The device contains both a

transmitter and receiver, performing parallel-to-serial and

serial-to-parallel data conversion. This device offers data rates

from 1.28 to 2.0 Gigabits/s (at a link speed of 1.6 to 2.5

Gigabits/s).

The transmitter takes in 16-bit wide serial data, encodes it

using 8B/10B encoding and serialises it for transmission over a

VML differential signal pair. The receiver takes the serial data,

de-serialises it, and performs 8B/10B decoding to provide the

16-bit parallel data.

A. TLK2711 Transmitter

The parallel data input to the transmitter comprises two

bytes of data (TXD0-7 and TXD8-15) along with two

control/data flags (TKLSB and TKMSB respectively). The

control/data flags are high when the corresponding data byte

contains a control code (K-code) and low when it contains

data. The two data bytes and the control/data flags are latched

into an 18-bit register on the rising edge of the TXCLK signal.

The TXCLK signal must be a continuous clock with a

frequency in the range 80 to 125 MHz. It drives most of the

transmitter circuits. There is a clock synthesiser which

multiplies up TXCLK by 20 to provide the clock to drive the

parallel to serial converter. The clock synthesiser also provides

a reference clock for the clock recovery circuitry in the

receiver.

To mitigate signal degradation on copper transmission

media, two levels of pre-emphasis may be selected using the

PRE input. When low the pre-emphasis is 5%, when high it is

20%.

The ENABLE signal is normally asserted to allow the

TLK2711 device to operate. When de-asserted, the device is

put in a power down mode with substantially reduced power

consumption, as only signal detection circuit is active which

draws less than 15 mW. In the power down mode, the serial

transmit pins (TXN), the receiver data bus pins (RXD0-15) and

RKLSB are tri-stated. But TXCLK clock still needs to be

provided in power-down mode.

Fig. 2. TLK2711 Transmitter Block Diagram

B. TLK2711 Receiver

The received signal is fed via a pair of multiplexers to a

serial to parallel convertor and to an interpolator and clock

recovery block. The interpolator and clock recovery block

recovers the received clock, to provide bit and word

synchronisation. Bit synchronisation is achieved using a phase

locked-loop (PLL) that takes the transmit bit clock from the

transmitter (SYNCLK) as a reference and provides an output

frequency locked to the transitions on the received serial bit

stream.

The serial data is converted to a correctly aligned pair of

10-bit codes. The two 10-bit codes are decoded by a pair of

8B/10B decoders, each providing an 8-bit data byte and a

control/data flag RKMSB and RKLSB). These signals are

registered in an 18-bit register.

Fig. 3. TLK2711 Receiver Block Diagram

C. Power-on Reset

Upon application of minimum valid power, the device goes

through a power-on reset process. When ENABLE pin is

asserted high from a power-down mode, the device also goes

8
B

/1
0

B

En
co

d
er

8
B

/1
0

B

En
co

d
er1
8

-b
it

 R
eg

is
te

r

Clock
Synthesiser

TXP

MUX

MUX

PRBS
Generator

Parallel
to Serial

BIAS

Controls:
PLL, Bias, RX, TX

TXN

PRE

LOOPEN

PRBSEN

TXD0-7

TKLSB

TXD8-15

TXCLK

TESTEN

ENABLE

To RX

TKMSB

SY
N

C
LK

TX
D

AT
A

LO
O

P
EN

P
R

B
SE

N

8
B

/1
0

B

D
ec

o
d

er
8

B
/1

0
B

D

ec
o

d
er1
8

-b
it

 R
eg

is
te

r

MUX

PRBS
Verifier

Serial to
Parallel

LO
O

P
EN

RXD0-7

RKLSB

RXD8-15

RKMSB
RXP

MUX

MUX

RXN

TX
D

A
TA

MUX

P
R

B
SE

N

Signal Detect
(LOS)

Interpolator &
Clock Recovery

SY
N

C
LK

SERDES

SpaceFibre

IP Core

VIRTUAL

CHANNEL

INTERFACE

BROADCAST

INTERFACE

MANAGEMENT

INTERFACE

8B/10B

Encoding

8B/10B

Decoding

Serialiser Deserialiser

Serial Data

250

into power-on reset process before the normal operation

begins.

During power-on reset, RXCLK is held low; the receiver

data bus pins (RXD0-15) and RKLSB/RKMSB are in high-

impedance state; the serial transmit pins (TXP/TXN) are high

impedance as well.

The length of the process depends on the TXCLK

frequency, but is less than 1 ms.

D. Loss of Signal (LoS) Detection

Loss-of-Signal detection is intended to be an indication of

error conditions like a detached cable or no signal being

transmitted, where the incoming signal no longer has sufficient

voltage amplitude to keep the clock recovery circuit in lock.

When loss of signal is detected the RXD0-15, RKMSB and

RKLSB signals are all set high. This represents an invalid K-

code on both bytes so can be safely decoded to mean loss of

signal.

In power-down mode, the signal detection circuit is still

active, and the RKMSB pin indicates the presence or otherwise

of a signal on the receiver inputs. This can be used to provide

an auto-start capability on a bi-directional serial link (similar to

that used for SpaceWire). To save power when there is no data

to send or to provide warm redundancy, the link can be put in

the power down mode (ENABLE de-asserted).

This signal detection circuit enables the auto-start

capability of a SpaceFibre link. When one end of the link has

data to send it can enable its TLK2711 device and start sending

data. The other end of the link, in power-down mode, detects

that there is now a signal on the receiver inputs (RKMSB goes

HIGH indicating that there is no longer loss-of-signal). The

TLK2711 device at that end of the link can then be enabled and

the link begins normal operation.

IV. SPACEFIBRE INTERFACES ON HPPDSP

HPPDSP project requires the I/O data interfaces having a

very high speed, for which the SpaceFibre technology has been

adopted. There are three SpaceFibre ports on a HPPDSP

prototyping board. For each port, there is a double-deck

eSATA connector as shown in Fig. 4. The upper deck is

connected to MGT RocketIO on the Xilinx Virtex-4 FPGA.

The lower deck is connected to a TLK2711 device. For this

project, the lower decks are in use.

Fig. 4. Picture of SpaceFibre Ports on HPPDSP Unit

For each SpaceFibre interface, there are a number of virtual

channels (VC), for instance four VCs (VC0 – VC3). The VC0,

connected to a RMAP Target (and a RMAP initiator on one

interface), is used to access the Configuration Bus on the

FPGA design for configuration and control purpose. The VC1,

VC2 and VC3 are connected to the IO DMA bus for data I/O

transmission at high speed.

Fig. 5. Block Diagram of SpaceFibre Interface on HPPDSP

V. EXPERIMENTS

Two HPPDSP prototyping boards are used for the

experiments. The SpaceFibre interfaces can be configured to

“Disabled”, “Start”, or “Auto-Start”, using the Configuration

Bus.

A. Loss of Signal (LoS) Detection

This experiment checks the operations of the signal

detection circuit, under circumstances of forced no-signal and

forced signal on the link.

The no-signal scenario is simulated with cable unplugged.

When the TLK2711a device is enabled, the receiver outputs

K31.7 on both MSB and LSB. When the device is disabled, the

RK_MSB is set low.

After the rising edge of the ENABLE pin, the outputs by

the receiver are not reflecting the true state, as shown in Fig. 6.

One can see a short false-positive pulse on the signal detection,

which is about 6.2 us. It is rational to conclude this is due to the

power-on reset process.

Fig. 6. Signal Detection with Forced No-signal Scenario

The forced signal scenario is simulated with the other end

of the link set to “Start”. When the TLK2711a device is

enabled, the receiver doesn’t outputs K31.7 on both MSB and

LSB. When the device is disabled, the RK_MSB is set high.

After the falling edge of the ENABLE pin, one can see a short

low pulse on the signal detection in Fig. 7. This is because the

simulated scenario is not perfect, and for that period the other

end of the link was going through a reset cycle.

SpFi
Interface

RMAP
TARGET

txd

VC3

VC1

IO
DMA
Bus

Configuration
Bus

spfi_txclk_sysspfi_txclk
Control
FPGA

VC2TI
TLK2711

rxd

rxclk

txclk

tklsb/tkmsb

rklsb/rkmsb

pre

enable
SpFi Codec

VC0
Regs

glue
logics

251

Fig. 7. Signal Detection with Forced Signal Scenario

B. Link Initialisation

An eSATA cable connects a SpaceFibre interface on one

board to a SpaceFibre interface on the other board. This

experiment has six different test cases. For each one, the same

test is carried out three times. The time taken for this end to

connect is recorded.

TABLE I. TEST CASES FOR EXPERIMENTS ON LINK INITIALISATION

Case This End Remote End Time to Connect

1 Then Start Started ~40us

2 Then Auto-Start Started ~40us

3 Started Then Start
~35us after receiving

first signal

4 Started Then Auto-Start
~35us after receiving

first signal

5 Then Start Auto-Started ~53us

6 Auto-Started Then Start
~53us after receiving

first signal

Test Case 1 and Test Case 2 are essentially the same test.

Test Case 3 and Test Case 4 are essentially the same test.

When one end is started, it tries to connect so it sends signal

which can be picked up by the other end. Therefore “Then

Start” and “Then Auto-Start” are not making any difference.

For Test Case 1, before this end is set to “Start”, signal has

been detected on the link. As soon as this end is set to “Start”

at marker M1 in Fig. 8, the TLK2711 device is enabled.

Fig. 8. Link Initialisation under Test Case 1

Then the power-on reset is in process, until there is the

RXCLK at marker M2 in Fig. 8. Following that, it takes some

further time for the device to synchronise and lock with the

incoming serial data and to find a comma to align on the word

boundary. Then it takes about 18us for the SpaceFibre Lane

initialisation state machine to go through various states and get

connected. In Fig. 8, the point that the link is connected is at

maker M3, where it starts to send out IDLE frames.

For Test Case 3, this end has been started, and the

TLK2711 device has been enabled. It is at marker M1 in Fig. 9

when the first signal is received. After about 16us, the device

synchronised and locked with the incoming serial data and

found a comma to align on the word boundary. Then it takes

another about 18us for the link to get connected at maker M3

where it starts to send out IDLE frames.

Fig. 9. Link Initialisation under Test Case 3

For Test Case 6, this end has been set to Auto-Start. The

TLK2711 device is enabled as soon as signal detected on the

link that is at marker M1 in Fig. 10. After going through the

power-on reset process, at yellow marker M4, it detects a LoS

and therefore the TLK2711 device is disabled. At marker M2,

signal is detected again and so the TLK2711 device is enabled.

Then similarly it takes 16us plus 18us for the link to get

connected at maker M3. The reason for the LoS detected may

due to the remote end was in the power-on reset process.

Fig. 10. Link Initialisation under Test Case 6

ACKNOWLEDGMENT

The authors would like to acknowledge the support of ESA

for the HPPDSP project (ESA contract number 4000102660),

which contributed to the work described in this paper.

REFERENCES

[1] S. Parkes, and C. McClements, “SPACEFIBRE CODEC: USE

OF THE TLK2711-SP,” Proceedings of the 4th International

SpaceWire Conference, San Antonio, 2011

[2] S. Parkes, A. Ferrer, A. Gonzalez, and C. McClements,

“SpaceFibre Specification Draft F1”, May 2013

[3] Texas Instruments, “TLK2711-SP Data Sheet: 1.6-Gbps to 2.5-

Gbps Class V Transceiver”, Reference Number SGLS307D,

July 2006, Revised July 2009.

M2 M1 M3

M2 M1 M3 M4

M2 M1 M3 M4

252

MARC – Lessons Learnt
SpaceWire Onboard Equipment and Software, Short Paper

Alan Senior, John-Paul Coetzee

Space Division

Thales Alenia Space - UK

Bristol, United Kingdom

alan.senior@sea.co.uk, john-paul.coetzee@sea.co.uk

Wahida Gasti

European Space Agency, ESTEC

Noordwijk ZH, Netherlands

wahida.gasti@esa.in

Abstract— This paper describes the lessons learnt during the

development and testing of the Modular Architecture for Robust

Computing (MARC) demonstration system. It is principally

written from a hardware perspective.

The MARC system is designed for satellite avionics

applications. The network and power architectures are based on

established spacecraft redundancy concepts and provide

tolerance to single point failures. The MARC architecture is

designed to provide a scalable solution that can meet the

demanding needs of future missions, the SpaceWire network can

be expanded to include new functions and to provide duplicate

paths to achieve the level of redundancy needed for a particular

mission.

An important aspect of the demonstrator hardware is that the

key components are space qualifiable parts; permitting the

design to be upgraded to a fully space qualified system with

minimal changes, in particular the hardware design uses the ESA

Atmel AT697F processor and SpaceWire 10X router

developments. The ESA SpaceWire RMAP IP Core is also used

for all module network interfaces, being implemented within

FPGAs.

The lessons learnt include the experiences with implementing

the RMAP IP Core, VHDL synthesis problems, power

consumption issues and the need for detailed internal unit

interface specifications. Additional technology developments,

such as radiation and fault tolerant Point of Load converters that

are required for migration of the design to flight are also

identified.

Lessons were also learnt regarding parallel Hardware and

Software developments to reduce development timescales whilst

eliminating diverging design compatibility.

Index Terms— SpaceWire, SpW, MARC, Avionics, RMAP.

I. INTRODUCTION

The Modular Architecture for Robust Computing (MARC)

system (Fig.1) is an innovative hardware development that

unifies future spacecraft processing system requirements to

create a SpaceWire (SpW) [1] network based scalable, fault

tolerant, high performance capability and robust system

solution suitable for both Spacecraft platform and data

handling applications [2].

The design comprises a SpaceWire Active Backplane and a

set of plug-in Modules with SpaceWire interfaces; this scalable

architecture permits optimisation of the system to suit different

applications.

The developed demonstration system uses many recently

developed European technologies such as the SpaceWire

RMAP IP Core the LEON2FT processor and the SpaceWire

10X Router as well as commercial technologies such as DDR

and FLASH within the Mass Memory Module. An important

aspect of the electronics design is the use of technologies that

have a component level route to a radiation tolerant flight

system.

Fig. 1. MARC Demonstrator

The potential applications for MARC are extremely broad,

encompassing single spacecraft with modest platform and

instrument requirements, to high data rate instruments mounted

on multiple formation-flying spacecraft.

Avionics applications include:

 Platform command and control (with SpW

replacing legacy Mil-Std-1553)

 Science spacecraft data handling and payload

processing

 Deep space missions requiring a high level of

autonomy

 Planetary robotic systems

 Complex and/or multiple payloads

253

The project has completed the hardware build and test

phase and the MARC Demonstrator is ready to be used for the

development of flight software. The MARC hardware is

designed to support software services based on the Spacecraft

Onboard Interface Services standards (SOIS).

The SpaceWire network architecture building block is

shown in Fig. 2. , this is called a “Cluster”. The 8 Port Routers

were implemented with the Atmel AT7910 device. The

Module SpaceWire interfaces are implemented with the ESA

developed RMAP SpW IP core within a Microsemi ProASIC 3

FPGA. TAS-UK was an Alpha tester of the RMAP IP Core.

Module 1

Module 2

Module 3

Module 4

8 port

Router

1

8 port

Router

2

1

2

3

4

5 6

7 8

1

2

3

4

5 6

7 8

A

B

A

B

A

B

A

B

On backplane
 = SpW link

Fig. 2. Network Cluster comprising 2 Routers and 4 Modules

II. SPACEWIRE RT

The MARC hardware supports the SpaceWire Real-Time

(RT) protocol to the following extent:

 Non-RMAP SpW RT packets bypass the RMAP

IP Core on the Core Computing Module (CCM)

 SpW RT packets can be exchanged with another

CCM

 Other modules are RMAP compatible but are not

“time slot” aware however this is not an issue as

they are slaves in the demonstrator

 The CCM software manages all transfers and

respects time slots

 CCM FPGA incorporates a SpW RT packet

transmit and receive buffer

 Hardware flags have been added added to indicate

the SpW RT message has been sent

The SpW RT draft protocol was implemented in software,

this consumed a significant percentage of the processing

budget and reduced the responsiveness of the system.

Lesson learnt: the functions required to implement

complex SpW protocols should be partitioned into the

hardware and software domains to increase system

performance.

III. SPW AND RMAP IP CORE

The ESA SpW IP Core was available prior to the start of

the MARC project and a compatible RMAP IP Core was under

development. TAS-UK reviewed the specification for the

RMAP IP Core and noted that when mated with the SpW IP

Core other packet protocols were not supported, this limitation

was not compatible with the MARC system design. One

option open to TAS-UK was to design a “protocol sorter” that

could be inserted between the two IP cores so that non-RMAP

packets could be routed through the same SpW interface.

Fortunately the ESA RMAP IP Core development was at a

stage where it could be updated to permit other protocols to be

used.

Lesson learnt: Protocol IP Core extensions to the SpW IP

Core should not preclude the use of other protocols.

IV. SPW IP CORE INTEGRATION INTO THE PROASIC

FPGA

Integration of the RMAP IP Core into the ProASIC 3

FPGA with the support logic for the processor and other

interfaces was relatively straightforward initially. Meeting the

timing requirements to achieve a 200Mbps speed however was

non-trivial and required many synthesis iterations with

adjustments to the placement.

Lesson learnt: Choose the FPGA I/O pins and verify the

placed design meets the timing constraints before allocating

pins at schematic level. Choosing I/O pins in physical

proximity to the clock pin resources can assist in meeting high

performance requirements.

V. RMAP INITIATOR ERROR ON TIMEOUT

When the MARC system is operating normally SpaceWire

RMAP messages are initiated and replies are received within

the RMAP Initiator watchdog time-out period and the system

operated reliably.

During the MARC system Failure Detection Isolation and

Recovery (FDIR) testing random SpaceWire nodes attached to

the active backplane are de-powered, in this situation an

RMAP command to that node was routed through the

backplane network and then be blocked, since there is no

packet sink. In this situation, it was found that no further

RMAP messages could be initiated by the sending node and

the MARC system had to be power cycled to recover. Clearly

the failure of the system to recover was not acceptable.

Lengthy software investigations ensued to demonstrate that

that it was definitely the hardware that was not behaving

correctly. The RMAP Initiator was configured to support 36

outstanding transactions, however during the software tests it

was noted that up to 56 outstanding transactions could be

reported.

The RMAP IP core has been subjected to both simulation

and hardware testing at Star Dundee. This involved the

initiation of RMAP transactions with both no timeout and a

fixed timeout without any anomalous behaviour.

At TAS-UK the same test bench command script was

modified to initiate 36 transactions with infinite timeout. The

bug then manifested itself as a functional error in a back-

annotated gate-level simulation with no apparent associated

timing problems. The fault signature changed almost on a per-

synthesis basis suggesting that there were timing violations that

were not being checked or reported. It is believed that the

complex initiator processes and enumerated type state

machines were not being correctly synthesized despite being

written in valid VHDL, thus it was concluded that the Synplify

synthesizer being used by TAS-UK had an undocumented bug.

The RMAP IP Core design was produced by STAR Dundee

254

using the Mentor Graphics tool suite which employs a different

synthesizer and it compiled the design correctly.

The Mentor Graphics tool suite was not available to TAS-

UK, so the complete MARC VHDL code design for the

Processor Module was released to the STAR Dundee to

investigate and perform a re-build on behalf of TAS-UK. This

recompiled design operated correctly in simulations and the

MARC Demonstrator then correctly recovered in the FDIR test

scenario. The final design achieved 200Mbps SpW data rates

reliably.

Lessons learnt: Use the same design and synthesis tools

as the IP Core creator to avoid possible synthesis bugs. Ensure

the test benches check all all corner and boundary cases for the

particular IP Core configuration used. Ideally IP Cores

designed for Space applications should be validated using the

different synthesis tools commonly used for Space electronics

design.

VI. POWER DISSIPATION

The SpW active backplane used four AT7910 8 port routers

these were connected in a network topology that provided 28

point to point SpW link at 200Mbps. The power consumption

of the backplane was approximately 15 Watts, this included all

of the power supply regulators and support devices such as

buffers and oscillators.

Lesson learnt: A rule of thumb based for this particular

setup is that each SpW link has an associated dissipation of

approximately 0.5W at 200Mbps.

VII. LEON2FT MAXIMUM CLOCK RATE

The AT697F data sheet cites a maximum processor clock

rate of 100MHz. A worst case analysis indicated that 0ns

access time RAM would be needed to operate with zero wait

states. The MARC system was therefore operated with an

80MHz processor clock rate.

Lesson learnt: Data sheet clock rates are not always

achievable in all conditions in a real system when the worst

case is considered.

VIII. POL CONVERTERS AND SUPPLY VOLTAGES

The supply voltage required by integrated circuits is

dependent on the semiconductor technology and device

characteristics. Typical voltages for digital devices are 5V,

3.3V, 2.5V and 1.8V. The trend towards higher speed parts

has led to smaller semiconductor feature sizes, the thinner

oxide layers employed have lower breakdown voltage and

hence lower supply voltages are employed. The high speed

and high transistor count of these modern devices leads to a

high current requirement at relatively low supply voltages.

Providing all the different supply voltages at the currents

required whilst maintaining the voltages within the required

tolerance at the device pins is not trivial. Linear regulators

may be used but are inefficient if the input and output voltages

are significantly different. As an example generating a 2.5V

regulated supply at 1A with a 5V input leads to a dissipation of

2.5W in the regulator.

The solution is to supply each module with a higher voltage

and use Point of Load (POL) DC-DC converters onboard the

module. The MARC system uses a 24V backplane bus to keep

the backplane voltage drops to an acceptable level. POLs

however are not commonly available to generate voltages

lower than 5V from a 24V input supply. Typically the

available terrestrial and space qualified POLs operate with a

5V input.

24V to 5V

DC-DC

5V to 3V3

DC-DC

5V to 2V5

DC-DC

5V to 1V8

DC-DC

Module

Fig. 3. Module power supply voltage generation

Lesson learnt: Allow for 2 stages of DC-DC conversion on

the Module, for example 24V to 5V and then 5V to 1.8V.

IX. TEST AND INTEGRATION

The SpW active backplane [3] interface for each Module

consisted of two SpW links and a single power rail. The lack

of bespoke interfaces at the backplane interface and the ability

to connect EGSE to spare ports of the backplane SpW network

permitted module level debugging using available off the shelf

SpW test equipment. Modules in development could be

emulated easily and the system status could be monitored

without creating a bespoke hardware test environment.

P
o

w
e

r

P
ro

c
e

s
s
o

r

M
a

s
s
 m

e
m

o
ry

A
d
a

p
te

r

A
c
tu

a
to

r
A

in
te

rf
a

c
e

s

SpW Active Backplane

Spacecraft Avionics Unit

EGSE

interface

Emulation PC

USB

SpaceWire

EGSE

USB

SpW

Router

SpW link for sensor

emulation

SpW

link

Fig. 4. A SpW backplane simplified MARC integration and test activities

The use of SpW at the backplane interface permitted a

PowerPC module supplied by another vendor to be integrated

into the SpW network without difficulty.

Lessons learnt: A SpW backplane has significant

advantages during integration and test activities, simplifying

module test and system level debugging.

255

X. PARALLEL HW AND SW DEVELOPMENTS

The hardware and software development activities for

MARC overlapped to shorten the complete system

development schedule. The software was initially developed on

a RASTA system until the MARC hardware demonstrator

became available. When the software was integrated with

MARC it was found that there were significant

incompatibilities between the hardware and software, this

resulted in an extended software development schedule.

Fig. 5. Role of system-level Use Case Model

There were a number of reasons for this situation arising:

 unclear and misunderstood requirements

 few team members have a full end-to-end

understanding of what the system does and why

 too much focus on sub-system design and physical

interfaces in a way that is divorced from the top

level requirements

 the view that “Functionality is a software

implementation detail”

This situation could have been alleviated by using ‘Use

Case Models’ which identify ‘the system’ and the ‘actors’

(roles played by users and external systems).

A ‘Use Case’ [4] describes the behaviour required of the

system to achieve a particular user goal in a story-like narrative

structure that effectively communicates system vision in scope

and detail. The key advantage of this style is that the system

behavior can be understood by software, hardware and “non-

engineering” team members.

The Use Case Model may also be used for behavioural

analysis to refine the requirements, highlight inconsistencies

and to identify failure modes.

Lesson learnt: Produce Use Case Models to assist in the

development of compatible hardware and software for complex

systems.

[1] ECSS-E-ST-50-12C, (SpaceWire – Links, nodes, routers and

networks, Issue 2, 31st July 2008

[2] A. Senior, W. Gasti, O. Emam, T. Jorden, R. Knowelden, S.

Fowell, “Modular Architecture for Robust Computation”,

International SpaceWire Conference 2008

[3] A. Senior, P. Worsfold, “A SpaceWire Active Backplane

Specification for Space Systems”, International SpaceWire

Conference 2010

[4] Alistair Cockburn, “Writing Effective Use Cases”, Addison-

Wesley, 2000.

256

An RTEMS Port for the AT6981 SpaceWire-Enabled

Processor : Features and Performance
Onboard Equipment and Software, Short Paper

David Paterson

STAR-Dundee Ltd.

Dundee, UK

david.paterson@star-dundee.com

David Gibson, Steve Parkes

Space Technology Centre

School of Computing

University of Dundee

Dundee, UK

davidgibson@computing.dundee.ac.uk,

sparkes@computing.dundee.ac.uk

Abstract— The Atmel AT6981 is a complex system-on-chip

based on a SPARC LEON2-FT core, and which provides a

number of peripheral devices including three multi-function

SpaceWire engines and a router.

The RTEMS real-time operating system is widely used in

spacecraft systems in many roles. Its long history and open

source availability make it an ideal choice for many applications.

RTEMS has already been ported to many platforms, including

some based on the SPARC LEON2 processor.

The process of porting RTEMS to the AT6981 is described,

and the performance, both for general data processing and for

SpaceWire traffic handling, is examined.

Index Terms— Relevant indexing terms: SpaceWire,

Spacecraft Electronics, Real-Time Operating System, RTEMS.

I. INTRODUCTION

The requirements for spacecraft on-board data handling are

continually increasing in terms of demands on both processing

power and network bandwidth. This has driven the

development of ever more powerful and capable data

processors and network controllers.

The Atmel AT6981 [1] combines a high-performance,

fault-tolerant processor with multiple SpaceWire engines and a

SpaceWire router, providing both data processing and network

control in a single package. The inclusion of on-chip memory

and a range of other peripherals and network interfaces make it

a highly capable device, suitable for use in a wide range of

applications.

Along with the requirements for increased processing

capabilities, there is also a need for a reliable software

environment to support real-time scheduling of the data

handling tasks. The RTEMS operating system is an ideal

candidate for this role, having proven its reliability and

usefulness in use on many missions, as well as having been

widely adopted in non-spaceflight applications.

Although RTEMS has been ported to LEON2-based

platforms, each target system has a different configuration, so

an AT6981-specific port is required in order to make full use of

the device’s capabilities. Porting RTEMS essentially requires

the development of a target-specific Board Support Package

(BSP) together with additional device drivers for the target’s

peripherals, and these are integrated into the RTEMS source

tree in order to build the target-specific version.

II. THE AT6981 SYSTEM-ON-CHIP

Based on a SPARC V8 LEON2-FT processor running at

200 MHz, the AT6981 is ideally suited for SpaceWire-based

applications with the inclusion of three powerful and flexible

SpaceWire engines. Each engine contains an RMAP initiator,

RMAP target and three general-purpose transmit/receive DMA

channels. These SpaceWire engines are connected to a

SpaceWire router which has eight external ports, providing

extensive network connectivity.

Additionally, the AT6981 includes up to 1 MByte of on-

chip EDAC-protected SRAM, controllers for CAN, MIL-STD-

1553 and Ethernet, as well as general purpose I/O, UARTs,

timers and other commonly-required interfaces.

A diagram of the AT6981 is shown below in Figure 1.

Fig. 1 – AT6981 Functional Block Diagram

257

The SpaceWire subsystem of the AT6981 is built around

three highly capable, semi-autonomous engines which can

offload much of the work involved in sending and receiving

SpaceWire traffic from the main processor.

A diagram of the SpaceWire subsystem is shown below in

Figure 2.

Fig. 2 – AT6981 SpaceWire Subsystem

The SpaceWire router has three internal ports and eight

external ports connected through a switch matrix which allows

multiple simultaneous connections between inputs and outputs.

The router is also connected to a time-code controller

which indicates received time-codes, and can generate time-

codes based on internal counters, hardware interrupts or on

command from the processor. The time-code controller also

handles and can generate distributed interrupts.

For packets being transmitted, the protocol multiplexer/

demultiplexer selects packets to be sent to the router, using a

fair arbitration scheme. For received packets, the first four

bytes of each packet are checked against configurable patterns

and masks to determine the correct destination – RMAP target,

RMAP initiator, or one of the three DMA channels.

The RMAP target accepts RMAP commands from a remote

system, performs read or write operations over the AHB bus to

local memory, and optionally returns a reply packet. The target

supports all RMAP commands, and includes a 16 byte buffer

for verified write commands.

The RMAP initiator transmits RMAP commands to read or

write memory or registers on a remote system, transferring data

to or from local memory via the AHB bus. The initiator is

controlled by a table of transaction requests stored in memory,

allowing it to transmit multiple commands and validate replies

to them without processor intervention.

The three DMA channels can each transmit and receive

SpaceWire packets from or to local memory. Transmitted

packets can consist of one or more data chunks, allowing for

separate storage of packet headers, while received packets are

stored contiguously in memory. As with the RMAP initiator,

transmit and receive operations are controlled by configuration

tables, minimising processor overhead.

The DMA channels can also transmit and receive RMAP

[2] and PUS [3] packets, using hardware CRC-8 and CRC-16

computation respectively.

With three identical SpaceWire engines, and eight external

ports from the router to access the spacecraft’s on-board

network, the AT6981 provides a very high level of capability

for data handling. The ability of these engines to operate

autonomously means that this is achieved with minimal load on

the main processor.

III. THE RTEMS REAL-TIME OPERATING SYSTEM

The RTEMS operating system has been designed

specifically for use in real-time embedded environments,

providing a full range of essential support features for real-time

software, including mission-critical and safety-critical

applications.

RTEMS has been under continuous development since the

late 1980’s, and has evolved over that time into a highly

reliable and capable system. It has been used in a wide range

of application areas, such as networking, automotive, medical,

hi-fi systems, particle accelerators and, most importantly,

spacecraft systems [4].

Real-time systems are differentiated from other software

applications by the requirement that they must respond to

events within specified time constraints – “A real-time system

is one whose logical correctness is based on both the

correctness of the outputs and their timeliness.” [5].

Real-time requirements may be divided into two broad

categories :-

 Soft real-time – in which a missed deadline does not

compromise the integrity of the system or result in a

catastrophic event.

 Hard real-time – in which a missed deadline causes the

work performed to have no value or to result in a

catastrophic event.

RTEMS is designed to handle both of these types of

constraint, and implements a number of different task

scheduling options to allow for flexibility in system design, and

for both hard and soft real-time tasks, and variations of them,

to run in the same system.

The RTEMS system is structured using a layered approach,

as show in Figure 3.

Fig. 3 – RTEMS Architecture

258

Although the architecture diagram shows a large number of

components, the configuration mechanisms invoked when

building an RTEMS system ensure that unused parts of the

code base are not included in the final executable.

A number of APIs are available, including a POSIX

compliant API supporting a large part of POSIX 1003.1b, such

as process and thread creation and control functions and object

types (semaphores, mutexes, condition variables etc.), file and

directory management and memory management.

At the lowest level of the RTEMS architecture, the

interface to the target hardware is managed through the Board

Support Package, and this is discussed in more detail in the

next section.

IV. PORTING RTEMS TO THE AT6981

RTEMS is already in widespread use for many spaceflight

applications, and is seen as a reliable and easy-to-use operating

system environment for the implementation of flight software.

Porting RTEMS to the AT6981 extends the range of devices

which are supported, and provides a very capable hardware-

software combination for many on-board data handling and

communications applications.

As stated previously, RTEMS has been ported to the

LEON2 in some basic configurations. However, in order to

make full use of the features of the AT6981, a more complete,

target-specific port was needed. This provides not only the

basic integration of the processor into RTEMS, but also drivers

for the built-in peripheral devices.

The first fundamental step in the process of porting

RTEMS to any new target is identifying which components

need to be developed, and which parts of existing ports, or

parts of “standard RTEMS” can be used :-

 Does a BSP for this board exist?

 Does a BSP for a similar board exist?

 Is the board’s CPU supported?

In this case, although the CPU (SPARC LEON2) is

supported, no really similar board or device has yet been

ported, so only some basic, shared interrupt handling code

could be used. More of the common code from RTEMS,

mainly related to system initialisation, could be included, but

most of the BSP would have to be developed “from scratch”

(albeit, based on the design and structure of other, similar

BSPs).

For an initial, basic BSP, a small number of modules must

be implemented :-

 Initialisation (board start-up)

 Clock driver

 Console driver

 Timer driver (optional)

The initialisation code is responsible for ensuring that the

processor board is correctly initialised following a system

power-on or reset. Registers and memory areas are set to

known states, the stack is set up and interrupts cleared to

ensure correct and reliable operation of the operating system

and the application software.

The clock driver provides a reliable time reference to the

RTEMS kernel, so that all primitives that require a clock tick

work correctly.

The console driver, effectively a UART driver, is primarily

for use in debugging and for system status report messages.

The timer driver is used by timing and benchmark tests, and

although optional in the basic BSP, can be useful in

determining system performance, and identifying areas which

may need optimisation.

Once the basic BSP had been implemented and tested,

confirming that RTEMS was operating correctly, the next step

was to develop drivers for the peripheral devices on the

AT6981, beginning with the SpaceWire subsystem.

In order to simplify the API for users of this feature, it was

decided to write two separate device drivers, one for DMA

channel management, and one for the RMAP targets and

initiators. This separation also reflects the fact that these parts

of each engine can operate independently.

The structure of an RTEMS device driver is relatively

simple, and involves implementing a standard set of device

operations – open, close, read, write and control, which map

directly to the API functions typically available in most high-

level language support libraries. Additionally, an initialisation

function must be provided, and this is called during the

RTEMS start-up sequence to carry out any device-specific

initialisation which might be required.

At present, only the SpaceWire device drivers have been

written, but additional drivers for other peripherals will be

added in the future.

V. PERFORMANCE

The testing of the RTEMS port was carried out on the

STAR-Dundee AT6981 Prototype Card which contains an

FPGA into which is programmed the LEON2 core, 128 KBytes

of on-chip SRAM, the SpaceWire subsystem (as shown in

Figure 2) and 256 MByte of DRAM. The AT6981 Prototype

Card is shown in figure 4.

Fig.4 – STAR-Dundee AT6981 Prototype Card

259

The target clock speed for the production versions of the

AT6981 will be 200 MHz, which should provide at least 150

MIPS Dhrystone performance, and at least 40 MFLOPS

Whetstone performance. However, the Prototype card

processor clock speed is limited to 30 MHz, so the measured

performance is expected to be approximately one-sixth of the

production device.

The SpaceWire clock on the prototype card runs at the full

200 MHz, so link speeds of up to 200 Mbit/s are supported.

Testing is still ongoing, but it should be possible to transmit

and receive packets at the maximum data rate via all three

SpaceWire engines simultaneously, provided they are routed

through different external ports. The autonomous operation of

the engines should require minimal processor overhead in

handling these transactions, so processor performance is not

expected to be a limiting factor in normal operation.

Final, measured performance figures will be given in the

oral presentation of this paper.

VI. CONCLUSIONS

The AT6981 provides a high-performance system-on-chip

solution to the ever-increasing demands for on-board data

processing and network bandwidth. The flexibility and

autonomous nature of the three SpaceWire engines allows for

its use in a wide range of network configurations and operating

modes.

RTEMS has already gained wide acceptance for use as an

environment for spacecraft software, and porting RTEMS to

the AT6981 extends the range of hardware which supports it.

This will provide additional options to designers and

developers of on-board data handling systems, providing a

reliable platform on which to implement any required

application software.

The open-source nature of RTEMS makes it relatively easy

to configure, and to port to new target hardware. Although the

AT6981 port of RTEMS currently provides only a basic BSP

and drivers for the SpaceWire engines, additional drivers will

be developed in the future, increasing the usability of this

versatile hardware / software combination.

REFERENCES

[1] “Atmel Space Rad-Hard Processors” Atmel-41005B-

AEROSpaceRadHardProcessor_E_A4_052013.

[2] ECSS-E-ST-50-52C, “SpaceWire – Remote Memory Access

Protocol”, European Cooperation for Space Data

Standardization, February 2010

[3] ECSS-E-ST-70-41A “Ground Systems and Operations –

Telemetry and Telecommand Packet Utilization”, European

Cooperation for Space Data Standardization, January 2003

[4] “RTEMS Applications”, RTEMS Wiki -

http://www.rtems.org/wiki/index.php/RTEMSApplications

[5] Phillip A. Laplante, “Real-Time Systems Design and Analysis”,

Third Edition, John Wiley & Sons / IEEE Press, 2004

260

 Test & Verification (Short)

261

MOST: Modeling of SpaceWire & SpaceFibre

traffic

NOT PERMITTED TO PUBLISH PAPER

262

Automatic Performance Tracking of a SpaceWire

Network
SpaceWire test and verification, Short Paper

Kai Stohlmann

Institute of Space Systems

German Aerospace Center

28359 Bremen, Germany

Kai.Stohlmann@dlr.de

Görschwin Fey

Institute of Space Systems

German Aerospace Center

28359 Bremen, Germany

Goerschwin.Fey@dlr.de

Daniel Lüdtke

Simulation and Software Technology

German Aerospace Center

38108 Braunschweig, Germany

Daniel.Luedtke@dlr.de

Abstract— Verification of complex networks, especially

meshed networks created of routers, can become quite difficult.

There are several parameters influencing the actual data

throughput, e.g., congestion in the network, transmission rates at

the inputs of the network or between routers as well as the

reception rate of data. An appropriate model is required to

evaluate the network performance. This model can be defined at

different levels of detail whereas the more detailed levels are

considered to be more precise with respect to the real hardware

behavior. The objective of this paper is to define such a model

and to provide random constraint stimuli for an automatic

tracking of the network performance. The model consists of a

meshed network with a fixed topology using HDL descriptions of

the SpaceWire routers in our system. However, this approach

can also be applied to other network topologies. Precisely

mimicking input and output data streams that are applied to the

network is crucial to identify inefficient data paths. These data

streams are generated dependent on predefined high level

constraints (e.g. packet lengths, transmission rates) that are

transferred into lower level constraints to finally create the

required stimulus. The quality of the system, dependent on a

specific data stream, is determined among others by tracking and

analyzing the transition time of packets from source to

destination.

Index Terms— Network, Functional verification, Random

constraint verification, Universal Verification Methodology

(UVM)

I. INTRODUCTION

Accessing and monitoring signals or data traffic in

embedded hardware can become very difficult but is often

required. To address this problem the paper shows how

monitoring/tracking of network traffic and related DUV

(Device Under Verification) behavior is applied during

simulation by use of a hardware verification language in

combination with a random constraint verification approach.

Since hardware debugging is usually harder than debugging

based on simulation, we are creating a verification environment

whenever possible. The OBC-NG prototype (On-board

Computer - Next Generation) [1] which is developed by the

German Aerospace Center will serve as the DUV. Because its

network is heavily meshed it becomes even more complex and

difficult to follow the data traffic and to monitor the behavior

of the real system. These monitoring capabilities are important

for debugging as soon as the actual data traffic differs from the

expected data traffic that can be caused either by faulty DUV

parts or by faulty interactions between DUV parts due to

suboptimal configuration. Because the DUV might change its

topology during development, it was intended to create a

verification environment that scales with the used network

topology.

The remainder of this paper is structured as follows. Chapter

II shows the used DUV in more detail, which is important to

understand the structure of the surrounding test environment.

The following Chapter III introduces the concepts of a typical

UVM (Universal Verification Methodology) [2] test

environment that is responsible for driving the DUV dependent

on user constraints. The related stimuli generation that is used

inside the test environment is explained in Chapter IV.

Performance and behavior tracking is presented in contrast to

the test environment in Chapter V. Finally, Chapter VI gives

some conclusions.

II. THE DEVICE UNDER VERIFICATION (DUV)

The OBC-NG prototype will be used as the DUV with a

basic structure shown in Fig. 1. The prototype consists of four

identical nodes that are able to perform the same tasks. The

main idea is that faulty nodes can be replaced by any other

node as well as load balancing can be performed in an optimal

way which is described in detail in [1]. However, for this paper

only the structure of the network is important.

Every node consists of a processing unit (PU0 to PU3) that

is connected to a related SpaceWire router written in VHDL

(R0 to R3). The router was designed according to the related

standard [3]. The configuration of it, e.g. routing table entries,

is performed by use of the RMAP protocol [4]. The router itself

was independently tested by random constrained verification

and can be considered as functional correct. All nodes are

connected to each other via the routers.

263

mailto:Kai.Stohlmann@dlr.de

Fig. 1. DUV Structure

Note there is only one connection at every single node to

provide the processing units with data that might come from

instruments or other subsystems. This is not a technical

limitation of the system. The number of links can be increased.

The processing units forward data through the routers to other

nodes if required.

Hardware/software co-verification of the routers together

with the respective PUs would slow down simulations

drastically. Thus, it is reasonable to model data traffic between

PUs and related router by random processes. The part of the

system that fully simulated in the verification environment is

enclosed in the dashed box shown in Fig. 1.

III. VERIFICATION ENVIRONMENT

Whenever a verification environment needs to be created it

must be decided what test methodology should be followed and

which language will be used.

If one considers hardware description languages (HDL) like

VHDL (Very High Speed Integrated Circuit Hardware

Description Language) or Verilog as insufficient for test

environments, one can select a language that focuses on

verification. An option is SystemVerilog, which is standardized

[5] and supported by the most common simulation tools.

Further, a framework called UVM based on SystemVerilog is

developed by the main EDA vendors, provided for free and

used for the test environment that is explained in the following.

Reasons for us to select UVM were the object-orientated

approach that increases the reusability or extension of existing

verification components as well as the ability to drive the

simulation by random constrained stimulus.

Fig. 2. Basic verification environment

Fig. 2 shows the basic structure of the test environment that is

used to drive the DUV and to track all necessary information

related to data traffic and DUV behavior. The DUV is driven

by a set of UVCs (Universal Verification Component). A

UVC is attached to every interface that is provided by a DUV.

As described before, the PUs are not embedded into the

verification environment. Instead, the UVCs will drive the

routers as shown in Fig. 3.

Fig. 3. UVC interaction with the DUV

Because the DUV consists of four nodes it is required to

instantiate a single UVC for each router. During simulation, the

UVC generates predefined SpaceWire packet objects to apply

them sequentially to the DUV. The SCB (Scoreboard) shown

in Fig. 2 provides functionality for comparing results or

modifying data. For most packets that are transferred into the

router an expected output packet is created by a transfer

function inside TFUNC and stored inside EDATA. TFUNC

also checks whether an expected packet needs to be created or

not. E.g., in case of a routing table configuration with no

response, a comparison of actual and expected data is not

possible. However, if data is transferred from UVC0 over R0

to R3 to UVC3 it is possible to compare sent data at UVC0

with received data at UVC3. In case a UVC receives data, the

264

compare function inside VDATA is used to ensure that the

packet was transferred correctly. PTRACK objects capture the

performance properties of packets. Because these properties are

tracked at every output, it is required to instantiate these

module four times. The properties of the router are captured by

the RTRACK objects, which have to be instantiated for every

router separately. In case the topology changes, it is possible to

add or remove the required amount of tracking modules.

IV. STIMULI GENERATION

As described in the previous chapter, UVCs are responsible

for generating and applying data that is transferred over the

network. This generation and randomization of data must be

controlled in a way that it behaves as close as possible to the

PUs in the real system. Additional, randomization control must

be exchangeable for reusability and the application of different

tests during simulation.

Fig. 4. shows the generation flow of “SpW packets” from

the highest level down to the DUV. The “PU traffic reference”

provides additional information about the expected traffic

behavior generated by the PUs in the real system, e.g.:

 Distribution of different packet lengths

 Distribution of logical addresses

 Content of payload

 Transfer speed

However, this information is provided in plain text by people

that are responsible for the PUs and without the requirement of

having knowledge about SystemVerilog or the test

environment. To refine the information for the randomization

process of the “SpW packet”, a constraint file (specific

constraints) is defined where the high level constraints are

defined in SystemVerilog by the verification engineer. The

“specific constraints” influence the randomization every time

the Sequencer is requesting “SpW packets” by accessing

“specific sequence”. “specific sequence” is derived from “base

sequence” and will restrict the “base constraints” in a way how

it is required for a specific test. If, e.g., “base sequence” creates

“SpW packet” with payload lengths between 1 to 1000 bytes, a

“specific sequence” could be created with allowed payload

lengths between 500 to 600 bytes. Sequences can be seen as

containers where packets can be created and randomized

depending on defined constraints. If different behavior between

tests and simulation runs is required, it is often sufficient to

exchange only constraint files instead of changing the code of

the test environment.

Fig. 4. Stimulus generation flow

Whether a packet needs to be generated depends on the

Driver. If the Driver has applied previously requested packet

content completely to the DUV, it will request a new one until

the maximum amount of executed packets is reached. If the

Drivers of all UVCs have finished the packet application, the

simulation stops after a predefined drain time. This time is

required to let the DUV work until the last packets are

processed.

The Monitor passes back the packets to the SCB

(Scoreboard). Packets could be sent from drivers to scoreboard

directly but this is not recommended because the UVC can also

act in a passive way. In that case the driving part of the UVC is

deactivated and replaced by, e.g., real HDL designs. But the

monitoring of the DUV interface shall still be in place for

checks and coverage purposes independent of the Driver

activity. This replacement would happen, for instance, if we

would decide to use a HDL description of our PUs to create the

data traffic for the routers. This kind of replacement will take

place every time HDL subsystems are integrated to a bigger

system. Once connected they will exchange data over

interfaces that were previously connected to UVCs during

separate subsystem tests. Unfortunately, this flexibility is

associated with additional effort since the monitor must

reassemble packets.

The “SpW packet” whose content finally drives the DUV is

a class-based object that contains all the packet information

like addresses, payload content, end of packet marker etc. but

also additional information like delays, packet drop

probabilities or system time information, which is important

for the performance analysis described in the following

chapter.

V. PROPERTIES AND PERFORMANCE TRACKING

If the UVCs are submitting data to the network according to

the behavior of the real PUs, it is necessary to check that the

network is able to handle the traffic. To identify suboptimal

265

behavior and optimization possibilities the following properties

are tracked during the simulation:

Packet Latency. It provides the transition time of the first byte

of each packet from insertions into the network and reception

at the destination. Only the first byte is considered to keep the

latency determination independent from packet size.

Packet Jitter. The jitter is defined as the difference between

the maximum and the minimum transition time of packets. As

for the packet latency, only the first byte of a packet is

considered for the measurement.

RX Router Buffer Full. If data paths through the network are

saturated, receiving (RX) buffers become full. Either this can

be caused by a UVC that provides too much data for a specific

destination or too many packets are transferred over the same

data path.

TX Router Buffer Empty. To optimize the traffic load of the

network it is useful to identify buffers and links that are rarely

or never used. If no or little traffic is sent over an output port of

a router, this can be derived from the status of the TX buffers.

Router Closed Packet. The router has the option to close

packets by EEP (Error End Of Packet) in two cases:

1. A connection time between input and output exceeds

a predefined threshold.

2. A maximum amount of packet bytes during transfer

between input and output was exceeded.

All these attributes are monitored and tracked during the

whole simulation by the PTRACK and RTRACK modules

shown in Fig. 2. The PTRACK module is responsible for

tracking packet latency and the packet jitter. This module does

not need to be connected to signals inside the DUV. Instead, it

gets data captured by the Monitor inside the UVC. How the

PTRACK tracking is performed is described in the following.

Every time an arbitrary UVC and its related Driver insert a

packet in the network, the Monitor reassembles a copy of this

packet and sends it to the SCB (Scoreboard). Depending on the

packet type, the SCB decides whether it is stored or not. In

general, only RMAP (Remote Memory Access Protocol)

configuration packets are not stored. In addition to the packet

content, two attributes are stored:

 System time related to the moment the first byte was

inserted into the network

 Source UVC

The packet plus additional attributes is stored until the packet is

received at the destination UVC. Now the related Monitor

captures and reassembles the received packet. If the received

packet is not a reply related to an RMAP configuration, the

Monitor triggers the tracking function inside the SCB to pass

the captured packet further to the PTRACK module.

The PTRACK module internally creates a dynamic data

structure to store all required time information. This requires

extracting the previous stored expected packet. As mentioned

before, the expected packet was extended among other values

by its network entry time. We know now when the packet

entered and left the network. Now all information is available

to create or extend the structure with the following attributes:

 Longest transition time

 Shortest transition time

 Average transition time

 Jitter

 Logical address

 Source UVC

All transition times and jitter values are related to a specific

data path. For each path, a separate tracking needs to be

performed. The example in Fig. 5 shows that UVC 3 can be

reached by use of three logical addresses: 56, 67 and 38. With

R0 as source, three data paths are possible to reach R3:

1. R0 to R1 to R3

2. R0 to R3

3. R0 to R2 to R3

In this example the PTRACK module for UVC 3 would create

three entries, one for each data path. Distinguishable by source

UVC number and Logical address.

Fig. 5. Logical path example

At the end of the simulation, all tracked entries are printed at

the simulator console.

The example applied logical addressing. If path addressing

is used, the data path of the packet is not implicitly given by

two values (Source UVC and logical address) as it is the case

for logical addressing. Path address handling is currently not

supported by the performance-tracking framework. This would

require the implementation of an algorithm that can reconstruct

the path of a packet after reception.

In case of exceptional high packet latencies, congestion or

other irregularities, it should be possible to find the cause by

observing the router attributes. The RTRACK modules track

them. These modules are connected through interfaces to

access all router signals no matter where or how deep they are

located inside the HDL design. This kind of connection allows

to add tracking functionalities if required. One just have to add

the signals that should be observed and extend the RTRACK

class.

266

The RTRACK modules start observing with the beginning

of a simulation. For the buffer signals RX full and TX empty

the following attributes are tracked:

 Trigger amount

 Longest time active

 Shortest time active

 Average time active

Every time a buffer signal is triggered, the related tracking

structure updates their values. Note that capturing is performed

for every router input and output port separately inside each

RTRACK module. The information how often a router closed a

connection with an EEP is only tracked by counting the

occurrences. Because the amount of available buffers per

router is known during the whole simulation, it is not required

to extend the tracking structure in a dynamic way, as it is the

case for the PTRACK module.

VI. CONCLUSIONS

This paper presented an approach to evaluate the network

performance of the OBC-NG prototype depending on the

network configuration and constraints that model the incoming

traffic into the network. We gave an overview of the involved

system components beginning with the DUV and finishing

with the performance/attribute tracking that is embedded into

the test environment. The full access to all signals inside the

DUV is a huge advantage compared to the real hardware.

The presented approach can help to evaluate and optimize

different network configurations and topologies for a given

application.

However, we are aware of the fact that the results strongly

depend on the quality of the input traffic model. To determine

sufficient traffic models is subject of future research. In

addition, the current implementation of the performance

tracking does not fulfill the requirements of credible statistics

[6]. We do not perform, for instance, confidence determination

yet. This requires a much higher effort in terms of memory and

arithmetic functions in such a hardware-related environment.

Unfortunately, it is not possible to provide test results in this

paper. It is because the DUV network configuration and the

traffic model are not finalized so far. Therefore, the application

of the test environment to the real system is planned as the next

work.

REFERENCES

 D. Lüdtke, K. Westerdorff, K. Stohlmann, A. Börner, O. [1]

Maibaum, T. Peng, B. Weps, G. Fey und A. Gerndt, “OBC-NG:

Towards a reconfigurable on-board computing architecture for

spacecraft,” in Aerospace Conference, 2014 IEEE, 1-8 March

2014.

 Accellera Systems Initiative, “Universal Verification [2]

Methodology (UVM) 1.2 Class Reference,” June 2014.

 ESA Requirements and Standards Division ESTEC, “SpaceWire [3]

– links, nodes, routers and networks,” 2008, ECSS-E-ST-50-

12C.

 ESA-ESTEC Requirements & Standards Division SpaceWire, [4]

"SpaceWire - Remote memory access protocol," 2010, ECSS‐

E‐ST‐50‐52C.

 IEEE Computer Society and the IEEE Standards Association [5]

Corporate Advisory Group, “IEEE Standard for

SystemVerilog—Unified Hardware Design, Specification, and

Verification Language”, 21 February 2013.

 K. Pawlikowski, H.-D. Jeong und J.-S. Lee, “On credibility of [6]

simulation studies of telecommunication networks,”

Communications Magazine, IEEE, pp. vol.40, no.1, pp.132-139,

Jan. 2002.

267

Recording SpaceWire Traffic
SpaceWire Test and Verification, Short Paper

Stephen Mudie, Chris McClements, Alan Spark,

Stuart Mills, Alex Mason

STAR-Dundee Ltd

Dundee, Scotland, UK

stephen.mudie@star-dundee.com

Martin Dunstan, Steve Parkes

School of Computing

University of Dundee

Dundee, Scotland, UK

mdunstan@computing.dundee.ac.uk

sparkes@computing.dundee.ac.uk

To support the validation and debugging of complete

SpaceWire systems, STAR-Dundee Ltd have developed a

SpaceWire Recorder. Using STAR-Dundee SpaceWire

technology and the latest solid state data storage technology, the

SpaceWire Recorder is capable of unobtrusively recording traffic

on up to four links in both directions at a maximum aggregate

data rate of 600Mbit/s. The maximum amount of data that can be

recorded is limited only by the size of the solid state disks used. A

Traffic Viewer software application provides a simple means of

operating the recorder, as well as displaying and managing the

large volume of SpaceWire traffic that can be recorded.

Index Terms— Relevant indexing terms: SpaceWire,

Networking, Spacecraft Electronics, Recorder

I. INTRODUCTION

Viewing SpaceWire traffic on a complete SpaceWire

system for validation and debugging purposes can be

challenging. One solution may be to use multiple SpaceWire

Link Analyser Mk2s, each connected on a different link and

each configured to capture data at the same time via external

triggers.

A SpaceWire Link Analyser Mk2 will unobtrusively

capture very detailed information regarding SpaceWire traffic

on a single SpaceWire link. The timing information of every

SpaceWire character is captured along with a trace of the data

and strobe signals. The amount of data captured however is

limited by the Link Analyser memory size, the units are not

time synchronized and each Link Analyser will have a separate

instance of software running, making it very difficult to

interpret the operation of the SpaceWire system.

To resolve this problem STAR-Dundee has developed a

SpaceWire Recorder. The SpaceWire Recorder is a standalone

unit capable of recording SpaceWire traffic on multiple links

unobtrusively to a hard disk. It is supplied with software that

controls recording and displays the recorded traffic in a single

application, allowing data on all links to be viewed

simultaneously. The recording size is limited only by the hard

disk size meaning large volumes of SpaceWire traffic can be

recorded over long periods of time. Entire recordings can be

viewed in software as opposed to only part of the recording.

II. HARDWARE

The SpaceWire Recorder is a standalone PC. It consists of a

CompactPCI rack containing a power supply, one solid state

disk (SSD) carrier, a processor board and the STAR-Dundee

SpaceWire Recorder cPCI card.

Fig. 1. SpaceWire Recorder
By default the SpaceWire Recorder comes with two 480GB

solid state disks. One disk is responsible for storing SpaceWire

traffic recordings and the other holds the system files such as

the operating system. The recordings disk is held within a SSD

carrier providing easy access. The system files disk is attached

directly to the processor board.

A powerful processor board accompanies the SpaceWire

Recorder with an Intel Core i7 and 8GB RAM. Amongst the

I/O there are two DisplayPort ports and a VGA port allowing

three monitors to be used, plus gigabit Ethernet making remote

connection possible. A rear transition module accompanies the

processor board. This allows access to I/O from the back of the

system.

III. SPACEWIRE RECORDER CPCI CARD

STAR-Dundee have developed a cPCI card capable of

many different configurations. The SpaceWire Recorder is one

of the first products to make use of this. The SpaceWire

Recorder cPCI card has eight SpaceWire interfaces used to

268

unobtrusively record SpaceWire traffic in both directions on

four links. Memory on-board the SpaceWire Recorder cPCI

card allows the traffic to be captured and spooled very quickly

to disk. Four external triggers allow the recorder to integrate

with external equipment. Each external trigger can be

configured as either an input or output trigger. These allow the

user to control recording in response to an input signal or

generate an output signal when an event of interest occurs. A

dedicated trigger button allows the user to force a trigger

providing further control over recording. The status of the

SpaceWire interfaces, external triggers and trigger button are

indicated by LEDs.

Fig. 2. SpaceWire Recorder cPCI Card

IV. SOFTWARE

The SpaceWire Recorder comes with all the necessary

software pre-installed. This consists of Windows Embedded

Standard 7, the board support packages required by the

processor board, STAR-System (including the STAR-System

PCI Driver) and the Traffic Viewer GUI software.

Fig. 1. Software Layers

Windows Embedded Standard 7 delivers the performance,

reliability and flexibility of Windows 7 in a form specific to the

requirements of the SpaceWire Recorder.

Developed by STAR-Dundee, STAR-System is a high

performance suite of software designed to work with all future

and a range of current STAR-Dundee devices. STAR-System

includes numerous modules used by the SpaceWire Recorder,

including the STAR-System PCI Driver. The fast data rates at

which the SpaceWire Recorder can record are partly

achievable thanks to the performance of the STAR-System PCI

Driver.

V. TRAFFIC VIEWER

The Traffic Viewer is a GUI application that allows the

user to control the SpaceWire Recorder and display and

manage recordings.

The user can configure the recording directory, the

maximum recording size and the maximum recording time.

Start and stop buttons control recording. Once a recording is

complete it is displayed. Each column in the view represents

the SpaceWire traffic in one direction of a SpaceWire link. The

left most column shows the recording time.

Fig. 2. Traffic Viewer

10ms of recorded SpaceWire traffic is loaded into the

display at any one time. The user can specify the timing

resolution of the display: 1us, 10us, 100us and 1ms. To

seamlessly load another section of the recording, the time slider

at the top of the view is used. Left and right of the time slider is

the recording start and end time. To quickly navigate the

recorded traffic the user can specify a specific time relative to

the start of the recording or use the built-in search capabilities.

Users can search for a data pattern, a time-code value, a

specific error, the start of a packet, an EOP or an EEP.

Double clicking a packet opens a dialog that shows the

packet in greater detail. It shows the time at which it was

captured, the packet duration and the packet data.

269

Fig. 3. Packet Dialog

VI. CAPABILITIES

Using the SpaceWire Recorder SpaceWire Traffic can be

recorded at high speed on many links over a long period of

time. The maximum amount of data that can be recorded is

only limited by the size of the solid state disks in use.

The SpaceWire Recorder records data, time-codes and link

errors. Using the Traffic Viewer application, recording can

start and stop at the click of a button. Alternatively a recording

can automatically stop when the recording disk is full, a

specified amount of data has been recorded to disk or a pre-

defined period of time has elapsed since the recording was

started.

Recorded SpaceWire traffic is displayed in the Traffic

Viewer. Search capabilities make it easy to navigate large

recordings and identify the SpaceWire traffic of most interest.

Recordings are automatically saved to be viewed at a later date.

VII. PERFORMANCE

To measure the recording performance of the SpaceWire

Recorder a SpaceWire EGSE was used to generate data in both

directions of all four links. The SpaceWire EGSE is a

SpaceWire equipment emulator capable of full real-time

performance. Once configured using a unique SpaceWire

specific scripting language, it operates independent of

software, capable of saturating a SpaceWire link with data at a

200Mbit/s link speed, i.e. no Nulls between data characters.

Fig. 4. Performance Test Setup
The SpaceWire EGSE was used to generate packets of a

specific size consisting of random data at a fixed link speed

over a prolonged period whilst recording was enabled. If no

hardware buffer overflow was detected, the test was started

again with an increased link speed. This incremental process

was performed until a hardware buffer overflow was detected

signifying the maximum recording speed was exceeded.

Internal statistics monitoring within the SpaceWire Recorder

software provided detailed information regarding the recording

data rates achieved and the usage of the SpaceWire Recorder

spooling buffers.

The SpaceWire Recorder is capable of recording to disk at

an aggregate data rate of 600Mbit/s. However the speed at

which it can record to disk differs depending on the size of the

recorded SpaceWire packets. The table below plots the

aggregate recording data rate achieved for different packet

sizes.

Fig. 5. Packet Size vs Aggregate Recording Data Rate

The best performance achieved was an aggregate recording

data rate of 664.78Mbit/s whilst recording continuous 2048

byte packets. The worst performance achieved was a data rate

of 11.24Mbit/s whilst recording continuous 1 byte packets

which corresponds to a packet rate of 1.4M packets/s. The

aggregate recording data rate drops considerably when

recording continuous packets of size less than 64 bytes. The

270

main reason for this is the recording time-stamp overhead

associated with each packet.

If the rate at which data is transmitted from the SpaceWire

devices connected to the SpaceWire Recorder exceeds the rate

at which it can be recorded then a capture overflow will occur.

If this happens, the Traffic Viewer application will stop

recording automatically and alert the user.

VIII. FUTURE WORK

The SpaceWire Recorder hardware has capabilities

currently not fully implemented in software. The Traffic

Viewer application currently does not support:

 Triggering: start recording when an event of interest

occurs e.g. link error

 Filtering: disable or enable recording of time-codes

and specific errors (currently enabled by default)

 Link statistics: view the average bit rate of each bi-

directional link

New views of recorded SpaceWire traffic will also be

added to the Traffic Viewer. The SpaceWire Recorder is

currently being used to help validate the SpaceWire Plug and

Play (PnP) protocol. Feedback from this and other users will be

used to improve existing features and guide the development of

new features.

IX. CONCLUSION

The SpaceWire Recorder is an essential tool for the

validation and debugging of an entire SpaceWire network. It

serves a different purpose from a SpaceWire Link Analyser

Mk2, which is designed to capture a much smaller, yet more

detailed, amount of SpaceWire traffic on a single SpaceWire

link.

The SpaceWire Recorder unit is built around a high

performance SpaceWire Recorder cPCI card complimented by

solid state disks and a powerful processor board. Combined

with the STAR-System PCI Driver and the Traffic Viewer

software application, the SpaceWire Recorder has impressive

capabilities and delivers exceptional recording performance.

Large quantities of SpaceWire traffic over multiple links can

be recorded for long periods of time. The maximum aggregate

recording data rate achieved whilst testing performance was

664.78Mbit/s with 2048 byte packets. Recorded SpaceWire

traffic can be viewed and managed using the Traffic Viewer

application.

REFERENCES

[1] STAR-Dundee, SpaceWire Recorder User Manual, v1.01.

[2] STAR-Dundee, http://star-dundee.com/products/spacewire-

recorder, SpaceWire Recorder, STAR-Dundee Website.

[3] STAR-Dundee, http://star-dundee.com/products/spacewire-link-

analyser-mk2, SpaceWire Link Analyser Mk2, STAR-Dundee

Website.

[4] STAR-Dundee, http://star-dundee.com/products/spacewire-egse,

SpaceWire EGSE, STAR-Dundee Website.

271

High Speed Test and Development with the

SpaceWire Brick Mk3
Test & Verification 1, Short Paper

Stuart Mills, Pete Scott, Steve Parkes

STAR-Dundee Ltd.

Dundee, Scotland, UK

stuart.mills@star-dundee.com, pete.scott@star-dundee.com, steve.parkes@star-dundee.com

Abstract—The original STAR-Dundee SpaceWire-USB Brick

has provided a simple yet powerful interface to SpaceWire

networks for a number of years. STAR-Dundee’s SpaceWire

Brick Mk3 provides all the features of the original Brick, but

with better performance, better software, better documentation

and the same high quality support. It will replace the Brick with

a product which can be used to very easily perform numerous

SpaceWire test and development activities, and at very high

speeds.

Index Terms—SpaceWire, USB, Brick, Interface, Router,

STAR-Dundee, Spacecraft Test and Development Equipment,

STAR-System.

I. INTRODUCTION

The original SpaceWire-USB Brick [1] has been serving

the SpaceWire community for over ten years. It is an excellent

learning tool for those new to SpaceWire, but it is also used by

more experienced engineers to develop and test new

SpaceWire devices and networks.

The software provided with the Brick was developed to

provide the highest possible throughput, and is capable of

transmitting and receiving concurrently from/to a PC over a

USB 2.0 cable at the full 160 Mbits/s data rate achievable on a

200 Mbits/s SpaceWire link.

The Brick and its successor the Brick Mk2 [2] do have their

limitations, however. Both devices are restricted by the

throughput constraints of USB 2.0, which means that a

maximum combined throughput of around 360 Mbits/s is

achievable.

This paper introduces the replacement for these devices –

the Brick Mk3. This device will be released later this year

(2014) and includes all the capabilities of the Brick Mk2, plus a

number of improvements. It is connected to the PC using USB

3.0, which offers greatly improved performance when

compared to USB 2.0. The paper describes the advantages of

using USB 3.0 for SpaceWire test and development equipment,

introduces the new features in the Brick Mk3 hardware and

software, and shows some typical scenarios in which the Brick

Mk3 can be used. It concludes with a summary of the benefits

of using the Brick Mk3 for SpaceWire test and development.

II. BUS COMPARISON

The buses most commonly used to connect additional

devices to a PC or rack are PCI and related technologies, and

USB. Devices can also be connected over a TCP/IP network,

e.g. using Ethernet or wireless. Each bus offers different

capabilities, with advantages and disadvantages of each. For

this reason STAR-Dundee offers PCI [3], PCI Express (PCIe)

[4], CompactPCI (cPCI) [5] and USB [2] [6] SpaceWire

interface and router devices.

Previous STAR-Dundee USB devices have included a USB

2.0 connection [7]. A new version of USB, USB 3.0 [8], was

released in 2008, offering higher data rates than the previous

version. As this version of USB has gained market share and is

now provided in most new PCs, STAR-Dundee has released

the new Brick Mk3 with support for USB 3.0.

To highlight the benefits of using USB 3.0 in the Brick

Mk3, the remainder of this section compares each of the buses

mentioned above, concentrating on the advantages of USB 3.0

for SpaceWire test and development.

A. Throughput

Both PCI and cPCI offer full-duplex data signalling rates of

approximately 1 Gbits/s [9], while PCIe provides close to 2

Gbits/s per lane [10]. USB 2.0 is slower in comparison,

providing 480 Mbits/s, half-duplex [7]. One of the advantages

of USB 3.0 is that it provides full-duplex data signalling at

rates of up to 5 Gbits/s [8].

Although it is not possible to achieve user data rates at the

full signalling rates of each of these buses due to protocol

overheads, STAR-Dundee software and hardware is designed

to obtain rates as close as possible to the maximum achievable.

The overheads of the USB protocol are slightly higher than

each of the PCI protocols, which have very small overheads.

However, the high data signalling rates of USB 3.0 means that

this is unlikely to have an effect on the Brick Mk3’s

performance. Initial investigations with the Brick Mk3 suggest

that the device will be more than capable of ensuring both

SpaceWire links on the device can concurrently transmit and

receive packets at the maximum rate possible.

272

In comparison, Gigabit Ethernet devices offer a data

signalling rate of 1 Gbits/s [11]. However, TCP/IP devices

have greater overheads than the other buses, due to the use of

the TCP/IP protocol suite in addition to the bus’s own protocol

overheads, e.g. that of Ethernet in the case of Gigabit Ethernet.

B. Latency

Latency values of each of the buses are difficult to

compare, due to the different natures of each bus, but both PCI

and PCI Express provide the best latency of the buses being

discussed. USB 2.0 latency is not as good as that of the PCI

buses. However, one of the improvements to USB 3.0 was to

the latency that could be achieved, particularly when large

amounts of data are transferred. Initial investigations with the

Brick Mk3 suggest latency is slightly better when transmitting

and receiving SpaceWire packets over USB 3.0 in comparison

to USB 2.0.

TCP/IP devices offer much poorer latency than the PCI and

USB buses. Latency of TCP/IP devices will also degrade with

each additional hop across the network that is required to reach

the device.

C. Characteristics

Each of the buses considered provide advantages in

different circumstances. For example, cPCI devices can be

used in a rack system, while TCP/IP devices can be accessed

from another location on the network.

One advantage of USB is that it very easy to connect and

disconnect devices to/from a PC. Unlike the PCI buses, USB

devices can be connected to laptops, in addition to desktop and

rack PCs, and can be added or removed while the operating

system is running. Although not all PCs support USB 3.0 as

yet, the Brick Mk3 can also be used in older USB 2.0 ports.

III. HARDWARE FEATURES

The Brick Mk3 hardware is an evolution of previous

STAR-Dundee USB devices. It includes all the new features

added to the Brick Mk2 when it replaced the original

SpaceWire USB Brick. These include link speed and state

change event signalling, the ability to inject errors on the link

and support for the STAR-System software suite (see section

IV).

Fig. 1. SpaceWire Brick Mk3

The Brick Mk2 includes an improved interface mode when

compared to the original Brick, with independent channels for

data and configuration. The Brick Mk3 improves upon this

with the ability to operate as a true interface, with independent

channels for each link and a further channel for device

configuration. This allows the device to be configured while

simultaneously transmitting and receiving on both links. The

Brick Mk3 can also be used in router mode, as with other

STAR-Dundee interface devices. In this mode it offers three

external ports which are transported over the USB port in

parallel.

Another improvement in the Brick Mk3 is in the options

available for setting the link speed. Both the Brick Mk2 and

the Brick Mk3 allow the link speed to be set by specifying

multipliers and divisors, with the divisor being any value in a

large range. The Brick Mk2 limited the multiplier to be from a

small list of values, but the Brick Mk3 uses the same method

provided by the SpaceWire PCIe of allowing the multiplier to

be any value in a large range.

Work has also been performed to improve the physical

characteristics of the Brick Mk3. The box which houses the

Brick Mk3 is very different from previous iterations of the

Brick, in a blue metal case with the device type clearly visible

on the top (see Fig. 1). The SpaceWire connectors are

mounted side by side, rather than on top of one another. This

makes it much easier to insert and remove SpaceWire cables,

and to view the LEDs above each port.

The Brick Mk3 features hardware designed to prevent any

single point of failure causing damage to equipment interfaced

to the SpaceWire or Trigger ports. A FMECA report is

available on request which provides further details on this

protection.

As with previous iterations of the Brick, the Brick Mk3 is

USB powered, with only a single USB cable required to

connect the device to a PC to provide power and a data

connection. Although the Brick Mk3 takes advantage of the

benefits of USB 3.0, it can also be used in older USB 2.0 ports,

with only the throughput and latency that can be achieved

affected. When used in a USB 2.0 port, performance is similar

to that of the Brick Mk2.

IV. SOFTWARE SUPPORT

Software support for the Brick Mk3 hardware is provided

by STAR-Dundee’s software suite, STAR-System. This suite

can be used with all of STAR-Dundee’s recent and planned

future interface and router devices, including the SpaceWire

Brick Mk2 [2], Router Mk2S [6], PCIe [4], PCI Mk2 [3] and

cPCI Mk2 [5].

STAR-System consists of a number of layers. At the

bottom are the device drivers for communicating with the

hardware. STAR-System includes Windows and Linux drivers

for communicating with STAR-Dundee USB devices, and

these were updated to add support for the Brick Mk3.

Above the drivers is the STAR-System core and the APIs

for interacting with the devices. These are designed to be

generic, and not specific to any device, so only some very

273

minor changes to the core’s internals were required to support

the Brick Mk3.

At the top of the stack are the user applications. STAR-

System includes both command-line test applications and

Graphical User Interface (GUI) applications, covering many

typical ways in which a SpaceWire interface or router device is

used. GUI applications are provided to:

 Type in the bytes of packets and have these

transmitted

 Receive packets and display their bytes

 Specify complex packet formats and have these

transmitted at high rates

 Receive packets at high rates and compare their

format to specified complex packet formats

 Configure the properties of devices, including

their routing tables

 Inject errors on a link

Again, these applications are all designed to be generic and

to work with all device types. Only some minor changes were

required to the Device Configuration application to support the

features specific to the Brick Mk3. The other applications

needed no changes to work with the Brick Mk3.

The STAR-System drivers, APIs and applications are all

designed to provide very high data rates and low latency.

When tested with the Brick Mk3 in internal loopback mode

(i.e. not accessing SpaceWire), STAR-System applications

were capable of transmitting and receiving at rates of

approximately 1 Gbit/s, i.e. 2 Gbits of data crossed the USB

link every second.

The release of the Brick Mk3 will coincide with the release

of version 3.0 of STAR-System. This will include a number of

improvements from the last release, including:

 A new Time-code GUI application for

transmitting and receiving time-codes and

configuring device settings related to time-codes

 Numerous improvements to the existing GUI

applications

 The SpaceWire CUBA Software, a command-line

application previously provided with the original

Brick for transmitting and receiving RMAP

commands and SpaceWire packets

 Context sensitive help in all GUI applications

 More detailed documentation

The main change to STAR-System version 3.0, however, is in

the internal core of the software. A great deal of work has been

done on improving the performance of the software stack,

reducing CPU usage and latency, and increasing throughput for

all supported STAR-System devices. These were areas in

which STAR-System already excelled, but improvements were

identified which would be beneficial on real-time operating

systems and in low resource environments. A pleasant side-

effect of making these changes is that they are also beneficial

when using STAR-System on standard PCs running Windows

or Linux.

V. USING THE BRICK MK3

The sections above have described the individual

improvements to the Brick Mk3 and some of the features

provided. This section describes how these features can be

used in typical SpaceWire test and development activities.

A. Checking Data Received From an Instrument

The Brick Mk3 is capable of receiving packets at very high

rates. When testing a SpaceWire instrument, the Brick Mk3

can be combined with the STAR-System Sink application to

not only receive data from the instrument at high rates, but also

check that the packets are in the correct format, and record the

instrument data to file.

A SpaceWire camera is likely to transmit packets which

contain more fields than just the image data. There is likely to

be address information at the start of the packet and there may

be a checksum or CRC at the end. The STAR-System Sink

application allows you to specify the format of the packets that

are expected to be received. It can then check each field in the

received packets is in the correct format, and write individual

fields, or the full packet, to file.

Fig. 2 shows an example packet format for a camera

configured using the Sink’s Packet Format dialog. The Sink

expects to receive a single address byte of 0xfe, followed by a

16-bit sequence number. The Sink will check that the address

byte is correct and the sequence number increments in each

packet. After the sequence number is the image data which is

expected to be 1 MByte. As there’s no way to know what

image the camera will be sending, the content of this field is

not checked.

Fig. 2. Sink Packet Format

274

Finally the packet ends with a CRC. The properties of the

CRC are shown in the Packet Format dialog screenshot. The

CRC being used is the RMAP CRC, although a number of

different CRCs and checksums are supported. The CRC in this

example covers the sequence number and image, although it

could be set to cover any of the fields in the packet. The Sink

will check the CRC is correct in each received packet.

A separate dialog in the Sink application allows packets, or

individual fields in packets, to be recorded to file. The format

in which each packet or field is written to file is then specified

in the dialog shown in Fig. 3. Each of the bytes in the field can

be written to the file numerically as text, with spaces or another

separator between each value. The field in each packet can

also be written to one large file. For the camera’s images in the

screenshot, we have chosen to write the images to file as binary

data, with a new file used for each image. Assuming these files

are in an appropriate format, it should then be possible to open

the files received from the camera and view them in a photo

viewer.

Fig. 3. Sink Recording to File

The Sink application provides many other features, and has

a partner application, the Source, which can be used to transmit

packets. It uses the same packet formats as the Sink, so the

camera packet format specified here can also be used in the

Source to simulate the camera.

B. Configuring a SpW-10X (AT7910E)

The Device Configuration application can be used to

configure STAR-System devices such as the Brick Mk3,

providing an interface for setting link speeds, routing tables

and viewing error status information. The application can also

be used to configure routing devices over a SpaceWire

network, using a device such as the Brick Mk3 to communicate

with the devices on the network. Supported routing devices

include the AT7910E, the ESA SpaceWire Router [12].

When working with a spacecraft network containing

AT7910E devices, the Brick Mk3 can be connected to the

network and used to check the status of these devices, as shown

in Fig. 4. In this screenshot, the Device Properties of an

AT7910E are on display, showing the general properties of the

device, and providing the option to configure settings which

affect the entire device. Tabs are provided for each port,

including the configuration, SpaceWire and external ports,

showing the current error status, and allowing the links to be

started, stopped, etc. The final tab provides the ability to

configure each routing table entry of the device.

Fig. 4. Device Configuration of an AT7910E via a Brick Mk3

C. Acting as a Time-code Master

When experimenting with time-codes, e.g. for SpaceWire-

D development, the Brick Mk3 can very easily be enabled as a

time-code master. The STAR-System Time-code application

includes a tab for enabling the device as a time-code master,

see Fig. 5. The frequency at which time-codes are to be

generated can be entered in hertz, and the Brick Mk3 will be

enabled as a time-code master once the Enable button is

clicked.

Fig. 5. Enabling a Brick Mk3 as a Time-code Master

275

Fig. 6. Receiving Time-codes With a Brick Mk3

To see the time-codes which are being generated, or which

are being received from another time-code master on the

network, the Time-code application includes a tab for receiving

time-codes, shown in Fig. 6. This shows each time-code’s

value as it received on a clock, as well as displaying the value

numerically along with the values of the time-code flags.

The Time-code application also includes tabs for

transmitting individual time-codes and for specifying which

ports time-codes should be routed out of.

VI. SUMMARY

The SpaceWire Brick Mk3 is a powerful interface and

router device, which offers the capability to transmit and

receive at the maximum speed that can be achieved on a 200

Mbits/s link, on two links concurrently while also configuring

the device. In other words it is capable of transmitting and

receiving at 160 Mbits/s on both SpaceWire links, while also

reading and writing registers on the device, giving a total

combined data rate of greater than 640 Mbits/s. It can also

transmit and receive packets with latencies which are better

than can be achieved with the SpaceWire Brick Mk2. This is

possible because of the improved throughput and latency

provided by USB 3.0, and because of the inclusion of a true

interface mode in the device.

Combined with the comprehensive STAR-System software

suite, the Brick Mk3 product can be used to perform many of

the tasks required during SpaceWire test and development.

REFERENCES

[1] STAR-Dundee, “SpaceWire-USB Brick”, http://www.star-

dundee.com/products/spacewire-usb-brick, 2014.

[2] STAR-Dundee, “SpaceWire-USB Brick Mk2”, http://www.star-

dundee.com/products/spacewire-usb-brick-mk2, 2014.

[3] STAR-Dundee, “SpaceWire PCI Mk2”, http://www.star-

dundee.com/products/spacewire-pci-mk2, 2014.

[4] STAR-Dundee, “SpaceWire PCIe”, http://www.star-

dundee.com/products/spacewire-pcie, 2014.

[5] STAR-Dundee, “SpaceWire cPCI Mk2”, http://www.star-

dundee.com/products/spacewire-cpci-mk2, 2014.

[6] STAR-Dundee, “SpaceWire Router Mk2S”, http://www.star-

dundee.com/products/spacewire-router-mk2s, 2014.

[7] Compaq et al, “Universal Serial Bus Specification,” Revision

2.0, April 27, 2000.

[8] Hewlett-Packard Company et al, “Universal Serial Bus 3.0

Specification (including errata and ECNs through May 1,

2011),” Revision 1.0, June 6, 2011.

[9] PCI-SIG, “PCI Local Bus Specification”, Revision 3.0, February

3, 2004.

[10] PCI-SIG, “PCI Express Base Specification”, Revision 3.0,

November 10, 2010.

[11] IEEE Computer Society, “IEEE Standard for Ethernet”, IEEE

Std 802.3-2012, December 28, 2012.

[12] Atmel, “AT7910E, SpW-10X SpaceWire Router, Datasheet”,

http://www.atmel.com/Images/doc7796.pdf.

276

SpaceWire-to-GigabitEther and SpaceWire backplane
SpaceWire test and verification, Short Paper

Shigeyuki Arase, Iwao Fujishiro

Shimafuji Electric

8-1-15 Nishikamata,Ota-ku,Tokyo144-0051,Japan

arase@shimafuji.co.jp

Masaharu Nomachi

Osaka University

1-1 Machikaneyama,Toyonaka,Osaka560-0043,Japan

Abstract— In 2006, we developed SpaceWire platform named

SpaceCube cooperation with JAXA and NEC. After the

success of SpaceCube project, we developed number of

SpaceWire products. Some examples of this innovation

include several kind of the SpaceWire interface boards,

SpaceWire router and SpaceCubeMK2. These developments

included the support and cooperation of JAXA, OSAKA

University, Japan Space Systems and NEC. In this paper we

describe architecture, functions and usage about our new

products which are the SpaceWire-to-GigabitEther and the

SpaceWire backplane. The equipment used as verification for

ASTRO-H of JAXA.

Index Terms—Backplane

I. INTRODUCTION

The SpaceWire-to-GigabitEther is the bridge unit to

convert between TCP/IP protocol and SpaceWire. This unit’s

notable feature is high-speed, therefore this unit does not install

software such as OS. Rather, it is designed only as hardware

by FPGA. The second feature of this unit is a lightweight and

small size, so it is used a satellite component test .

On the other hand, SpaceWire Backplane with the flexibility

and scalability features is developed by Osaka University and

JAXA. We developed the SpaceWire Packet Recorder which

adopted this backplane. This SpaceWire Packet Recorder is

capable of testing SpaceWire network component, and

recording large scale SpaceWire network system.

This paper describe architecture and feature of the SpaceWire-

to-GigabitEther and the Packet Recorder.

II. SPACEWIRE-TO-GIGABITETHER

We developed the SpaceWire-to-GigabitEther unit which is

the unit to convert SpaceWire and TCI/IP protocol. This unit

has 4 SpaceWire ports (all port Max 200M bps) and the 4 ports

total link rate is achieved at a theoretical maximum speed

800Mbps.

 The IP (hardware logic) which include MAC, TCP stack

on FPGA was also developed originally, so one of the future is

flexibility to modify and version up this unit.

Fig.1. SpaceWire-to-GigabitEther

Ether 10/100/1000BASE x 1Port

SpaceWire Number of Port:4Ports

Link Speed:200MBps (Max)

Link Status LED:4 led's

FPGA Spartan6

memory 128MB (DDR2 SDRAM)

size 136mm x 75mm x 25,2mm

power 5V/1.5A (Typ.)

 We experienced the SpaceWire-to-GigabitEther unit

accentual transfer speeds using a port to 4 ports of Space Wire.

We got almost logically full speed from this result.

 Use a port Use 2 ports Use 3 ports Use 4 ports

Fig.2. SpaceWire transfer speed

TABLE1 Specification

277

10/100/1000
MAC

MDIO

10/100/1000
Ethernet PHY

TCP/IP

TCP/IP to SpW
Logic

MEMC

CPU I/F

EEPROM
I/F

EEPROM

SpW I/F SpW I/F SpW I/F

inet
I/F

inet
I/F

RMAP IP

DDR2
667
16bitV850

Micro
processor

Config
ROM

LVDS BUF

XCF32P

FPGA

SpaceWire
Router

RJ45

OSC
50MHz

SPI

CSI

GPIO

GMIIXC6SLX75

LVDS BUF LVDS BUF

SpW I/F

LVDS BUF

GbE Conf
REG

RMAP IP

Link LED1

Link LED2

Link LED3

Link LED4

SpW Link
Status

Spw Router
Conf. REG

Fig.3.Block diagram

This is the example to connect the SpaceWire-to-

GigabitEther unit to target board (The SpaceWire DIO2). It

can send RMAP command using sample software on PC. It

also sends RMAP command after generate RMAP header

information and data to control target board via SpaceWire.
The user can download sample software and develop its own

application using the sample software source code from

Shimafuji Electric Inc. web page.

III. SPACEWIRE BACKPLANE

The SpaceWire Traffic Generator / the SpaceWire Packet

Recorder is consist of MCH/SpaceWire Router board, SpW

Traffic Generator board / SpW Packet Recorder board and

backplane. There are 2 type of backplane, 6slot type which can

hold 6 SpW Packet Recorder boards and 12 slots type.

SpW1

SpW2

SpW1

SpW1

SpW1

SpW1

SpW1

SpW3

SpW3

SpW2

SpW2

SpW2

SpW2

SpW2

SpW3

SpW3

SpW3

SpW3

SpW4

SpW4

SpW4

SpW4

SpW4

SpW4

+12V
+3. 3V

SpW1

SpW2

SpW3

SpW4

SpW5

SpW6

SpW7

SpW8

SpW9

SpW10(A)

SpW11(B)

SpW12(C)

SpW13(D)

SpW14(E)

SpW15(F)

SpW16(10)

SpW17(11)

SpW18(12)

SpW19(13)

SpW20(14)

SpW21(15)

SpW22(16)

SpW23(17)

SpW24(18)

I PMB-L[1: 6]

Port 4, 5

Port 6, 7

Port 8, 9

Port 10, 11

Port 4, 5

Port 6, 7

Port 4, 5

Port 6, 7

1D, 1E

Port 4, 5

Port 6, 7

Port 4, 5

Port 6, 7

Port 4, 5

Port 6, 7

Port 8, 9

Port 10, 11

Port 8, 9

Port 10, 11

Port 8, 9

Port 10, 11

Port 8, 9

Port 10, 11

Port 8, 9

Port 10, 11

1F, 1G

2D, 2E

2F, 2G

3D, 3E

3F, 3G

4D, 4E

4F, 4G

5D, 5E

5F, 5G

6D, 6E

6F, 6G

7D, 7E

7F, 7G

8D, 8E

8F, 8G

9D, 9E

9F, 9G

10D, 10E

10F, 10G

11D, 11E

11F, 11G

12D, 12E

12F, 12G

I PMB0-[A: B]

MCH+Rout er AMC1 AMC2 AMC3 AMC4 AMC5 AMC6PDM

+12V

Fig.7. 6 slot backplane topology

10/100/1000Base

MCH

&

SpW

Router

SpW

Packet

Recorder

SpW

Packet

Recorder

・・・・・・・

SpaceWire Backplane

SpaceWire Router connects modules across backplane

Fig.8. board configuration

Fig.4. Connection example

SpaceWire

DIO2

SpaceWire

-to-

GigabitEth

er

Ether

SpaceWire

Fig.6Sample software screen

Fig.5. Connections

278

chassis micro-TCA

PC interface Ether (10/100/1000BASE)

x 1Port

Number of

SpaceWire

monitor channel

The SpaceWire Traffic Generator

 6 slot : 1-24Ports

 12 slot : 1-48Port

The SpaceWire Packet Recorder

 6 slot : 1-12 Ports

 12 slot : 1-24Port

(Link Speed: 200MBps (MAX))

Power AC100/200V

Fig.8. The SpaceWire backplane6 slots shell Front View

Fig.9. The SpaceWire backplane 12 slots shell Front View

MCH/ SpaceWire Router

All SpaceWire links are connected to MCH which installed

SpaceWire router. We have developed original MCH with

28ports SpaceWire router.

Fig.10.Mch/SpaceWire Router

Port 1

Sp
W

Ro
ut

er
 1

 F
PG

A

Port 2

Port 3

Port 4

Port 5

Port 6

Port 7

Port 8

Port 9

Port10

Port11

Port12

Port13

Port 0

Port14

Port15

Port16

Port 1

Port 2

Port 3

Port 4

Port 5

Port 6

Port 7

Port 8

Port 9

Port10

Port11

Port12

Port13

Port 0

Port14

Port15

Port16

Sp
W

Ro
ut

er
 2

 F
PG

A

Gb
E-

Sp
W

FP
GA

MCH

Port 1

Port 2

Port 3

Port 4

Port 5

Port 6

Port 7

Port 8

Port 9

Port 0

SSDTP

port:10030

port:10031
SSDTP

ETHER

N.C

CN7

CN8

CN9

CN10

CN5

CN6

CN7

CN8

Open

Open

Cable

Cable

Front Panel
SpW-2

Front Panel
SpW-1

Cable

Cable

SpaceWire Connection

AMC SLOT#1

AMC SLOT#2

AMC SLOT#3

AMC SLOT#4

AMC SLOT#5

AMC SLOT#6

AMC SLOT#7

AMC SLOT#8

AMC SLOT#9

AMC SLOT#10

AMC SLOT#11

AMC SLOT#12

AMC SLOT#1

AMC SLOT#2

AMC SLOT#3

AMC SLOT#4

AMC SLOT#5

AMC SLOT#6

AMC SLOT#7

AMC SLOT#8

AMC SLOT#9

AMC SLOT#10

AMC SLOT#11

AMC SLOT#12

MCH

Fig.11.Mch/SpaceWire Router configuration

SpW PTraffic Generator

The SpaceWire Traffic Generator transfer generated

SpaceWire packets simultaneously, sequentially or continually.

The generated SpW packet(s) will stored in RAM from

backplane SpW ports, and send it out when received transmit

signal. This SpaceWire Traffic Generator is using same

hardware as The SpaceWire Packet Recorder but FPGA IP.

Fig.12.SpW Traffic Generator front view

S
p
W

 6
P

o
rt

R
o

u
te

r

Traffic

Manager#0
Descriptor

Manager#0

AMC Port #4 & #5

AMC Port #6 & #7

AMC Port #8 & #9

AMC Port #10 & #11

(MCH1)

(MCH1)

(MCH2)

(MCH2)

DDR2-

SDRAM

(DDR2-500)

AMC Port #0

(MCH1)

AMC Port #1

(MCH2)

AMC CLK #1

(MCH1)
AMC CLK #2

(MCH1 / MCH2)

AMC CLK #3

(MCH2)

Ext. Trigger

FPGA : XC6SLX75-3FGG484

TRAFFIC GENERATOR

LVDS

I/F
LVDS

I/F
LVDS

I/F
LVDS

I/F
LVDS

I/F

SpW

I/F

SpW

I/F

SpW

I/F

SpW

I/F

Router Config

RMAP

#0

RMAP

#1

SpW-0 DMAC
#0

SpW
I/F

Port#0

Port#1

Port#2

Port#3

Port#4

RMAP

#2

Port#5

Port#6

DMAC
#1

SpW
I/F

DMAC
#2

SpW
I/F

DMAC
#3

SpW
I/F

Traffic

Manager#1
Descriptor

Manager#1

Traffic

Manager#2
Descriptor

Manager#2

Traffic

Manager#3
Descriptor

Manager#3

MEMC I/F
(2 in 1 Arbiter)

MEMC I/F
(2 in 1 Arbiter)

MEMC
Memory Interface (Arbiter) 6 port by Spartan-6 MIG

MEMC I/F

SpW-1

SpW-2

SpW-3T
ar

ge
t

o
r

R
o
ut

er

2012-02-09

SpW-TG0

SpW-TG1

SpW-TG2

SpW-TG3

Fig.13.SpW Traffic Generator block diagram

SpW Packet Recorder

The SpaceWire Packet Recorder monitor the SpaceWire

link interface. It store Spacewire packet in RAM via MDM

connector at the front panel on board with timestamp and

attribute information in accordance with the conditions which

set by PC. A SpaceWire Packet Recorder board could record 2

channel (4 ports) of SpaceWire links, and the buffer size is

assigned 2 M bytes per port.

When the monitoring SpaceWire packet meet the trigger

condition, it send notice to host. The method of monitoring,

configure the trigger condition, monitor data on memory and

time stamp can read or write to/from PC via MCH/SpaceWire

Router.

Fig.14.DATA format is describe data format to be stored in

the memory and Fig.15.SpW Packet Recorder is front View of

the SpaceWire Packet Recorder.

- Format 1

32bit data

Time stamp Attribute data

16bit 8bit 8bit

- Format 2 (once / 64K bit)

64bit data

Time stamp Attribute data

16bit 8bit 8bit

Time stamp

32bit
Fig.14.DATA format

TABLE2 back plane specification

279

Fig.15.SpW Packet Recorder front view

SpW I/F

SpW I/F

SpW I/F

SpW I/F

RMAP I/F
Internal

configuration
Register

SpW Router

B
ack P

lane

SpaceWire
200MHz

Port-1

Port-2

Port-3

Port-4

Port-0

RMAP I/F Port-5

Packet Monitor
ch1

Packet Monitor
ch2

Packet Monitor
Register

MCB I/F MCB I/F MCB I/F MCB I/F MCB I/F

MCB

Port-1 Port-2 Port-3 Port-4 Port-5

DDR2-SDRAM

MDM

MDM

MDM

MDM

FPGA

Fig.15. SpW Packet Recorder Block Diagram

Packet Recorder function

1) Trigger much stop mode

It can set various trigger on SpaceWire level and/or RMAP

level. When much the data and trigger, stop monitor by

configure setting on PC (start trigger, center trigger and end

trigger). Fig.11. Example of sampling screen. Below diagram

shows the screen with the data and trigger.

Fig.11. Example of sampling screen

2) Long term continues recording

This mode can record SpaceWire packets on PC HDD until

receiving stops command from PC. It could set to record or

not the NULL, FCT, EOP/EEP, and data.

Table 3 describes the relation of transfer rate and number of

ports to record packets without losing the packets.

Table 3 Number of record port and maximum transfer rate

Number of

Port

Rate

[bit/sec]

Rate

[Byte/sec]

2 66 Mbps 16.5 MB/s

4 33 Mbps 8.3 MB/s

6 22 Mbps 5.5 MB/s

8 16 Mbps 4.0 MB/s

16 8 Mbps 2.0 MB/s

24 5.5 Mbps 1.4 MB/s

32 4 Mbps 1.0 MB/s

40 3.3 Mbps 0.8 MB/s

48 2.7 Mbps 0.4 MB/s

Note

1 : The maximum transfer rate might be different

by PC specification

2 : The data size of SpaceWire packet is quarter

on this table, the size on the memory

includes some information such as time stamp

etc.

REFERENCES

[1] Masaharu Nomachi, Shuhei Ajimura, “SpaceWire backplane for

ground equipment”, Osaka University, International SpaceWire

Conference, Gothenburg, June 2013.

[2] Tadayuki Yuasa, Tadayuki Takahashi, “SpaceWire Traffic

Generator: a highly-scalable packet generation device”, JAXA,

International SpaceWire Conference, Gothenburg, June 2013.

280

Using SpaceWire with LabVIEW
SpaceWire Test and Verification, Short Paper

Alex Mason, Steve Parkes

STAR-Dundee Ltd.

Dundee, Scotland, UK

alex.mason@star-dundee.com, steve.parkes@star-dundee.com

Abstract— To support customers using the National

Instruments LabVIEW software development environment,

STAR-Dundee Ltd. have developed LabVIEW libraries and

drivers allowing for the rapid integration of STAR-Dundee

SpaceWire interface devices into EGSE or test and verification

applications. Customers familiar with STAR-Dundee’s STAR-

System API suite can use a wrapper library to control and

configure any supported SpaceWire interface device under the

Windows operating system. Using a native LabVIEW NI-VISA

driver, users can interface to STAR-Dundee SpaceWire PCI and

cPCI, boards on any platform supported by LabVIEW, including

National Instruments real-time targets.

In this paper, the LabVIEW solutions provided by STAR-

Dundee are described, including an overview of the APIs, and

example usage demonstrating solutions to common tasks.

Index Terms— SpaceWire, LabVIEW, NI-VISA, VISA

I. INTRODUCTION

The design of SpaceWire electronic check-out and ground

support equipment can be both costly and time consuming. To

help alleviate this problem, STAR-Dundee supplies a number

of test and development devices that can be used to transmit

and receive SpaceWire traffic and configure and monitor

devices on a network. Users can write their own custom

applications using a provided powerful API.

National Instruments LabVIEW can be used to rapidly

develop test and measurement systems with custom graphical

user interfaces.

Combining STAR-Dundee equipment with LabVIEW

provides a means of rapidly developing SpaceWire test

applications.

II. LABVIEW

LabVIEW is a software development environment provided

by National Instruments Corporation [1]. The environment

provides a visual dataflow programming language in which

functions are laid out in a flow chart style, with ‘wires’

connecting the output of one node to the input of another. Data

is operated on at each node immediately as it becomes

available, and the compiler identifies segments of code that can

run in parallel and automatically splits the application into

multiple threads.

LabVIEW offers the ability to work at a higher layer of

abstraction than typical text based programming languages like

C. For example, no manual memory allocation is required by

the user, there are many included libraries hiding the

implementation of File I/O and network connectivity, and

graphical user interfaces are created in a drag and drop manner.

As an example of the way LabVIEW allows rapid

development, compare the volume of C code required to select

a desired SpaceWire device and configure its link speed to the

code required to perform the same operation with the STAR-

Dundee VISA Driver: (Fig. 1)

Fig. 1. LabVIEW source compared to text based code.

281

III. STAR-DUNDEE LABVIEW SOLUTIONS

STAR-Dundee provides two separate LabVIEW solutions:

a LabVIEW wrapper around the existing STAR-System

libraries (currently provided only for Windows based hosts),

and a native LabVIEW NI-VISA driver that can be used on all

targets supported by LabVIEW.

A. STAR-System Wrapper

STAR-System is the driver and API system provided with

all new and future STAR-Dundee interface and router devices

[2]. STAR-System provides high bandwidth and low latency

packet transmission and reception, and a consistent API

interface to numerous device types. Supported devices include

the SpaceWire USB Brick Mk2 and Router Mk2s, and the PCI

Mk2 and PCIe boards.

The STAR-System LabVIEW wrapper library [3] provides

access to every function exported by the STAR-System C API,

and includes a number of example VIs (Virtual Instruments)

that provide implementations of commonly performed

SpaceWire tasks, such as setting up routing tables, sending and

receiving time-codes and configuring link speed and status.

Also provided are the RMAP packet library and example

implementations of an RMAP Target and Initiator (shown in

Fig. 2).

Using the STAR-System wrapper allows LabVIEW

applications to share data with other STAR-System processes

running on the host. For example, device names set up using

the STAR-System Device Configuration GUI can be viewed or

modified with changes propagated across all running

processes. This can help a user quickly identify and select a

desired device to work with without looking up serial numbers.

The complexity of the C API has been abstracted away

where possible. No manual memory allocation is required to

transmit and receive packets; this is handled by the wrapper

with packet data buffers provided as LabVIEW byte arrays.

LabVIEW events are used to implement device listeners and

transfer completion events.

Performance of the LabVIEW wrapper compares favorably

with that of unwrapped STAR-System performance [4] with

performance figures roughly the same when transmitting and

receiving packets of length above around 60 bytes (Fig. 3).

These figures are for a 200Mbit/s link speed, and show

performance is close to the maximum theoretical data rate (160

Mbits/s).

Fig.3. STAR-System wrapper loopback performance.

B. NI-VISA Driver

National Instruments VISA (NI-VISA) provides a standard

programming interface between hardware and development

environments such as LabVIEW [5]. NI-VISA is supported

across the National Instruments product line.

The STAR-Dundee SpaceWire NI-VISA driver has been

implemented as a native LabVIEW driver, providing support

for the STAR-Dundee PCI family of devices. Software written

to control these devices may be deployed on any hardware

platform that supports cPCI/PCI and NI-VISA, including both

Windows based hosts and LabVIEW Real-Time targets,

without requiring modifications to source code. The software is

provided as LabVIEW source with password protected block

diagrams, allowing users to compile for any target.

The driver allows STAR-Dundee SpaceWire PCI cards to

be detected with and controlled by National Instruments’ MAX

(Measurement and automation explorer) tool (Fig. 4).

Fig. 2. RMAP Initiator example front panel.

Fig. 4. MAX displaying chassis with cPCI cards

282

The driver has been designed to be intuitive to work with

for LabVIEW users. For example, device access follows the

familiar “Open, Perform Action, Close” architecture, with

LabVIEW arrays used to pass SpaceWire data to transmit and

receive functions. Figure 5 demonstrates the ease of use of this

API. This example implements a software loopback device:

packets are received on one port of the device, and are then

looped back out of another. One could easily extend this

example into a useful tool by inspecting the received traffic and

permuting it in some way, perhaps by inserting or removing

time codes, or injecting errors, before re-transmitting out the

other port.

Fig. 5. LabVIEW source code example showing a software loopback application.

283

IV. FUTURE WORK

The STAR-System wrapper for LabVIEW supports all

functionality provided by the current STAR-System libraries.

This wrapper will be continuously upgraded to support any

new functionality and released at the same time as new STAR-

System releases

The NI-VISA driver is currently capable of transmitting

and receiving SpaceWire packets, and configuring SpaceWire

links. The RMAP packet library (already provided with STAR-

System) will be ported to native LabVIEW code allowing it to

be used with the NI-VISA driver on LabVIEW RT targets.

Error injection support will also be added, allowing a user to

inject, for example, a parity error on a given byte in a data

stream, along with all the device configuration operations

offered by the STAR-System API. Currently only the cPCI/PCI

Mk2 cards are supported by this driver, but a USB driver could

be quickly developed by re-using the existing top level API.

V. CONCLUSION

LabVIEW is a software development platform that allows

for rapid development of test and measurement applications.

Users of STAR-Dundee SpaceWire equipment can leverage the

features of LabVIEW by using ready-built SpaceWire wrapper

libraries and drivers in order to reduce the time and cost of

developing test and verification tools.

REFERENCES

[1] National Instruments, http://www.ni.com/labview/ LabVIEW,

National Instruments Website.

[2] STAR-Dundee, http://star-dundee.com/sites/default/files/STAR-

System.pdf, STAR-System Datasheet, STAR-Dundee Website.

[3] STAR-Dundee, http://www.star-dundee.com/products/star-

system-labview, STAR-System for LabVIEW, STAR-Dundee

Website.

[4] STAR-Dundee, http://star-dundee.com/knowledge-base/star-

system-performance, STAR-System Performance, STAR-

Dundee Website.

[5] National Instruments, http://www.ni.com/visa/ National

Instruments VISA, National Instruments Website.

284

 Standardisation (Short)

285

SpaceWire 2: Needs and Evaluation

Metrics

NOT PERMITTED TO PUBLISH PAPER

286

Manchester Coding Option for SpaceWire:

providing choices for system level design
SpaceWire Standardization, Short Paper

Glenn Rakow

NASA Goddard Space Flight Center

Greenbelt, MD, USA

Glenn.P.Rakow@nasa.gov

Alexander Kisin

NASA Goddard Space Flight Center/AS&D

Greenbelt, MD, USA

Alexander.B.Kisin@nasa.gov

I. Abstract— This paper proposes an optional coding scheme

for SpaceWire in lieu of the current Data Strobe scheme for three

reasons. Firstly, to provide a straightforward method for

electrical isolation of the interface; secondly, to provide ability to

reduce the mass and bend radius of the SpaceWire cable; and

thirdly, to provide a means for a common physical layer over

which multiple spacecraft onboard data link protocols could

operate for a wide range of data rates. The intent is to

accomplish these goals without significant change to existing

SpaceWire design investments.

The ability to optionally use Manchester coding in place of the

current Data Strobe coding provides the ability to DC balance

signal transitions, unlike the SpaceWire Data Strobe coding; and

therefore the ability to electrically isolate the interface without

additional concerns.

Additionally, because the Manchester coding scheme encodes

the clock and data on the same signal, the number of wires in the

existing SpaceWire cable could be reduced by 50%. This

reduction could be an important consideration for many users of

SpaceWire as indicated by the effort currently underway by the

SpaceWire working group to reduce the cable mass and bend

radius by elimination of shields. Reducing the signal count by

half would provide even greater gains.

It is proposed to restrict the data rate for the optional

Manchester coding to a fixed data rate of 10 Megabits per second

(Mbps) in order to simplify the necessary changes and still able to

operate in existing radiation tolerant Field Programmable Gate

Arrays (FPGAs). Even with this constraint, 10 Mbps will satisfy

many applications where SpaceWire is used. These include

command and control applications and instrumentation

applications with moderate data rate requirements.

For most NASA flight implementations, SpaceWire designs are

implemented using rad-tolerant FPGAs and the desire to

preserve the heritage design investment is important for cost and

risk considerations. The Manchester coding option can be

accommodated in existing designs with only changes to the

FPGA.

II. Index Terms— SpaceWire, Signal level, Line encoding,

Manchester encoding

III. INTRODUCTION

Developers of spacecraft using SpaceWire have expressed

concern with the inability to electrically isolate the physical

interface without possibility for voltage build-up of the signal,

resulting in failure of the interface [1]. This is because the

SpaceWire Data Strobe (DS) line coding does not have an

equal distribution of ones and zeroes over time; i.e., it is not a

Direct Current (DC) balanced signal.

Another concern expressed for potential users of

SpaceWire is the bend radius and the mass of the cable

specified in the original SpaceWire standard [2], ECSS-E-50-

12A. Both of these concerns are being addressed by efforts by

the SpaceWire working group, but with solutions that are very

different than the original SpaceWire standard, which would

impede incremental improvements to existing SpaceWire

designs, necessary to preserve the cost of the investment.

A simple solution to address these concerns for many

applications under 10 Megabit per second (Mbps) would be to

modify the line coding portion of SpaceWire design to encode

both the clock and data on the same signal. This would halve

the number of wires for the interface and provide for a DC

balanced line encoding so that electrical isolation could be

achieved. The resulting physical interface consisting of a

differential pair in both directions may also be used with other

DC balanced line coding schemes, such as 8b/10b, so that the

interface may be shared with multi-gigabit per second (Gbps)

applications or SpaceWire-Real Time (SpaceWire-RT), a new

SpaceWire specification that uses 8b/10b line code. For

implementations that use a Field Programmable Gate Array

(FPGA), this allows hardware to be independent of the data

link protocol used.

IV. ORIGINAL SPACEWIRE CODING SCHEME

The original SpaceWire encoding scheme is Data Strobe

(DS), which has several advantages over other encoding

schemes because it is simple to implement and provides a

variable data rate without negotiation between transmitter and

receiver.

A major advantage is that the DS decoding circuit is a

trivial asynchronous implementation. Because of the

287

asynchronous recovery of the DS received clock, the NASA

SpaceWire implementation can decode a bit stream that is two

and a half times faster than the decoder’s local oscillator. This

has been an important consideration for flight applications

where an asymmetrical link is used, i.e., where data is received

faster than it is transmitted. Another scenario is where the

SpaceWire implementation is in a one-time programmable

FPGA that does not contain clock multiplier circuitry necessary

for oversampling and clock resynchronization for high rate

data.

Another advantage of the DS encoding is that the frequency

components of the two signals (Data and Strobe) are half the

frequency of the transmitted bit rate, which results in lower

Electro-Magnetic Interference (EMI) emissions when

compared to traditional clock and data schemes.

Lastly, unlike the traditional clock and data transmission

schemes, DS encoding has a whole bit period of clock to data

skew margin versus a half-bit period for the traditional clock

and data scheme because the clock is recovered at the receiver

by an exclusive OR (XOR) operation.

These advantages have been important and will remain

important considerations for spacecraft onboard network

designs. However, there are other considerations and

applications (described later) that require a trade-off analysis at

the system level, and these include electrical isolation of the

interface, cable mass, and bend radius for applications where

10 Mbps is sufficient bandwidth. When applicable, it would be

beneficial for system engineers to be able to make decisions on

a link-by-link basis depending upon what considerations are

important for the particular function. This would be possible,

if an optional minimal encoding scheme like Manchester is

utilized.

V. MANCHESTER ENCODING OPTION FOR SPACEWIRE

This paper proposes that the SpaceWire working group

consider the standardization of an optional Manchester line

encoding scheme for SpaceWire for the reasons stated

previously.

The Manchester scheme encodes the clock and data over

the same signal and therefore reduces the number of wires by

half when compared to the original SpaceWire DS encoding

scheme. It also is a DC balanced signal so the interface may be

easily isolated with either a transformer or in-line capacitors.

Inherent to Manchester codes, it always performs a mid-bit

period signal level transition to indicate the logic value. The

logic value is encoded by the direction of the level transition,

either high-to-low or low-to-high transition, to encode either a

logic one or zero depending upon the particular Manchester

code.

Manchester codes also have a level transition at the

beginning of the bit period if the previous logic value (bit) is

the same as the current logic value. However, if the current

logic value is different than the previous logic value, there is no

signal level transition at the beginning of the current bit period.

The trick is to determine which transition is the beginning

of a bit period or a mid-bit transition. The Manchester

decoding is trivial to accomplish for a moderate fixed data rate

(10 Mbps) application in a typical rad-tolerant FPGA without

clock multiplier circuitry.

Popular protocols that use Manchester codes are MIL-STD

1553, which uses Manchester II Bi-Phase L coding at a low

data rate of 1MHz and 10Base-T Ethernet (802.3), which uses

a Manchester code at 10MHz. MIL-STD-1553 and 10Base-T

Ethernet use Manchester codes that have opposite voltage

levels.

The key advantage with SpaceWire using a Manchester

option have over MIL-STD-1553 and 10Base-T Ethernet is

that is has 10 times the bandwidth of MIL-STD-1553, and it is

a simpler and less complex protocol with a smaller packet

header compared with 10Base-T Ethernet.

Additionally, the Manchester encoded SpaceWire option

will provide for a single network protocol to unify the other

existing SpaceWire options, which include, SpaceWire-RT and

SpaceFiber (multi-Gbps protocol) that may be run over copper

(instead of fiber) as well as the original SpaceWire.

Either Manchester coding options could be adopted by the

SpaceWire working group.

VI. USE CASES

The primary use cases for the SpaceWire Manchester code

option would be for those applications that only need 10 Mbps

of bandwidth and require an electrically isolated interface. In

addition, Manchester coding would be suitable for applications

where the routing of the electrical harness is challenging

because of space constraints and a need for a thinner cable that

provides a tighter bend radius (assuming the bandwidth

requirement of less than 10 Mbps is acceptable).

The electrical isolation may be required to prevent the

destruction of a Low Voltage Differential Signal (LVDS)

transceiver. This could occur by the propagation of a failure

through an intermediate shared cross-strapped connection for a

critical function because of a power supply failure in another

unit.

Other possibilities are to prevent a latent electrical failure

due to an Electrostatic Discharge (ESD) event, or to increase

the margin for common mode voltage range of the transceiver,

or to reduce the signal noise back to the connecting system that

is sensitive to conducted noise.

These applications are directly applicable for the

implementation of the NASA SpaceAGE Bus electrical

interface specification.

The SpaceAGE Bus is an electrical specification to connect

board level components within an avionics box [3]. Unlike the

traditional backplane, the SpaceAGE bus defines point-to-point

electrical interfaces to integrate avionics board level functions

by cabling together mechanical card frame enclosures that

house electronics boards to form avionics box functions. The

SpaceAGE Bus defines a complete set of physical interfaces

that are independent of protocol, including communication,

clock, analog, power, and more, that are typical for space

avionics backplanes.

The rationale for SpaceAGE Bus is to reduce the non-

recurring Engineering (NRE) development of avionic systems

through the elimination of “glue” elements such as backplane,

288

low voltage power supply (LVPS) and mechanical chassis that

change depending upon the number and arrangement of

electronic board functions. Because the SpaceAGE Bus board

level functions have electrical interfaces that are isolated,

network attached with primary power input, they are like

independent boxes themselves, and allow for new

configurations to be easily connected together with greatly

reduced NRE.

This is one reason why the standardization of a common

physical layer, independent of protocol is important for NASA,

because one set of interfaces can be used for a wide range of

requirements.

For example, spacecraft onboard communications have

numerous differing requirements from kilobit per second

(kbps) data rates up to Gbps data rates depending upon their

application. Examples of kbps applications include board

functions that control power for heaters or solenoid position

values for propellants, to low rate telemetry collection of

temperature and other engineering data, etc. Examples of Gbps

applications include memory operations between a processor

and a high data rate instrument or a Solid State Recorder

(SSR); or from SSR to a Digital Signal Processor; or high-rate

down-link from SSR to a downlink function, etc.

VII. IMPLEMENTATION CONSIDERATIONS

The data rate required for an application’s SpaceWire link

will determine the technologies necessary to implement the

SpaceWire protocol. The Manchester encoder function is a

straightforward implementation that only involves the

Exclusive-Or (XOR) Boolean function of the clock and the

data represented as non-return-to-zero (NRZ).

The decoder for the Manchester code, however, requires

oversampling of the encoded waveform and comparison to

known synchronization value (SpaceWire NULL character) to

acquire the bit period boundaries and the mid-period transition

used to reconstruct the NRZ data.

Because of the fixed 10 Mbps data rate for the SpaceWire

Manchester coding option, the implementation is straight-

forward for clock frequencies typical for a rad tolerant FPGA

without clock multiplier circuitry. This is significant because

low complexity and design heritage are key considerations for

many electronic board functions for spacecraft command and

control electronics, which perform actuator functionality and

low rate housekeeping data telemetry collection. These types

of functions are typically redundant and the isolation of the

electrical interface is an important consideration for cross-

strapped redundancy. Additionally, many instrument functions

require less than 10 Mbps bandwidth, and this reduces the

complexity for their data link protocol implementation as well.

Since the SpaceWire protocol requires the link to start-up at

10 MHz, there is no change of frequency for the Manchester

encoding option, which also simplifies the implementation.

There are many publications for how to decode Manchester

encoded data. The focus here is using radiation tolerant

FPGAs that NASA typically uses. This would necessitate

performing the Manchester decoding without clock multiplier

circuitry.

One Manchester decoder method that requires very few

flip-flops and logic gates uses a decoder local clock that is

asynchronous to the received Manchester waveform. This

implementation requires a nominal eight times (8x) clock of

the received data rate, but the receiver local clock may be as

low as five times (5x) clock, but no more than twelve times

clock (12x)[4]. This method also filters out edges after a valid

transition is detected, minimizing the effects of noise on the

signal. Since 10 MHz is selected, an 80 MHz oscillator is well

within the margin of a radiation tolerant FPGA without clock

synchronization logic [5].

There are additional Manchester decoding options,

including one that utilizes additional logic but uses the same

decoder clock (10 MHz) as the receive data rate to create four

phases with which to sample the received Manchester

data[6][7]. Even though it implements a lower clock frequency

and it has a good tolerance toward input jitter and

receiver/transmitter frequency mismatch caused by oscillator

tolerance differences, it is significantly more complex than the

previously described circuit and requires more logic.

The SpaceWire specification allows the 10 Mbps receive

data to be +/- 1 Mbps (or from 9 Mbps to 11 Mbps), both of

these previously described decode methods support this

difference in frequency but the eight times (8x) implementation

maintains lock easier and is the method simulated for the

NASA application.

Still, there are numerous other methods for decoding

Manchester waveforms with and without clock synchronization

logic and the implementation details described above were

provided as a cursory survey of options.

VIII. PRESERVATION OF SPACEWIRE INVESTMENT

The decoding schemes referenced previously are sufficient

to decode SpaceWire Manchester encoding at a fixed 10MHz

without the use of a clock multiplier. Regardless of how the

Manchester decoder is implemented, the important part is that

the heritage of existing SpaceWire designs can be preserved.

Because the changes required implementing the Manchester

encoding only involve the signal layer of the SpaceWire

specification (where the encoding is specified), the remainder

of the SpaceWire design may stay the same.

For many users, like NASA, this is an important

consideration as millions of dollars of NRE have been

expended across multiple missions to develop, debug, and

refine the SpaceWire design, including verification

environments and test equipment. For example, the NASA

SpaceWire design heritage spans over a decade with the

missions of Swift, JWST, LRO, LCROSS, GOES-R, MMS,

and GPM. Additionally, the NASA SpaceWire design has

been provided to well over 100 companies, and much feedback

has been received concerning problems which have been fixed

throughout this time, adding additional value to the design.

This makes it compelling and difficult to completely abandon

the existing SpaceWire design for new solutions that are not

incremental in nature.

289

IX. SPACEWIRE CORRECTIVE EFFORTS

The SpaceWire working group has also been exploring

solutions to fix SpaceWire, especially in the Quality of Service

(QoS) realm to prevent blocking on the network. The solution

has the side effect of providing a DC balanced line code, which

could be used to electrically isolate the SpaceWire interface.

This new protocol called SpaceWire-RT [8], uses an 8b/10b

line coding that is used by most multi-Gbps protocols.

However, SpaceWire-RT is intended for SpaceWire data rates

of 2 to 200 Mbps. The problem with this approach is that it

discards the design investments accumulated with the original

SpaceWire design and, in its place, proposes a more complex

and larger design solution within a typical rad tolerant FPGA

when compared the Manchester option. It is therefore not

viewed as an incremental approach in the near term. It does

however; provide a means to define a common interface for a

wider range of data rates, i.e., interfaces that both the multi-

Gbps SpaceFiber and SpaceWire-RT can utilize. SpaceWire-

RT is seen by the authors as a long term solution, and one

where additional complexity can be accommodated and where

new design investment is acceptable.

Independently, the SpaceWire working group have also

been working on defining a lower mass SpaceWire cable,

which will also reduce the bend radius by the elimination of

some shields [2].

These are important efforts. It is the position of the authors

that an incremental approach to change that maintains as much

backward compatibility to the original SpaceWire to be a more

practical solution, especially given how difficult it is to insert

new technologies into missions because of the risk adverse

posture of space mission projects.

X. SUMMARY

This paper presented an incremental design approach

option to improve SpaceWire, yet leverages most of existing

FPGA based SpaceWire designs for moderate data rate

applications that require electrical isolation. It also describes

an additional way to further reduce the mass and bend radius of

the SpaceWire cable for applications that are tight on space.

Additionally, it provides a means to specify a common

physical layer and which could work with any protocol that

uses a DC balanced line code, such as 8b/10b (used for multi-

Gbps protocols). Overall, this approach provides options for

system engineers to optimize system level designs.

ACKNOWLEDGMENT

The authors would like to thank J. Fraction for his help in

writing, simulation and testing efforts, as well as E. Gorman

for mechanical development of the SpaceAGE Bus

specification.

REFERENCES

[1] M. Suess, J. Ilstad, and W. Gasti, “Galvanic Isolation of

SpaceWire Links: Requirements, Design Options and

Limitations”, 13th SpaceWire Working Meeting, 14-15

September 2009

[2] J. Ilstad, “Low Mass SpaceWire Cable”, 16th SpaceWire

Working Meeting; 22 March 2011

[3] A. Kisin, G. Rakow, E. Gorman, “SpaceAGE Bus: New

Avionics Building Block Concept” , 4th International SpaceWire

Conference 2011

[4] Xilinx Magazine: Manchester Decoder in 3 CLBs:

http://www.xilinx.com/publications/archives/xcell/Xcell17.pdf

[5] Actel RTAX-S/SL FPGA Datasheet:

http://www.actel.com/documents/RTAXS_DS.pdf

[6] Xilinx AppNote XAPP224: Data Recovery:

http://www.xilinx.com/support/documentation/application_notes

/xapp224.pdf

[7] Xilinx AppNote XAPP225: Data to Clock Phase Alignment:

http://www.xilinx.com/support/documentation/application_notes

/xapp225.pdf

[8] S. Parkes, A. Ferrer,Y. Sheynin, SpaceWire-RT Project and

Baseline Concepts, 17th SpaceWire Working Meeting, 14

December 2011

290

http://www.xilinx.com/publications/archives/xcell/Xcell17.pdf
http://www.actel.com/documents/RTAXS_DS.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp224.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp224.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp225.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp225.pdf

SpaceWire Control Codes in SpaceWire,
GigaSpaceWire and SpaceFibre Networks

Standardisation, Short Paper

Elena Suvorova, Ludmila Koblyakova, Evgeny Yablokov
Institute of High-Performance Computer and Network Technologies

St. Petersburg State University of Aerospace Instrumentation
SUAI

St. Petersburg, Russian Federation
suvorova@aanet.ru, liudmila.koblyakova@guap.ru, evgeny.yablokov@guap.ru

Abstract—important tasks for any on-board communication
network are time synchronization (devices work
synchronization) and transmission of low-frequent hard real-
time signals, alarm and critical commands. In the SpaceWire
standard there are time-codes and distributed interrupts
propagation mechanisms for these purposes. The SpaceFibre is
a very high-speed serial link for on-board communication; it
carries SpaceWire packets over virtual channels. For
broadcast propagation of control information SpaceFibre
provides the broadcast messages service which may be
considered as similar to SpaceWire time-codes for every
virtual channel. The GigaSpaceWire has been developed to
enhance link characteristics for SpaceWire networks. In the
paper we consider transmission of SpaceWire control codes
through the communication onboard network where
SpaceWire, GigaSpaceWire and SpaceFibre technology are
used together; comparison of SpaceWire control codes
(distributed interrupts and time-codes with SpaceFibre
broadcast messages.
One of the main problem in above-stated standards is the
problem of transmission of SpaceWire C-codes. In
GigaSpaceWire links these codes are implemented by the pair
of symbols — descriptive 8b/10b K-code + C-code itself. In
SpaceFibre this code could be implemented by a new 4 byte
symbol, which does not go to the Retry level. So at the network
level in a routing switch the control-code propagation will be
similar to SpaceWire standard but with another time
characteristics.
Index Terms—real-time signalling, Distributed Interrupts,
Time-codes, standardisation.

I. INTRODUCTION
The important tasks for on-board distributed

communication network are time synchronization (device work
synchronization) and also a task of informing devices about of
certain single events in a system in hard real time, for example
failure of some devices or readiness for some action, and
required signals with and without acknowledges, [1, 2]. For
this purpose a hard real time signals are required.

In modern on-board distributed communication networks
the technology is used in which the transmission of data and
control traffic are union and transmit over the same links. The
basic modern on-board communication standards are

SpaceWire /GigaSpaceWire [3, 5] and SpaceFibre [4].
Transmission of control codes in hard real time in on-board
system based on these three technologies, is important task. In
this paper we consider and compare mechanisms of control
code transmission in these standards.

In SpaceWire and GigaSpaceWire for hard real-time signal
transmission the distributed interrupt and time-codes
mechanism are used. In SpaceFibre for control code
transmission the broadcast messages mechanism is used. In
practice it can be required to build networks, where all three
technology are used, so the important task is providing
opportunities for hard real-time signal transmission through
such networks.

II. HARD REAL TIME SIGNALS

A. Hard real time signals classification
In general hard real time signals can be separated in two

classes:
 Synchronous signals are signals which value depends

on a previous signal value and form a sequence of
logically dependent events with a certain period. Their
general purpose is synchronization of devices’ work
and providing a common time in all system, etc.

 Asynchronous signals are single signals which do not
depend on previous signals. Such signals are necessary
for informing devices about single critically important
events in real time.

Synchronous signals also can be periodic and aperiodic,
asynchronous signals can be with or without
acknowledgement.

Consider the control codes in SpaceWire, GigaSpaceWire
and SpaceFibre, from the point of this classification.

B. Time-codes propagation mechanism in SpaceWire and
GigaSpaceWire
Time-codes distribution mechanism relates to transmission

of synchronous signals.
At the symbol level under the time-codes there are

allocated special symbols. These symbols have the highest
priority, (higher than other control codes and data characters

291

have), that allows to transmit time-codes fast in condition of
high network load by data transmission, and provide time-code
transmission without delays through the loaded or blocked by
data paths. For time codes six bits are allocated that allows to
encode 64 subsequent codes.

A time-code source is a node (the source node), and all
network devices which receive the code can handle it. The
time-codes are distributed by broadcasting. When any device
has received the time-code, it compare the code with the stored
in the device value and if the new value is one greater than
previous (it corresponds to correct value), than the devise
stores it and sends the code to all ports, the incoming port
excluding. If the time code is incorrect than the device
overwrites its value but does not transmit further. This
comparison determines the dependence of every subsequent
code from successful/unsuccessful transmission of the previous
code. In Fig.1 the example of time-code propagation is shown.
The digit inside is the current time-code value.

Fig. 1 Example of time-code propagation

C. Distributed interrupt mechanism in SpaceWire and
GigaSpaceWire
The distributed interrupt mechanism allows to transmit

asynchronous signals with and without acknowledgement.
At the symbol level of the SpaceWire and GigaSpaceWire

protocol stack for distributed interrupt and acknowledge codes
special symbols are allocated – Interrupt-codes and
Acknowledge-codes. These symbols have the higher priority
than data symbols have; it allows fast transmission of
distributed interrupt in case of strong network load by data
symbols and provides Interrupt-codes transmission without
delays through the loaded or blocked by data paths. The higher
priority has only time-codes but the network load of time-codes
is low and has limited influence on the Interrupt-code
propagation time. For the Interrupt-code 5 bits are allocated
that allow to encode 32 distributed interrupts. There are two
possible mode of distributed interrupt mechanism: mode with
acknowledge and mode without acknowledge.

In general case the sources and handlers of the Interrupt-
codes are terminal nodes. Interrupt-codes and Acknowledge-
codes are broadcasted to all network nodes. For protection
from retransmission in a network with cycles every node and
router has a 32-bit ISR register, the bit i of which corresponds
to the Interrupt-code type with number i. When a certain event
has happened in a node, the Interrupt-code with corresponding
to this event 5-th bit code is formed. Then the ISR checks and
if the corresponding bit is equal to zero, it is set to one and
Interrupt-code is sent to the network. If the bit is already set to
one it means that Interrupt-code with the same identifier has
been already sent to the network and acknowledgement has not
been received yet, so the Interrupt-code is not sent again. When

the Acknowledge-code is received the corresponding bit of ISR
is set to zero.

When a router receives the Interrupt-code it also checks the
corresponding bit in ISR. If it is equal to zero, it sets it to one
and the Interrupt-code is sent to all output ports excluding the
incoming one. If the bit in ISR is equal to one, then the
Interrupt-code is ignored and is not sent further; it is necessary
for protection from endless time-code retransmission in
networks with cycles.

In case of using mode without acknowledge for clearing the
ISR bits after sending of Interrupt-code and in case of
Interrupt-code has been lost, the timeout TReset for every bit of
ISR is used. It allows automatically cleaning the bit of ISR if
the acknowledge has not been received in time, and thus
recover registers for the next Interrupt-code transmission. Also
for protection of crossing Interrupt-codes and Acknowledge-
codes waves the timeout TISRChange for every ISR bit is used,
which does not allow to change the ISR bits earlier than certain
time has elapsed.

In Fig. 2 the example of Interrupt-code propagation of one
type is shown. The digit inside is a value of the correspondent
ISR bit.

Fig. 2 The example of Interrupt-code and Acknowledge-code

propagation

D. The of Broadcast messages mechanism in SpaceFibre
The SpaceFibre standard together with the data packet

transmission service provides the service for messages
broadcast (analog of control codes) transmission that is
responsible for broadcast propagation of short messages (8
bytes) to all network nodes. These messages can transmit time
and signals of synchronization and can be used for indication
about different events in a network.

The interface of the SpaceFibre broadcast channel codec
consist of registers set for writing broadcast message
parameters, and the same set for reading parameters of
incoming broadcast messages.

Broadcast message has the following parameters:
 Broadcast channel number,
 Sequence number B_SEQ,
 type,
 data,
 late flag.
Sources of broadcast messages are nodes. Recipients are all

other nodes and routers. When in a user application it is
necessary to send a broadcast code, their parameters are
defined and request is transmitted to the SpaceFibre port

292

interface TX_BROADCAST.request (Broadcast Channel,
Broadcast Sequence Number, Broadcast Type, Late, Message),
which initiate transmission of the broadcast message through
the SpaceFibre port. When the broadcast message is sent the
broadcast sequence number is incremented by one.

When a router receives a broadcast code it checks its
broadcast number B_SEC with the current value in the device
for given broadcast channel and determines if the received
code is correct or not. Incoming code is correct if its sequence
number is one more than the current value. When the correct
code is received the current sequence number is incremented
by one and the code is transmitted to all output ports excluding
the incoming port. If the sequence number is incorrect then the
code is not transmitted further. So in a network with cycles a
repeatedly incoming code is not transmitted further. Also it
means that broadcast messages are synchronous messages
because the transmission of the next code depends on the
previous code.

A broadcast frame format is shown in Fig.3.

Fig. 3 Broadcast frame format

A Broadcast frame starts with the control SBF (Start
Broadcast Frame) word and finishes by the EBF (End
Broadcast Frame) word. The BC (Broadcast Channel) field
identifies broadcast channel of transmitted message. The
B_SEQ#/B_TYPE field contain two subfields: 3 bits for
sequence number B_SEQ (7:5) and 5 bits for message type
B_TYPE (4:0). The broadcast sequence number field contains
incrementing value which is specified for the broadcast
channel. Every broadcast channel has its own broadcast
sequence number which is used for broadcast frame
propagation through the SpaceFibre network. The type field
defined broadcast message type and the semantic of the
following 8 data bytes.

At the end of the broadcast frame there is a RSVD/LATE
field, which contain 7 reserved bits and 1 bit is a flag LATE,
which is set to one if the code was resent at retry level. It is
used for informing a receiver node that given broadcast frame
has been delayed as a result of one or several retransmission. If
the broadcast message contains the time for synchronization
than user application can decide to ignore it because of late
delivery, or the broadcast message may contain information
about some event, which still can be useful for the application
despite delay.

The sequence number SEQ_NUM at the end of frame is
used for supporting retransmission at the Retry level. 8-bit
CRC cover fields from SBF to EBF.

For monitoring and limitation used by the broadcast
message amount of link bandwidth with the broadcast
mechanism should be associated one Broadcast Bandwidth
Credit Counter for all broadcast channels. It should monitor
and control the aggregate bandwidth of all broadcast channels.

The control parameter, which is called the Expected Broadcast
Bandwidth Percentage, should define a portion of the link
bandwidth, which is reserved for a broadcast message
including the overhead of the broadcast frame delimiters. If the
allocated percentage of bandwidth is already used, the
broadcast messages will not pass.

Broadcast messages are synchronous signals within the
same broadcast channel because for every broadcast channel
there is own counter for the broadcast sequence number, which
increments for every new message in the broadcast channel;
the message is correct if its number is one more than the
previous one. The type defines the data semantics.

III. MECHANISM OF BROADCAST MESSAGES IN
SPACEFIBRE AND CONTROL CODES IN SPACEWIRE

AND GIGASPACEWIRE

E. Mechanism of broadcast messages in SpaceFibre and
Time-codes in SpaceWire and GigaSpaceWire
Their mechanisms use synchronous messages without

acknowledge.
In SpaceWire there is only one channel and it uses very

compact six-bit sequence number; there are no additional fields
for type and data. Because of it little jitter of control code
propagation in a network is provided, that is very important
characteristics for synchronization.

In SpaceFibre the size of broadcast message is substantially
greater, so the propagation time of broadcast message over the
link will be greater than in GigaSpaceWire and SpaceWire.
Due to the large number of broadcast channel, and respectively
the greater number of propagating broadcast codes at the same
time in a network, the waiting time in a broadcast code
transmission queue can be large.

Also in SpaceFibre there is the Retry level and
retransmission, so control code can be delayed in a retry buffer
for indefinite time, that makes broadcast propagation time
much less predictable, whilst it is a critical characteristic for
hard real-time signals. On the other hand, even delayed code
arrival can allow to receive correctly the next code. However if
the code delay was quite big and the correct code reaches the
destination by another path in network cycles, and the next
correct code has already sent, then the appearance of the old
code can spoil the broadcast sequence number and thus the
next correct code can be erroneously dropped. These situations
require a separate investigation.

So the time-code mechanism in SpaceWire and
GigaSpaceWire is much more fast and simple but with limited
functionality (only one channel and six bit for sequence
number, without type and data field); it corresponds to hard
real-time requirements. The broadcast messages mechanism in
SpaceFibre is more complex, with great features, but slower. It
is good to have both mechanisms, they complement each other.
The time-code mechanism is for more accurate synchronization
(as a main synchronization in a system), for situations, where
jitter and code delivery time are critically important, for using
it for hard real-time. For other cases, where hard real-time is
not required, the SpaceFibre broadcast messages because it

293

more flexible and give much more features (due to type/data
fields for every message).

F. Transmission of asynchronous signals in SpaceFibre and
distributed interrupt mechanism in SpaceWire and
GigaSpaceWire
The main aim of the distributed interrupt mechanism is

transmission of different asynchronous signals set with or
without acknowledge in a hard real-time mode.

The broadcast messages mechanism by the message
transmission type is a synchronous and without acknowledge,
it has type and data field, which allow transmitting big amount
of different messages. To use the broadcast messages
mechanism “as is” for asynchronous signal transmission is not
possible.

The broadcast messages mechanism is a synchronous
within the same broadcast channel and there could be 256
channels , so it is possible to send 256 independent from each
other massages. It is possible to consider such messages, in
general, as asynchronous ones, because they are independent
from each other. Every channel can correspond to one message
type (Interrupt_Identifier), and for implementing of
acknowledges it is possible to use type and data field of
broadcast message. The reliability and time characteristics of
such asynchronous messages transmission by using broadcast
messages will be significantly worse than distributed interrupt
mechanism’s characteristics in SpaceWire and GigaSpaceWire
and will not correspond to hard real-time requirements:

 Big overheads in comparison with distributed
interrupts.

 Error recovery time will be longer because timeouts
which allow to distributed interrupt mechanism
recover the initial register values after errors, have to
be implemented in software over broadcast messages
mechanism.

 Dependence from the previous errors. For example, the
transmission of the current code can be indicated as a
fault because the previous code of the same type was
lost and the sequence number is not incrementing in
the part of network; for their recovery can be required
to send several codes (the number of codes depends on
network topology and the place of error). For example
if the network has the tree structure (the worst case),
then for the sequence number recovery there are
needed as many code sending, how many levels there
are in the tree (the shortest path length). The correct
codes will not reach the destination only because of the
previous error. The existence of retry level broke the
main principle of asynchronous signal transmission (by
its dependence from the previous codes). It makes
impossible using of broadcast message mechanism for
asynchronous signals transmission in hard real-time,
because everything will be good only if there is no
errors. And also there is a dependence on the network
structure.

 The Retry level makes unpredictable the message
delivery time. In the distributed interrupt mechanism in

the mode with acknowledge the all timeouts and
parameters values depend on estimation of maximally
possible code propagation time in the worst case. This
time should be estimated taking in account possible
retransmissions at the Retry level. If there are many
cycles, then the retransmission may severely degrade
the mechanism work. For example if the code has been
delayed in some device’s buffer due to disconnections,
but reaches the all other nodes by other paths and the
acknowledge has been already sent, and after that from
the retry level the old code has been sent, it only
damages the sequence number and the next code will
not reach all network nodes.

 The bandwidth limitation for broadcast message
propagation (broadcast percentage parameter) also can
cause the control code delay or loss.

 It will be difficult in administration.
Thus it is clear that it is possible to use the broadcast

messages mechanism only in not hard real-time mode.
To enable in SpaceFibre the asynchronous messages

transmission in hard real-time mode, the non-standard
implementation of distributed interrupt mechanism is done.

IV. NON-STANDARD IMPLEMENTATION OF THE
DISTRIBUTED INTERRUPTS AND TIME CODES

MECHANISMS IN SPACEFIBRE
In devices, which have been implemented in collaboration

with the “ELVEES” company, the non-standard
implementation of time-codes and distributed interrupt
mechanisms were added, similar to SpaceWire and
GigaSpaceWire.

At the level before the Retry level for time-code and
interrupt/acknowledge code the special symbols are allocated,
which perform similar to time-codes and Interrupt-codes and
Acknowledge codes in SpaceWire. It allows to solve several
tasks:

 asynchronous signals transmission in SpaceFibre;
 time-codes mechanism with smaller jitter;
 supporting the time-codes and distributed interrupt

mechanism in a networks, where at the same time the
SpaceWire, SpaceFibre and GigaSpaceWire are used.

In Fig.4 the new, additional Control code layer is shown.
The new Layer can send and receive the CCode of the

SpaceWire network. The main difference from broadcast layer
– the messages on the Control code layer are flowing much
quicker through the SpaceFibre network, thus making the
CCodes of Spacewire reasonable. The CCodes of SpaceWire
network are inserted between the Retry and the Lane layers of
SpaceFibre. The CCodes are lower than the Retry layer, so no
error is detected on the Retry layer.

294

Virtual Channel Layer Broadcast Layer

Framing Layer

Retry Layer

Multilane Layer

Control Codes
Controller

Lane Layer

Encoding Layer

Serialization Layer

Control Code Layer

Fig. 4 New Control Code Layer

V. THE TIME CHARACTERISTICS OF CONTROL CODES
IN SPACEWIRE, GIGASPACEWIRE AND SPACEFIBRE

Let’s estimate the minimum possible control code
transmission time in the network.

We assume that the local frequency of router’s work are the
same and equal to 125 MHz. The transmission speed in
SpaceWire network is 400Mbit/s, transmission speed in
GigaSpaceWire and SpaceFibre is 1250 Mbit/s. For
estimations of distributed interrupts and acknowledge codes,
which have the priority less than the time-codes priority, we
assume that they are transmitted at the moments when the
time-codes are not transmitted in a network.

Dependence of the minimal transmission time from the
number of routers in a network is shown in the Fig 5.

As can be seen from these grapfhics the time-codes and
distributed interrupt propagation time for all network types are
realy close to each other. The distributed interrupt codes
propagation time is more than time-code propagation time at 7-
8% bacause of their handling in a router requires more number
of actions then for time-codes.

The minimal broadcast code propagation time on the
overage at 1,7 times greater then time-codes and distributed
interrupt propagation time. That is because of broadcast codes
have bigger length and at every data link the CRC is checked.

Fig.5. Graphic of minimal transmission time dependence from the

number of routers in a SpaceWire, SpaceFibre and GigaSpaceWire network

VI. CONCLUSION
In the paper we consider the main space standards for

onboard communication networks - SpaceWire,
GigaSpaceWire and SpaceFibre. There is given a classification
of real time signals, which are required for control code
transmission – distributed interrupt and time-codes
mechanisms and broadcast messages. It is considered the
implementation of the control-code in main standards and their
short comparison is made. Overview of the non-standard
control code implementation in SpaceFibre is given.

REFERENCES
[1] S, Parkes D 1.1 Consolidated set of Requirements for

SpaceWire-RT, SpaceWire-RT Consortium
[2] S, Parkes, “D2.1 SpaceWire-RT Outline Specification,”

SpaceWire-RT Consortium, September 2012.
[3] ECSS-E-50-12С. SpaceWire - Links, nodes, routers and

networks. - European Cooperation for Space Standardization
(ECSS), 31 July 2008

[4] S. Parkes, A. Ferrer, A. Gonzalez, & C. McClements,
“SpaceFibre Standard Draft F3”, University of Dundee, 10th
September 2013

[5] Evgeny Yablokov, Yuriy Sheynin, Elena Suvorova, Alexander
Stepanov, Tatiana Solokhina, Yaroslav Petrichcovitch,
Alexander, Glushkov, Ilia Alekseev, “GigaSpaceWire – Gigabit
Links for SpaceWire”. Networks Proceedings of the 5th
International SpaceWire Conference. Gothnburg 2013.

0

500

1000

1500

2000

2500

3000

3500

4000

1
ro

ut
er

2
ro

ut
er

s

3
ro

ut
er

s

4
ro

ut
er

s

5
ro

ut
er

s
6

ro
ut

er
s

7
ro

ut
er

s

8
ro

ut
er

s

9
ro

ut
er

s
10

 ro
ut

er
s

ns Control codes transmission time
tcodes SpW
(400Mbit/s)

distr int codes
SpW (400Mbit/s)

tcodes gigaSpW
(1250Mbit/s)

distr int codes
gigaSpW
(1250Mbit/s)
tcodes SpFi
(1250Mbit/s)

distr int codes SpFi
(1250Mbit/s)

Broadcasts SpFi
(1250Mbit/s)

295

 Missions & Applications (Long)

296

Flight equipment Validation with iSAFT: The

EUCLID Fine Guidance Sensor case
Missions & Applications, Long Paper

Vangelis Kollias, Nikos Pogkas, Antonis Tavoularis, Michalis Tsagkaropoulos

Teletel S.A.

Athens, Greece

{V.Kollias, N.Pogkas, A.Tavoularis, M.Tsagkaropoulos}@TELETEL.eu

Abstract— iSAFT is an integrated powerful HW/SW

environment for the simulation, validation & monitoring of

satellite/spacecraft on-board data networks supporting

simultaneously a wide range of protocols. This paper presents a

study on how iSAFT modules can be used for the validation of

demanding spacecraft subsystems such as the EUCLID Fine

Guidance Sensor (FGS). Validation of the EUCLID FGS includes

the accurate injection of static sky images through SpaceWire

and acquisition of the units’ response through another

SpaceWire and MIL-STD-1553 channels and, synchronization

with the AOCS SCOE which provides quaternion and angular

rate for dynamic simulations and remote control of other testbed

elements (e.g. OGSE). The paper presents the proposed EGSE

HW and SW architectures, their configurations and the

performance characteristics which pose very strict requirements

on the design of the EGSEs.

Index Terms— SpaceWire, FGS, iSAFT, validation, 1553,

FMEA, IRIG.

I. INTRODUCTION

EUCLID is an ESA mission which aims to map the

geometry and nature of the dark Universe by investigating the

distance-redshift relationship and the evolution of cosmic

structures. To meet the high precision imaging requirements,

one of the most crucial components of the satellite is the Euclid

Attitude and Orbit Control System (AOCS). AOCS is a high

precision control unit that is used for the provision of stable

pointing for visual exposure.

One of the main components of the AOCS is the Fine

Guidance Sensor (FGS) required to satisfy the mission’s

pointing requirements. The FGS consists of three electronic

modules: a detector which acquires raw sky images, a module

that process them and a unit which uses the images and a star

catalogue to calculate accurate pointing information.

In this paper, the validation requirements for the EUCLID

FGS are presented and analysed as an example of how

TELETEL’s iSAFT integrated environment can be used to

address the validation needs of complex flight equipment.

iSAFT is an integrated powerful HW/SW environment for

the simulation, validation & monitoring of satellite/spacecraft

on-board data networks supporting simultaneously a wide

range of protocols (RMAP, PTP, CCSDS Space Packet,

TM/TC, CANopen, etc.) and network interfaces (SpaceWire,

ECSS MIL-STD-1553, ECSS CAN). It is based on over 20

years of experience in the area of protocol validation in the

telecommunications and aeronautical sectors, and it has been

fully re-engineered in cooperation with ESA & space Primes,

to comply with space on-board industrial validation

requirements (ECSS, EGSE, AIT, AIV, etc.). iSAFT is also

highly modular and expandable to support new network

interfaces & protocols (Fig. 1).

The iSAFT environment consists of COTS and in-house

made hardware subsystems (such as communication interfaces

like SpaceWire, MIL-STD-1553, CAN boards, power

subsystems, specific I/O subsystems, etc.) plus the lower and

higher layer software.

The iSAFT Software tool chain is composed of the

following general parts:

 The iSAFT Console which is based on a state of art

windowing graphical user interface, which provides to

the operator easy configuration, control and monitoring

capabilities, plus additional tools for traffic logs

display and management as well as a test management

and execution environment (iSAFT TestRunner).

 The iSAFT Runtime Environment (RTE) containing

modules that perform simulation, monitoring and data

processing using the underlying physical interfaces.

iSAFT RTE provides service interfaces for all

containing modules providing a scalable and fully

distributed framework that can be deployed in multiple

iSAFT stations and provides LAN remote control.

 General Application Management modules including

the configuration management, common logging

functionality, self-tests and diagnostic functions as

well as internal Database management.

 Protocol Modules for command and control with

external EGSEs, SCOEs or the CCS. The Hardware

Abstraction Layer which provides an abstraction to the

underlying Driver APIs being able to change the

Boards with different ones while keeping higher layer

software independent.

 The Drivers and API libraries of the Interface Cards,

the DAQ system, the Power supply equipment and the

DC Electronic Load equipment.

297

Fig. 1. iSAFT features

The following sections present the study on how you can

build a complete EGSE based on the iSAFT simulation, time-

stamping and synchronization capabilities in order to validate

the EUCLID FGS subsystem. Validation can be performed at

each FGS unit individually and at the entire FGS integrated

system. The main concept of the validation is the injection of

static sky images through SpaceWire and acquisition of the

units’ response through another SpaceWire/MIL-STD-1553

channel, as well as synchronization with the AOCS SCOE

which provides quaternion and angular rate for dynamic

simulations and remote control of other testbed elements (e.g.

OGSE).

II. EUCLID FGS EGSES DESIGN APPROACH

A. Overview

The FGS is a sensitive camera (star sensor) that provides

dedicated, mission-critical support for the EUCLID’s AOCS

system by providing the AOCS with the high accuracy attitude

measurement required to meet the demanding pointing

performance during science observation. The proposed EGSE

solution is based on the existing iSAFT Protocol Validation

System (PVS) product instances, and on specific extensions in

order to meet the EUCLID FGS EGSEs requirements [4,5,6,7].

The FGS is composed of a Focal Plane Assembly

(detectors and detectors support structure) and the Proximity

Electronics Module (PEMs), installed on the Euclid Payload

Module (PLM), as well as the Electronic Unit (EU) mounted

on the Euclid Service and Module (SVM). The EUCLID FGS

EGSEs (Fig. 2) should be able to stimulate electrically the

EUCLID FGS PEMs and EU by simulating the behavior of the

detection chain (detector + PEM read out electronics) and the

behavior of the complete detection chain (PEM output: after

data processing) to carry out closed loop tests and avionic open

loop test in real time with hardware in the loop.

Fig. 2. FGS EGSE overview

Fig. 3. EU + FGS EGSE requirements

In details, the EU+FGS EGSE should be provided for the

verification of the EU, PEM and integrated FGS. EU+FGS

EGSE should be provided for EU Assembly, Integration and

Testing (AIT) activities and FGS AIT activities. This EGSE

shall be used to test the EU unit and to test the FGS subsystem

(EU + PEM +Detectors). This EGSE shall be able to test the

EU, the EU + PEM’s and the EU+ PEM’s + Detectors.

The FGS communicates internally through SpaceWire and

externally through MIL-STD-1553 with the CDMU. Test

connectors are provided for the injection of emulated sky

images through SpaceWire.

298

Agilent N3300

Electronic Load

System

N3303B Electronic Load

module

iSAFT Station

TELETEL Octal SpaceWire

board

TELETEL Trigger Board

2xTFrame

2xSwitch OFF

SeaLevel SeaIO 450E Relay

Board

N3302B Electronic Load

module

36V

15V

6.5V

-6.5V

3.5V

PEM N 36 V

PEM R 36 V

PEM N 15 V

PEM N 6.5 V

PEM N -6.5 V

PEM N 3.5 V

PEM R 15 V

PEM R 6.5 V

PEM R -6.5 V

PEM R 3.5 V

Ethernet

Agilent N3300

Electronic Load

System

SeaLevel SeaIO 450E Relay

Board

36V

15V

6.5V

-6.5V

3.5V

PEM N 36 V

PEM R 36 V

PEM N 15 V

PEM N 6.5 V

PEM N -6.5 V

PEM N 3.5 V

PEM R 15 V

PEM R 6.5 V

PEM R -6.5 V

PEM R 3.5 V

Ethernet

Ethernet Switch

L
A

N
-G

P
IB

 G
a

te
w

a
y

TELETEL Octal SpaceWire

board

Module #3 SpW

I/F (4 ports)

Module #2 A&B

SpW I/Fs (8 ports)

L
A

N
 2

To EU EGSE

Modules #1

To EGSE LAN

L
A

N
 1

L
A

N
 3

Server-based Site

Rackmount System -

Professional

M
o

d
u

le
 #

2
 A

 P
E

M
 C

o
n

s
u

m
p

ti
o

n
 S

im
u

la
ti

o
n

M
o

d
u

le
 #

2
 B

 P
E

M
 C

o
n

s
u

m
p

ti
o

n
 S

im
u

la
ti

o
n

IRIG B002 (to other

EGSE elements)

EU EGSE Modules 2 and

Module 3 Control Software

N3302B Electronic Load

module

N3302B Electronic Load

module

N3302B Electronic Load

module

N3303B Electronic Load

module

N3302B Electronic Load

module

N3302B Electronic Load

module

N3302B Electronic Load

module

N3302B Electronic Load

module

Fig. 4. iSAFT based EU EGSE module #2 & #3 hardware architecture

Finally, the unit shall be controlled through ECSS-14C

discrete interfaces for ON/OFF commanding and

synchronization with the CDMU, whereas power shall be

provided through a Latching Current Limiter. The design

approach for the main components is presented in the

following section.

B. EU+FGS EGSE

An overview of the structure for EU+FGS EGSE is shown

in Fig. 3. It includes three EU EGSE modules (#1, #2 and #3)

and the PEM OGSE (Optical Ground Support Equipment). The

main functionalities of the EU EGSE module #1 module

include EU/FGS FULL Power Supply, Discrete &

Synchronization Signals Generation, EU 1553 Protocol

simulation and Modules Control.

For each of the EU EGSE Module #2 (A or B) two main

functionalities are defined including PEM Power Consumption

Simulation and PEM SpaceWire Simulation.

The EU EGSE Module #3 is used for the AIT testing

activities and its main functionality is to stimulate

simultaneously 2 EU channels or 2 PEM channels.

The components modules that compose the EU EGSE

Module #2 & #3 are shown in Table I and their overall HW

and SW architectures are presented in Fig. 4 and Fig. 5

respectively.

As derived from the HW architecture of the EU EGSE

module #2 (Fig. 4), 4 SpW channels are needed per module #2.

These can be supported for both A and B modules through a

single TELETEL Octal SpaceWire board that provides SpW

Simulation over 8 ports and IRIG time-stamping.

The board supports per port independent transmission

trigger conditions and actions and can be configured to

transmit upon the assertion of the Tframe signal and to disable

the SpW ports upon the assertion of the Switch OFF signal. In

addition the level of the Switch OFF can be readable by the

SW in order to allow disabling all other elements of Modules

#2 A and B.

TELETEL’s 16 trigger channels board can be used only to

perform electrical adaptation of the Tframe signal and feed it to

TELETEL’s SpW board at appropriate levels.

1) PEM SpaceWire simulation

The iSAFT control software can simulate PEM SpaceWire

links being able to reply to all the TM/TC commands sent by

the EU. Additionally, it can send preconfigured file data, which

correspond to the data generated by the PEM unit when the

detectors are connected.

PEM SpaceWire simulation can be supported by using the

SpW Simulation engine, as shown in Fig. 6, and a dedicated

module (i.e. PEM Simulation module) that implements the

SpaceWire protocol used at the EU-PEM communication and

can be controlled by the MMI (i.e. PEM Simulation control

window).

The PEM Simulation control can support the configuration

of the PEM simulation options, the selection of preconfigured

data to be transmitted as well as selection and transmission of

specific TM commands during the simulation. The PEM

SpaceWire simulation configuration and control can also be

performed through user defined Test Cases.

TABLE I. EU EGSE MODULE #2 & #3 COMPONENTS

Function Subsystem

Processing unit N/A

Modules #2 PEM
Power Consumption

Simulation

Electronic Load system

Electronic load modules for the 36V network

Electronic load modules for the 15V, 6.5V, -

6.5V and 3.5V networks

Nominal Redundant EU Power Supply

switching unit

LAN-GPIB gateway

Ethernet Switch for control of Electronic

loads and relay switches

Module #2 (A and B)

SpW Simulation

Software

SpW interface

Tframe triggers

Module #3 SpW
Simulation

SpW interface

Interface to other

EGSE elements
Switch OFF signals receiver

During PEM simulation the SpW Monitoring engine can

simultaneously monitor all SpW links and log and archive all

packets with a resolution down to 8 nsecs with an external

IRIG source.

299

R
U

N
T

IM
E

 E
N

V
IR

O
N

M
E

N
T

 (
R

T
E

)

Power Consumption

Simulation Module

PEM Simulation

Module

H
A

R
D

W
A

R
E

A
B

S
T

R
A

C
T

IO
N

L
A

Y
E

R

Octal SpaceWire Interface

Board + Trigger Board

SpaceWire Board

Driver

SpaceWire Board

Adapter

SpW Monitoring

Module

G
E

N
E

R
A

L

A
P

P
L

IC
A

T
IO

N
 M

A
N

A
G

E
M

E
N

T

D
ig

it
iz

e
d

 I
m

a
g

e
 P

a
tt

e
rn

s

D
a

ta
b

a
s

e

C
o

n
fi

g
u

ra
ti

o
n

 M
a

n
a

g
e

m
e

n
t

C
o

m
m

o
n

 L
o

g
g

in
g

S
e

lf
 T

e
s

ts
 a

n
d

D
ia

g
n

o
s

ti
c

 F
u

n
c

ti
o

n
s

M
A

N
 M

A
C

H
IN

E
 I
N

T
E

R
F

A
C

E
 (

M
M

I)

Logbook Event

Display

Event Log Archive

Traffic Log Archive

Wireshark Network

Analyzer

SpW Protocols

Dissectors

SpW Simulation

Module

Self Tests

Execution

Traffic Logs

Management

SpW Recorder

PEM Simulation

Control

Control &

Image Selection

SpW TM/TC

Digitized image

selection

SpW Traffic Generation

Module

SpW Monitoring Engine SpW Simulation Engine

General Application

Management
iSAFT Console

iSAFT RTE

iSAFT TestRunner

FGS EGSE TestSuite

Test Report

Power Consumption

Simulation Control

Power Consumption

Simulation Module

Power

Consumption

Electronic Load I/F

Adapter

DC Electronic Load

LAN

8 x SpW Power

Image Patterns

Switch OFF

Tframe

FGS Stimulation

Control

Input attitude

quaternion from

MMI or CCS

FGS stimulation

SpW packet

AOCS SCOE

Protocol Module

AOCS SCOE I/F

AOCS SCOE I/F

Adapter

Input attitude

quaternion from

AOCS SCOE

Input attitude

quaternion from

AOCS SCOE

Octal SpaceWire Interface

Board + Trigger Board

SpaceWire Board

Driver

SpaceWire Board

Adapter

4 x SpW Switch OFF

Tframe

PEM Simulation

Module

FGS PEM or Detector

Pattern Generation

Relay Switch I/F

Adapter

Relay Switch

LAN

Existing Modules

New Modules

Fig. 5. iSAFT based EU EGSE module #2 & #3 software architecture

Synthetic Sky Image

generation in the

filed of view of CCD

Star Cataloque

Input Quaternion,

angular rate,

motion

Additional Light

Sources

Light

Sources

Optics & CCD

characteristics

simulation + noise

Model +

noise

paramete

rs

CCD integration time

simulation

Integration time

Synthetic

image

Synthetic

Image + additional

light sources

CCD

representative

image

+ noise

SpW Simulation

engine

SpW packet Raw image data

Fig. 6. PEM SpaceWire Simulation

2) FGS Stimulation

The iSAFT Control software can support the stimulation

of the FGS PEM or EU Test interfaces through a dedicated

module (i.e. the FGS PEM or Detector Pattern Generation

module) and the use of the SpW Simulation engine.

For the PEM channels the electrical stimulation signal

can be defined as the actual digitized image which would

have been delivered by the detector acquisition / readout

stage, in consistency with the FGS operational mode, and the

satellite dynamics state.

For the EU Channels: the electrical stimulation signal can

be defined as the actual digitized image which would have

been delivered by the PEM pre-processing in consistency

with the FGS operational mode, and the satellite dynamics

state. This option will be used with the EU configuration.

The Detector Pattern Generation module implements an

algorithm that processes the input (quaternion, angular rate,

300

etc.) and based on the input selects, generates and processes

an image pattern from a data source or data base (i.e. the

Digitized Image Pattern Database). The resulting processed

data can be packetized and transmitted to the SpW PEM or

EU Test links. The data source will contain digitized image

patterns, the star catalogue, additional light sources and

characteristics of the CCD optics already available.

The FGS stimulation can provide the electrical

stimulation signal (SpW packets transmission) at [0.5, 2] Hz

according to the inputs delivered by the AOCS SCOE that

include:

 Attitude quaternion from the Inertial Reference

Frame to the Boresight Reference Frame,

 Satellite’s angular rate up to 0.001 deg/s and

 Linear motion.

More specifically, for the PEM channels stimulation the

following algorithm can be used:

1. Generate the image of the sky with those stars that

are located in the field of view that is observed taken

into account the AOCS SCOE input data (attitude

quaternion, angular rate, linear motion) and an initial

light offset.

a. This dynamic pattern (two new ones

[4000x4000]16bits pixels, each one to be

sent for each independent SpW link) can

be generated taken into account the AOCS

SCOE input data described above (attitude

quaternion, angular rate, linear motion) and

an initial light offset.

Note: A [4000x4000] 16bit pixels shall be

generated, but two different transmissions

to PEM are foreseen:

1. In case of being needed to transmit the

full frame image, this will require a

transmission time of 4 secs in a 100Mbps

SpW link, in this case the performance

requirement for 1 sec delay between

consecutive patterns cannot apply.

2. In windows mode, before sending to

PEM any information, a windowing

readout shall be simulated on the

[4000x4000]16bits pattern. The maximum

information that will be sent to PEM is

15windows of 65x65pixels 16bits, which is

compatible with 100Mbps and 1s delay.

b. This dynamic pattern will be generated

after correlating the AOCS SCOE input

data with the star catalogue info that will

be stored in a 1Mbyte memory bank. Only

1Mbyte will be used for storing the star

catalogue info that is useful for the real

time patterns generation of the current test.

Note: The produced image will be a

synthetic simulated image based on the star

objects and their lighting attributes selected

from the available star catalogue in the

field of view of CCD.

c. 100Mbyte – 1Gbyte can be used for

storing the rest of the star catalogue

information that is not being used for the

current test.

2. Take into account additional light sources defined by

the user, such as, false stars, non-continuous light

sources, straylight patterns.

3. Simulate the optics characteristics, such as, focal

length, distortions, aberrations, etc. and light noise

and faulty pixels.

4. Simulate the integration time of the detector (based

on user defined input values).

Tasks 2, 3 and 4 are real time processes that are

performed on the selected pattern output of task 1 before

being sent to PEM via the SpW link. During FGS

stimulation the SpW Monitoring engine should

simultaneously monitor all SpW links and log and archive all

packets with a resolution of 8 nsec.

Additional open loop simulation can be available in

which the user can program one sequence of input

parameters to be used instead of the data received from the

AOCS SCOE external interface.

This FGS PEM or Detector Pattern Generation module

can manage dedicated interfaces (from iSAFT MMI, the

CCS LAN, user Test Cases or the AOCS SCOE interface) in

order at least to:

 Send Start/Stop Simulation commands,

 Send the required data during closed loop execution,

i.e. quaternion, S/C rate, S/C attitude, …

 Send a wrong attitude pattern for special tests.

Finally, the FGS stimulation will be able to stimulate the

PEM with a “wrong” attitude patterns commanded by CCS

LAN.

III. CONCLUSIONS

The validation of flight equipment can be a very

demanding process, especially for critical mission equipment

as in the case of EUCLID FGS. In this paper, the possible

use of the iSAFT integrated HW/SW environment for the

validation of flight equipment and more specifically in the

case of the EUCLID FGS has been presented. The technical

approach presented includes the hardware and software

architectures based on the existing iSAFT Protocol

Validation System (PVS) for the verification of the EU,

PEM and integrated FGS, according to the EUCLID

design/technical specification and general requirements for

EGSEs.

The analysis showed that iSAFT can support the different

requirements of FGS like flight devices by providing a

modular and expandable architecture with several features

that can be applied for the accurate simulation, validation &

monitoring of such a device’s behavior. Due to the variable

configurations supported by iSAFT, it is possible to cover

different performance/reliability/cost requirements for

demanding scientific missions like the EUCLID Fine

Guidance Sensor case.

301

REFERENCES

[1] Euclid Mission, http://sci.esa.int/euclid/

[2] TELETEL iSAFT PVS platform, http://teletel.eu/isaft-

protocol-validation-platform/

[3] TELETEL iSAFT SpaceWire / MIL-STD-1553 / CAN

Recorder, http://teletel.eu/isaft-SpaceWire-mil-std-1553-can-

recorder/

[4] EU+FGS EGSE Requirements DRAFT (Ref. EUCL-TAS-

RS-2-005)

[5] EGSE PEM+DETECTORS Requirements DRAFT (Ref.

EICL-TASE-RS-2-006)

[6] General Design and Interfaces Requirements Specification

(GDIR) (Ref. EUCL-TAST-RS-1-003).

[7] EUCLID Fine Guidance Sensor Requirements Specification

(Ref. EUCL-TAST-RS-2-016).

302

Papers Indexed by Author

Author Surname A - K

S.Arase, I. Fujishiro, M.Nomachi; SPACEWIRE-TO-GIGABITETHER AND SPACEWIRE BACKPLANE 277

J. Bao, B.Zhao, Z. Gong, C. Wu, W. Yu, Z. Feng; TOWARDS SOFTWARE DEFINED SPACEWIRE

NETWORKS 188

J. Blasco, O. Navasquillo, D. Cano, M. Esteban; ACTIVE OPTICAL CABLE FOR SPW APPLICATIONS 173

V. Burkhay, G. Magistrati; RADIATION-TESTED EXTENDED COMMON MODE LVDS COMPONENTS 119

J.Coetzee, A. Senior, J. Ilstad; EXPERIENCES WITH A SPACEWIRE BACKPLANE CONNECTOR 43

D. Cozzi, D. Jungewelter, D. Kleibrink, S. Korf, J. Hagemeyer, M. Porrmann, J. Ilstad; AXI-BASED

SPACEFIBRE IP CORE IMPLEMENTATION 196

B. Dellandrea, S. Parkes, D. Jameux; MOST: MODELING OF SPACEWIRE & SPACEFIBRE TRAFFIC 262

M. Deredempt, Z. Sun, P. Ricco, V. Kollias, E. Canamares; SATELLITE /SPACECRAFT ON-BOARD

DATA HANDLING BY COUPLING ARINC-664 (AFDX) AND SPACEWIRE 32

J. Ekergarn, S. Habinc, F. Ringhage, F. Sturesson, M. Simlastik, S. Redant, K. Stinkens, G.Thys, J.Das

Arul Mahesh, M. Suess; GR718 – RADIATION-TOLERANT 18X SPACEWIRE ROUTER BASED ON

THE DARE 180 NM LIBRARY 108

M. Epperly, S. Torno; GALVANICALLY ISOLATED SPACEWIRE 113

N. Ganry, G. Mantelet, S. Parkes, C. McClements; ATMEL’S RAD-HARD SPARC V8 PROCESSOR

200MHZ LOW POWER SYSTEM ON CHIP INTEGRATING STATE OF THE ART SPACEWIRE

ROUTER 123

W. Gasti, A. Senior, J.Coetzee; MARC – LESSONS LEARNT 253

D.Gibson, S. Parkes, C. McClements, S. Mills, D. Paterson; SPACEWIRE-D ON THE CASTOR

SPACEFLIGHT PROCESSOR 220

V. Goussev, D. Skok; ADVANCED OVERSAMPLING TECHNIQUES FOR THE SPACEFIBRE 240

W.Han, B.Wang, B.Zhao, J. Tao, Z. Tang; HANDS: A HETEROGENEOUS AEROSPACE NETWORK

ARCHITECTURE FOR DISAGGREGATED SATELLITES BASED ON SPACEWIRE 184

M. Hayama, Y. Yokoyama, R. Yagiu I. Odagi, H. Namikoshi; IMPACTS OF FAULTS ON A

SPACEWIRE NETWORK 90

H. Hihara, A. Terada, S. Kawakami, M. Iwanabe, T. Tohma, T. Kominato, K. Mizushima, K. Baba,

T.Takashima, M. Kokubun, T. Yuasa, T. Takahashi, M. Nomachi; SERVICE ORIENTED INTEGRATION

OF SPACEWIRE AND CONVENTIONAL PROTOCOLS WITH REFERENCE TO SOIS 49

K. Iwase, H. Hihara, O. Watanabe, T. Tanaka, T. Yuasa, T. Yamada, T. Tozawa, T. Tamura; THE

EVALUATION OF SPACEWIRE-R DRAFT SPECIFICATION THROUGH THE CONNECTIVITY

TEST USING SPACE CUBE2 82

N. Kellett, G. Rouchaud, S. Hermant; SOLUTIONS FOR COPPER-BASED SPACEFIBRE LINKS 34

K. Khramenkova; AUTOMATED SPACEWIRE NETWORK ADMINISTRATION 86

V. Kollias, N. Pogkas, A.Tavoularis; FLIGHT EQUIPMENT VALIDATION WITH ISAFT: THE EUCLID

FINE GUIDANCE SENSOR CASE 297

Author Surname L - R

J. Marshall; STANDARDIZED SPACEWIRE SOLUTIONS FOR NEXT GENERATION SYSTEMS 64

A. Mason, S. Parkes; USING SPACEWIRE WITH LABVIEW 281

H. Michel, A. Belger, B. Fiethe, T. Lange, H.Michalik; HOW RMAP IMPROVES IN-FLIGHT UPDATE

OF ON-BOARD SOFTWARE VIA SPACEWIRE 58

S. Mills, P. Scott, S. Parkes; HIGH SPEED TEST AND DEVELOPMENT WITH THE SPACEWIRE

BRICK MK3 272

G. Montano, B. Cook, E. McCormick, R. Peel, P. Walker, D. Jameux, V. Kollias, N. Pogkas, A.

Tavoularis; STANDARDISATION OF THE NETWORK MANAGEMENT SERVICE SUITE (N-MASS)

FOR FAULT DETECTION, ISOLATION AND RECOVERY FOR SPACEWIRE 63

S.Mudie, C. McClements, A. Spark, S. Mills, A. Mason, M. Dunstan, S. Parkes; RECORDING SPACEWIRE

TRAFFIC 268

O. Notebaert, J. Lachaize, R. Clavier, A. Fueser, H.Herpel, G. Montano, L. Planche; SPACEWIRE 2: NEEDS

AND EVALUATION METRICS 286

Y. Otake, K. Hosokawa, Y. Sota, T. Tanaka, H. Hihara; THE STUDY AND PROPOSAL FOR

IMPROVEMENT THE MULTI-LANE OPERATION OF SPACEFIBRE PROTOCOL 160

S. Parkes, C. McClements, D. McLaren, A. Monera Martinez, A. Ferrer Florit, A. Gonzalez Villafranca;

SPACEFIBRE IMPLEMENTATION, TEST AND VALIDATION 133

D. Paterson, D. Gibson, S. Parkes; AN RTEMS PORT FOR THE AT6981 SPACEWIRE-ENABLED

PROCESSOR: FEATURES AND PERFORMANCE 257

P. Plasson, C. Cuomo, T. Gadeaud, A. Gaget, L. Gueguen, L. Malac-Allain, E. Revert; IMPLEMENTATION

OF A RMAP BOOTLOADER ON THE SOLAR ORBITER RPW EXPERIMENT 154

G.Rakow, A. Kisin; MANCHESTER CODING OPTION FOR SPACEWIRE: PROVIDING CHOICES FOR

SYSTEM LEVEL DESIGN 287

P. Rastetter, T. Helfers, C.Papadas, S. Parkes; SPACEFIBRE DEMONSTRATOR:

DEMONSTRATION AND TESTING 238

D. Raszhivin, Y. Sheynin; PROTOCOLS FOR DETERMINISTIC PACKETS DELIVERY IN

SPACEWIRE NETWORKS 181

K. Romanowski, W. Holubowicz, P. Lancmański, V. Kollias, N. Pogkas; SPACEMAN: A

SPACEWIRE NETWORK MANAGEMENT TOOL 99

M. Rowlings, M. Suess; AN EXPERIMENTAL EVALUATION OF SPACEFIBRE RESOURCE

REQUIREMENTS 228

Author Surname S - Z

A. Sakthivel, J.Ekergarn, D. Hellström, S.Habinc, M. Suess; SPACEWIRE TIME DISTRIBUTION

PROTOCOL IMPLEMENTATION AND RESULTS 19

P. Scott, A. Spark, P. Crawford, S. Parkes; THE SPACEWIRE PHYSICAL LAYER TESTER (SPLT) 192

A. Senior, J.Coetzee, J. Ilstad; THE DRAFT ECSS SPACEWIRE BACKPLANE STANDARD 245

Y. Sheynin, I. Lavrovskaya, V. Olenev, I. Korobkov, D. Dymov; STP-ISS TRANSPORT PROTOCOL

FOR SPACECRAFT ON-BOARD NETWORKS 26

Y. Sheynin, E. Balandina, Y. Koucheryavy, S. Balandin; PROTOCOL DESIGN FOR WIRELESS

EXTENSION OF EMBEDDED NETWORKS: OVERVIEW OF REQUIREMENTS AND

CHALLENGES 103

Y. Sheynin, E. Suvorova, N. Matveeva, A. Khakhulin, I. Orlovsky, D. Romanov; SPACEFIBRE BASED

SPACECRAFT NETWORK CASE STUDY 164

F.Siegle, T. Vladimirova, J. Ilstad, O. Emam; FDIR TECHNIQUES FOR PAYLOAD STREAMING

APPLICATIONS USING SPACEWIRE-BASED NETWORKS 11

T. Solokhina, J. Petrichkovich, A. Glushkov, I. Alekseev, Y. Sheynin, E. Suvorova; RADIATION

TOLERANT HETEROGENEOUS MULTICORE “SYSTEM ON CHIP” WITH BUILT-IN

MULTICHANNEL SPACEFIBRE SWITCH FOR THE “INTELLIGENT” SIGNALS AND IMAGES

PROCESSING SYSTEMS 38

K. Stohlmann, G. Fey, D. Lϋdtke; AUTOMATIC PERFORMANCE TRACKING OF A SPACEWIRE

NETWORK 263

M. Suess; FREQUENCY CALIBRATION OF THE SWI INSTRUMENT ON-BOARD OF JUICE USING

SPACEWIRE TIME-CODES 54

S. Sundaram Natchinarkiniyan, P. Rastetter; SPACEWIRE TO SPACEFIBRE BRIDGE 177

E. Suvorova, I. Lavrovsakaya, V. Olenev, Y. Sheynin; SPACEFIBRE/SPACEWIRE-RT

IMPLEMENTATION EXPERIENCE AND EVOLUTION TRENDS 139

E. Suvorova, N. Matveeva, Y. Sheynin; QOS IN SPACEFIBRE AND SPACEWIRE/GIGASPACEWIRE

PROTOCOLS 145

E. Suvorova, N. Matveeva; NETWORK LAYER SUPPORT IN SPACEFIBRE PROTOCOL 233

E. Suvorova, L. Koblyakova, E. Yablokov; SPACEWIRE CONTROL CODES IN SPACEWIRE,

GIGASPACEWIRE AND SPACEFIBRE NETWORKS 291

A. Tavoularis, N. Pogkas, V. Kollias, K. Marinis, V. Vlagkoulis; ISAFT-PVS: RECORDING,

SIMULATION & TRAFFIC GENERATION AT FULL NETWORK LOAD 73

B.Yu, A. Gonzalez, A. Ferrer, C. McClements, S. Parkes; INTEGRATING STAR-DUNDEE

SPACEFIBRE CODEC WITH TI TLK2711 249

T. Yuasa, T. Takahashi, M. Nomachi, H. Hihara; A SPACEWIRE ROUTER ARCHITECTURE WITH

NON-BLOCKING PACKET TRANSFER MECHANISM 213

W. Zhen, L. Guoping; SPACEBOURNE UNIFIED DATA & INFORMATION NETWORK 95

W. Zhen, D. Yaohai; THE REMOTE VIRTUAL-CHANNEL TRANSFER PROTOCOL 169

Papers Indexed by Session

Tuesday 23 September

Networks & Protocols 1 (Long Papers)

F.Siegle, T. Vladimirova, J. Ilstad, O. Emam; FDIR TECHNIQUES FOR PAYLOAD STREAMING

APPLICATIONS USING SPACEWIRE-BASED NETWORKS 11

A. Sakthivel, J.Ekergarn, D. Hellström, S.Habinc, M. Suess; SPACEWIRE TIME DISTRIBUTION

PROTOCOL IMPLEMENTATION AND RESULTS 19

Y. Sheynin, I. Lavrovskaya, V. Olenev, I. Korobkov, D. Dymov; STP-ISS TRANSPORT PROTOCOL

FOR SPACECRAFT ON-BOARD NETWORKS 26

M. Deredempt, Z. Sun, P. Ricco, V. Kollias, E. Canamares; SATELLITE /SPACECRAFT ON-BOARD

DATA HANDLING BY COUPLING ARINC-664 (AFDX) AND SPACEWIRE 32

Components (Short Papers)

N. Kellett, G. Rouchaud, S. Hermant; SOLUTIONS FOR COPPER-BASED SPACEFIBRE LINKS 34

T. Solokhina, J. Petrichkovich, A. Glushkov, I. Alekseev, Y. Sheynin, E. Suvorova; RADIATION

TOLERANT HETEROGENEOUS MULTICORE “SYSTEM ON CHIP” WITH BUILT-IN

MULTICHANNEL SPACEFIBRE SWITCH FOR THE “INTELLIGENT” SIGNALS AND IMAGES

PROCESSING SYSTEMS 38

J.Coetzee, A. Senior, J. Ilstad; EXPERIENCES WITH A SPACEWIRE BACKPLANE CONNECTOR 43

Missions & Applications (Short Papers)

H. Hihara, A. Terada, S. Kawakami, M. Iwanabe, T. Tohma, T. Kominato, K. Mizushima, K. Baba,

T.Takashima, M. Kokubun, T. Yuasa, T. Takahashi, M. Nomachi; SERVICE ORIENTED INTEGRATION

OF SPACEWIRE AND CONVENTIONAL PROTOCOLS WITH REFERENCE TO SOIS 49

M. Suess; FREQUENCY CALIBRATION OF THE SWI INSTRUMENT ON-BOARD OF JUICE USING

SPACEWIRE TIME-CODES 54

H. Michel, A. Belger, B. Fiethe, T. Lange, H.Michalik; HOW RMAP IMPROVES IN-FLIGHT UPDATE

OF ON-BOARD SOFTWARE VIA SPACEWIRE 58

Standardisation (Long Papers)

G. Montano, B. Cook, E. McCormick, R. Peel, P. Walker, D. Jameux, V. Kollias, N. Pogkas, A. Tavoularis;

STANDARDISATION OF THE NETWORK MANAGEMENT SERVICE SUITE (N-MASS) FOR

FAULT DETECTION, ISOLATION AND RECOVERY FOR SPACEWIRE 63

J. Marshall; STANDARDIZED SPACEWIRE SOLUTIONS FOR NEXT GENERATION SYSTEMS 64

Test & Verification (Long Paper)

A. Tavoularis, N. Pogkas, V. Kollias, K. Marinis, V. Vlagkoulis; ISAFT-PVS: RECORDING,

SIMULATION & TRAFFIC GENERATION AT FULL NETWORK LOAD 73

Wednesday 24 September

Networks & Protocols (Short Papers)

K. Iwase, H. Hihara, O. Watanabe, T. Tanaka, T. Yuasa, T. Yamada, T. Tozawa, T. Tamura; THE

EVALUATION OF SPACEWIRE-R DRAFT SPECIFICATION THROUGH THE CONNECTIVITY

TEST USING SPACE CUBE2 82

K. Khramenkova; AUTOMATED SPACEWIRE NETWORK ADMINISTRATION 86

M. Hayama, Y. Yokoyama, R. Yagiu I. Odagi, H. Namikoshi; IMPACTS OF FAULTS ON A

SPACEWIRE NETWORK 90

W. Zhen, L. Guoping; SPACEBOURNE UNIFIED DATA & INFORMATION NETWORK 95

K. Romanowski, W. Holubowicz, P. Lancmański, V. Kollias, N. Pogkas; SPACEMAN: A

SPACEWIRE NETWORK MANAGEMENT TOOL 99

Y. Sheynin, E. Balandina, Y. Koucheryavy, S. Balandin; PROTOCOL DESIGN FOR WIRELESS

EXTENSION OF EMBEDDED NETWORKS: OVERVIEW OF REQUIREMENTS AND CHALLENGES 103

Components (Long Papers)

J. Ekergarn, S. Habinc, F. Ringhage, F. Sturesson, M. Simlastik, S. Redant, K. Stinkens, G.Thys, J.Das

Arul Mahesh, M. Suess; GR718 – RADIATION-TOLERANT 18X SPACEWIRE ROUTER BASED ON THE

DARE 180 NM LIBRARY 108

M. Epperly, S. Torno; GALVANICALLY ISOLATED SPACEWIRE 113

V. Burkhay, G. Magistrati; RADIATION-TESTED EXTENDED COMMON MODE LVDS COMPONENTS 119

N. Ganry, G. Mantelet, S. Parkes, C. McClements; ATMEL’S RAD-HARD SPARC V8 PROCESSOR

200MHZ LOW POWER SYSTEM ON CHIP INTEGRATING STATE OF THE ART SPACEWIRE

ROUTER 123

SpaceFibre (Long Papers)

S. Parkes, C. McClements, D. McLaren, A. Monera Martinez, A. Ferrer Florit, A. Gonzalez Villafranca;

SPACEFIBRE IMPLEMENTATION, TEST AND VALIDATION 133

E. Suvorova, I. Lavrovsakaya, V. Olenev, Y. Sheynin; SPACEFIBRE/SPACEWIRE-RT IMPLEMENTATION

EXPERIENCE AND EVOLUTION TRENDS 139

E. Suvorova, N. Matveeva, Y. Sheynin; QOS IN SPACEFIBRE AND SPACEWIRE/GIGASPACEWIRE

PROTOCOLS 145

Poster Presentations

P. Plasson, C. Cuomo, T. Gadeaud, A. Gaget, L. Gueguen, L. Malac-Allain, E. Revert; IMPLEMENTATION

OF A RMAP BOOTLOADER ON THE SOLAR ORBITER RPW EXPERIMENT 154

Y. Otake, K. Hosokawa, Y. Sota, T. Tanaka, H. Hihara; THE STUDY AND PROPOSAL FOR

IMPROVEMENT THE MULTI-LANE OPERATION OF SPACEFIBRE PROTOCOL 160

Y. Sheynin, E. Suvorova, N. Matveeva, A. Khakhulin, I. Orlovsky, D. Romanov; SPACEFIBRE BASED

SPACECRAFT NETWORK CASE STUDY 164

W. Zhen, D. Yaohai; THE REMOTE VIRTUAL-CHANNEL TRANSFER PROTOCOL 169

J. Blasco, O. Navasquillo, D. Cano, M. Esteban; ACTIVE OPTICAL CABLE FOR SPW APPLICATIONS 173

S. Sundaram Natchinarkiniyan, P. Rastetter; SPACEWIRE TO SPACEFIBRE BRIDGE 177

D. Raszhivin, Y. Sheynin; PROTOCOLS FOR DETERMINISTIC PACKETS DELIVERY IN

SPACEWIRE NETWORKS 181

W.Han, B.Wang, B.Zhao, J. Tao, Z. Tang; HANDS: A HETEROGENEOUS AEROSPACE NETWORK

ARCHITECTURE FOR DISAGGREGATED SATELLITES BASED ON SPACEWIRE 184

J. Bao, B.Zhao, Z. Gong, C. Wu, W. Yu, Z. Feng; TOWARDS SOFTWARE DEFINED SPACEWIRE

NETWORKS 188

P. Scott, A. Spark, P. Crawford, S. Parkes; THE SPACEWIRE PHYSICAL LAYER TESTER (SPLT) 192

D. Cozzi, D. Jungewelter, D. Kleibrink, S. Korf, J. Hagemeyer, M. Porrmann, J. Ilstad; AXI-BASED

SPACEFIBRE IP CORE IMPLEMENTATION 196

Y. Shuai, C. Juan, M. Hong; STUDY AND IMPLEMENTATION OF SPACEWIRE NETWORK REDUNDANCY

TECHNOLOGY BASED ON FPGA 202

Z. Yaopu, J. Jiayou, H. Changpei; A DESIGN OF ON-BOARD DUAL-CHANNEL DATA HANDLING

METHOD BASED ON TWO FPGAS 207

Thursday 25

September

Networks & Protocols 2 (Long Papers)

T. Yuasa, T. Takahashi, M. Nomachi, H. Hihara; A SPACEWIRE ROUTER ARCHITECTURE WITH

NON-BLOCKING PACKET TRANSFER MECHANISM 213

D.Gibson, S. Parkes, C. McClements, S. Mills, D. Paterson; SPACEWIRE-D ON THE CASTOR

SPACEFLIGHT PROCESSOR 220

SpaceFibre (Short Papers)

M. Rowlings, M. Suess; AN EXPERIMENTAL EVALUATION OF SPACEFIBRE RESOURCE

REQUIREMENTS 228

E. Suvorova, N. Matveeva; NETWORK LAYER SUPPORT IN SPACEFIBRE PROTOCOL 233

P. Rastetter, T. Helfers, C.Papadas, S. Parkes; SPACEFIBRE DEMONSTRATOR:

DEMONSTRATION AND TESTING 238

V. Goussev, D. Skok; ADVANCED OVERSAMPLING TECHNIQUES FOR THE SPACEFIBRE 240

Onboard Equipment & Software (Short Papers)

A. Senior, J.Coetzee, J. Ilstad; THE DRAFT ECSS SPACEWIRE BACKPLANE STANDARD 245

B.Yu, A. Gonzalez, A. Ferrer, C. McClements, S. Parkes; INTEGRATING STAR-DUNDEE SPACEFIBRE

CODEC WITH TI TLK2711 249

W. Gasti, A. Senior, J.Coetzee; MARC – LESSONS LEARNT 253

D. Paterson, D. Gibson, S. Parkes; AN RTEMS PORT FOR THE AT6981 SPACEWIRE-ENABLED

PROCESSOR: FEATURES AND PERFORMANCE 257

Test & Verification (Short Papers)

B. Dellandrea, S. Parkes, D. Jameux; MOST: MODELING OF SPACEWIRE & SPACEFIBRE TRAFFIC 262

K. Stohlmann, G. Fey, D. Lϋdtke; AUTOMATIC PERFORMANCE TRACKING OF A SPACEWIRE

NETWORK 263

S.Mudie, C. McClements, A. Spark, S. Mills, A. Mason, M. Dunstan, S. Parkes; RECORDING SPACEWIRE

TRAFFIC 268

S. Mills, P. Scott, S. Parkes; HIGH SPEED TEST AND DEVELOPMENT WITH THE SPACEWIRE

BRICK MK3 272

S.Arase, I. Fujishiro, M.Nomachi; SPACEWIRE-TO-GIGABITETHER AND SPACEWIRE BACKPLANE 277

A. Mason, S. Parkes; USING SPACEWIRE WITH LABVIEW 281

Standardisation (Short Papers)

O. Notebaert, J. Lachaize, R. Clavier, A. Fueser, H.Herpel, G. Montano, L. Planche; SPACEWIRE 2: NEEDS

AND EVALUATION METRICS 286

G.Rakow, A. Kisin; MANCHESTER CODING OPTION FOR SPACEWIRE: PROVIDING CHOICES FOR

SYSTEM LEVEL DESIGN 287

E. Suvorova, L. Koblyakova, E. Yablokov; SPACEWIRE CONTROL CODES IN SPACEWIRE,

GIGASPACEWIRE AND SPACEFIBRE NETWORKS 291

Missions & Applications (Long Papers)

V. Kollias, N. Pogkas, A.Tavoularis; FLIGHT EQUIPMENT VALIDATION WITH ISAFT: THE EUCLID FINE

GUIDANCE SENSOR CASE 297

Exhibitors

4LINKS LTD

 4Links, designs, manufactures and supplies an extensive range of SpaceWire test and simulation equipment and

IP products. The company was founded in 2000 by personnel who contributed to the European Space Agency

SpaceWire standard, a spacecraft on-board network technology now used internationally on more than 100

satellites. Today the 4Links product range is renowned as being the most comprehensive and reliable on the

market. 4Links is based on the Science and Innovation Centre on Bletchley Park, the World War II code-

breaking centre, in Buckinghamshire, UK.

AEROFLEX

Aeroflex Microelectronic Solution - HiRel divisions supply integrated circuits such as standard products for

HiRel applications including FPGAs, LEON 3FT Microprocessors, Logic, MIL-STD-1553

Databus/Transceivers, Clocks, Voltage Regulators and Supervisors, MUXes, Diodes, MOSFETS, LVDS and

Memory families and our SpaceWire products - Transceivers, Protocol IP, Routers.

Our RadHard-by-Design Digital and Mixed-Signal ASICs handle design complexities up to 3,000,000 usable

gates. We also offer Radiation Testing and Circuit Card Assembly Services.

Aeroflex Gaisler, based in Goteborg, Sweden, is a provider of SoC solutions and IP-cores for exceptionally

competitive markets such as Aerospace, Military and Commercial applications. The Aeroflex Gaisler's IPcores

consist of user-customizable 32-bit SPARC V8 processor and floating-point-unit cores, SpaceWire cores,

peripheral IP-cores and associated software and development tools. The new GR712 LEON Microprocessor is

in production. Aeroflex Gaisler solutions help companies develop application-specific SoCs that are highly

competitive for customer specific applications. Gaisler Research's personnel have extended design experience,

and have been involved in establishing standards for ASIC and FPGA development.

ATMEL

In Europe, ATMEL has 2 main Business Units:

 MCU: MicroController Business Unit:

This BU develops Standard products and Custom products based on AVR8, AVR32 and ARM core.

ATMEL is becoming the first supplier of 8bit controllers thanks to its success with many applications

and especially the MaxTouch family.

 Automotive, Memory and Aerospace Business Unit:

This BU develops products for dedicated Markets and applications.

Aerospace developments within ATMEL are all located in Europe, mainly in France (Nantes and Rousset) but

also with technical centres supporting ASIC and FPGA business locally (France, Italy, Germany, UK).

There is no involvement of any USA Atmel employees and Aerospace products are guaranteed not to be

restricted by ITAR and EAR rules.

ATMEL Nantes site has been developing Integrated Circuit for space application since 1985. The development

team installed now in Nantes and Rousset has a very large experience of radiation hardened circuits design and

fabrication constraints.

ATMEL circuits are available in rad-hard versions that meet the harsh environment (cumulated dose, latch-up

and transient phenomena) of space applications. Design and manufacturing facilities reach international quality

standards recognition and are QML-V certified and ESCC QML certified.

High-reliability radiation-hardened products provided by Atmel mean:

• Full military operating temperature range (-55 to + 125°C)

• 100K - 300Krd range, Latch-Up, SEE, SEFI hardened

ATMEL also proposes some Rad Tolerant products for Space applications like launchers, manned space flight

and LEO satellites. Those devices are also targeting civil and military avionic critical applications where single

events need to be minimized.

Rad Tolerant products mean Latch up immunity, 20 to 50Krd range TID and higher SEU LET versus COTS

devices.

Qualification flow is also adapted to the targeted market.

Atmel portfolio contents advanced technical and competitive solutions for space market for the following

products range:

• Processors & microcontrollers (32-bit SPARC, ARM & 8 bits AVR)

• Memories (SRAM & EEPROM)

• Communication ICs

• SRAM-based Reprogrammable FPGAs

• ASICs (up to 30M gates)

Atmel is committed for the long term to support the aerospace industry.

AXON’ CABLE

The Axon’ group designs and manufactures wire, cable, connectors and cable assemblies for advanced

technology applications in the principal fields of space, aeronautics, medical electronics, automotive and

scientific research. Headquartered in France (100 Km east of Paris) the Group employs some 1700 staff in 14

subsidiaries across Europe, America and Asia, with an annual turnover of €115 million euro.

Axon’ Cable has been involved in many space projects, including the International Space Station, various LEO

and GEO satellites and rocket launchers including Ariane 5, and can boast flight heritage dating back to 1997.

The group offers various types of products for space applications:

- ESCC approved wires, cables and connectors,

- lightweight aluminium round cables and braids,

- aluminium bus bars for satellite power distribution,

- MIL-STD-1553 databus looms for digital transmission systems,

- high data rate links for Voice-Data-Image transmission including SpaceWire, IEEE1394, Ethernet

 and Fibre Channel,

- solutions suitable for the forthcoming multi-gigabit protocol, SpaceFibre,

- and custom-designed products for specific applications.

Additionally, Axon’ has been involved either as prime or subcontractor on a number of ESA EMITS tenders

including the development of high temperature thruster cables, the development of low mass SpaceWire, the

evaluation of shielding techniques for Spacecraft harnesses, the evaluation of Nano-D for Space, the

development of Combo Micro-D’s and the provision of cables for the SpaceFibre Demonstrator.

MOSCOW INSTITUTE OF PHYSICS AND TECHNOLOGY

Moscow Institute of Physics and Technology (MIPT) is one of the leading Russian universities in the areas of

physics, mathematics, and informatics.

MIPT was founded in 1946 by the Leading Soviet scientists on Special Decision of the Soviet Government as an

advanced educational and research Institution for the preparing of the specialists in advanced fields of Science

(with primary concentration in Physics) and Industry.

For the time of MIPT functioning 8 Nobel Laureats were its Professors. MIPT graduates Andrey Geim and

Konstantin Novoselov were awarded jointly by the Nobel Prize in Physics 2010.

In the 60 years of its history, MIPT has trained over 30,000 high-level specialists in various fields of Science,

Technology, Economics, and Business. Over 17,000 MIPT graduates have become Ph. Doctors of Science; over

6,000 have gained degree of Habilitated Doctor of Science. More than 150 alumni have been elected Full and

Corresponding Members of the Russian Academy of Sciences.

Our mission is to provide training of highly employable graduates for cutting-edge science and technology

fields.

From the outset, MIPT has used a unique system for training specialists, known as the Phystech System, which

combines fundamental science, engineering disciplines and student research. Students and graduates of MIPT

are representatives of an elite circle who, thanks to their interdisciplinary scientific surroundings, are able to

fully realize their potential.

Prospectus with detailed information: http://mipt.ru/education/abitur/MIPT_overview_en.pdf

SHIMAFUJI ELECTRIC

Since 1990, Shimafuji Electric has been developing microcomputer boards including transmission, graphics and

other complex peripheral functions and also producing small amount of products for some OEMs.

Shimafuji have joined the Japan SpaceWire user Group since early days. We developed the SpaceWire

compliant cubic computer, Space Cube with JAXA, and we have some SpaceWire function boards, like

Sampling ADC, Digital I/O, and ETC since 2005. Then, our one of latest model is the 4 port Space Wire to

Gigabit Ether Unit and we are developing the 24-link SpaceWire Packet Recorder and 48-port SpaceWire

Packet Generator based on the 12-slots microTCA SpaceWire Backplane system.

http://mipt.ru/education/abitur/MIPT_overview_en.pdf

STAR-DUNDEE LTD

STAR-Dundee specialises in supporting users and developers of SpaceWire and SpaceFibre; data networking

standards for on-board satellites and spacecraft.

SpaceWire is established as one of the main data-handling networks used on many ESA, NASA and JAXA

spacecraft and by research organisations and space industry across the world. SpaceWire's speed, simplicity,

flexibility and interoperability have contributed to its continuing adoption and popularity.

STAR-Dundee has a comprehensive product line of SpaceWire test and development equipment that can test

across all levels of SpaceWire standard. The product portfolio encompasses equipment to enable the design,

development, integration and testing of SpaceWire networks and devices, along with industry-leading flight IP

cores, chip designs, design services, consultancy and training.

SpaceFibre is an emerging ESA standard networking technology that provides a very high-speed serial data-link

for high data-rate payloads. SpaceFibre aims to complement the capabilities of the widely used SpaceWire

standard: achieving initial data rates of 2 Gbits/s improving to 5 Gbits/s long-term, capable of operating over

fibre-optic and copper cable, reducing cable mass by a factor of four, adding integrated QoS including

bandwidth reservation, priority and scheduling, enhancing robustness with FDIR features at all protocol levels,

providing galvanic isolation, and multi-laning improves the data-rate further to well over 20 Gbits/s.

SpaceFibre is being developed by the University of Dundee for ESA and STAR-Dundee can now provide

SpaceFibre IP Cores and chip designs, SpaceFibre interfaces, SpaceWire to SpaceFibre Bridge, and SpaceFibre

link analysis tools; everything needed for the early adoption of this new technology.

The STAR-Dundee team has leading expertise in all areas of SpaceWire and SpaceFibre technology and is

committed to helping our customers adopt these technologies, providing continued support through the full

development life-cycle.

TELETEL

TELETEL, founded in 1995, is a private Greek software and hardware, design and development

company, having a long history of providing development services and products in the space, defense

and aeronautics sectors. TELETEL works very closely with the European industry having provided

software and hardware solutions to DASSAULT, SAGEM, THALES, MBDA, EADS, AIRBUS,

ALCATEL-LUCENT, MOTOROLA and many other customers. Since Greece's membership to ESA,

TELETEL invests in space technologies at an accelerating pace, being today one of the most

successful Greek organizations in the space market.

TELETEL’s main competence is the provision of system, SW & HW solutions mainly for

communication systems with special emphasis on test, validation and data interfaces simulation

(Spacewire, MIL-STD-1553, CAN). Since 2007, various activities in the validation of Space related

components (SpW, SpW-T, SpW-D, IMA TSP, SCOC3, N-Mass, etc.) have been successfully

handled, internal infrastructure (i.e. representative testbeds for on-board network architecture) has

gradually been built, and TELETEL developed its own platform/product (i.e. iSAFT PVS) to address

the needs of various mission EGSE, SCOE or DFE configurations.

The iSAFT PVS product line includes today the following space products:

 iSAFT Protocol Validation Platform for on-boards data networks (http://teletel.eu/isaft-protocol-

validation-platform)

 iSAFT SpaceWire/MIL-STD-1553/CAN Recorder (http://teletel.eu/isaft-spacewire-mil-std-1553-

can-recorder)

 iSAFT SpaceWire/MIL-STD-1553 Simulator (http://teletel.eu/isaft-spacewire-mil-std-1553-

simulator/)

TELETEL is fully certified according to the ISO 9001:2008 Quality Standard and can handle graded

material according to NATO C-M (55) 15 FINAL Security System. The company strictly follows

development practices and standards such as ECSS, DO-178B, etc. TELETEL is also involved in

various R&D programs funded by EU, ESA, EDA, NATO and industrial consortia. Further

information about TELETEL can be found at www.teletel.eu

http://teletel.eu/isaft-protocol-validation-platform
http://teletel.eu/isaft-protocol-validation-platform
http://teletel.eu/isaft-spacewire-mil-std-1553-can-recorder
http://teletel.eu/isaft-spacewire-mil-std-1553-can-recorder
http://teletel.eu/isaft-spacewire-mil-std-1553-simulator/
http://teletel.eu/isaft-spacewire-mil-std-1553-simulator/
http://www.teletel.eu/

	Front Cover
	Copyright Notice
	Preface
	Technical Committee
	Programme Overview
	Tuesday 23 September
	Networks & Protocols 1 (Long)
	Siegle - FDIR Techniques for Payload Streaming Applications using SpaceWire-based Networks
	Sakthivel - SpaceWire Time Distribution Protocol Implementation and Results
	Sheynin - STP-ISS Transport Protocol for SpacecraftOn-board Networks
	Deredempt - Satellite / spacecraft on-board data handling by coupling ARINC-664 (AFDX) andSpaceWire

	Components (Short)
	Kellett - Solutions for copper-based SpaceFibre Links
	Solokhina - Radiation tolerant heterogeneous Multicore "system on chip" with built-in multichannel SpaceFibre switch for the “intelligent” signals and images processing systems
	Coetzee - Experiences with a SpaceWire Backplane Connector

	Missions & Applications (Short)
	Hihara - Service oriented integration of SpaceWire and conventional protocols with reference to SOIS
	Suess - Frequency Calibration of the SWI Instrument onboard of JUICE using SpaceWire Time-Codes
	Michel - How RMAP improves in-flight update of on-board software via SpaceWire

	Standardisation (Long)
	Montano - Standardisation of the Network Management Service Suite (N-MaSS) for Fault Detection,Isolation and Recovery for SpaceWire
	Marshall - Standardized SpaceWire Solutions for Next Generation Systems

	Test & Verification (Long)
	Tavoularis - iSAFT-PVS: Recording, Simulation & Traffic Generation at Full Network Load

	Wednesday 24 September
	Networks & Protocols (Short)
	Iwase - The evaluation of SpaceWire-R draft specification through the connectivity test using SpaceCube2
	Khramenkova - Automated SpaceWire Network Administration
	Hayama - Impacts of Faults on a SpaceWire Network
	Zhen - Spaceborne Unified Data & Information Network
	Romanowski - SPACEMAN: A SpaceWire Network Management Tool
	Sheynin - Protocol Design for Wireless Extension of Embedded Networks: Overview of Requirements and Challenges

	Components (Long)
	Ekergarn - GR718 – Radiation-Tolerant 18x SpaceWire Router Based on the DARE 180 nm Library
	Epperly - Galvanically Isolated SpaceWire
	Burkhay - Radiation-Tested Extended Common Mode LVDS Components
	Ganry - Atmel’s Rad-Hard Sparc V8 Processor 200Mhz Low Power System on chip integrating state of the art Spacewire Router

	SpaceFibre (Long)
	Parkes - SpaceFibre Implementation, Test and Validation
	Suvorova - SpaceFibre/SpaceWire-RT implementation experience and evolution trends
	Suvorova - QoS in SpaceFibre and SpaceWire/GigaSpaceWire Protocols

	Poster Presentations
	Plasson - Implementation of a RMAP Bootloader for the Solar Orbiter RPW Experiment
	Otake - The study and proposal for improvement the multi-lane operation of SpaceFibre protocol
	Sheynin - SpaceFibre Based Spacecraft Network Case Study
	Zhen - The Remote Virtual-Channel Transfer Protocol
	Blasco - Active Optical Cable for SpW applications
	Sundaram Natchinarkiniyan - SpaceWire to SpaceFibre Bridge
	Raszhivin - Protocols for Deterministic Packets Delivery in SpaceWire Networks
	Han - HANDS：A Heterogeneous Aerospace Network Architecture For Disaggregated Satellites based on SpaceWire
	Bao - Towards Software Defined SpaceWire Networks
	Scott - The SpaceWire Physical Layer Tester (SPLT)
	Cozzi - AXI-based SpaceFibre IP Core Implementation
	Shuai - Study and Implementation of SpaceWire Network Redundancy Technology Based on FPGA
	Yaopu - A design of on-board dual-channel data handling method based on two FPGAs

	Thursday 25 September
	Networks & Protocols 2 (Long)
	Yuasa - A SpaceWire router architecture with non-blocking packet transfer mechanism
	Gibson - SpaceWire-D on the Castor Spaceflight Processor

	SpaceFibre (Short)
	Rowlings - An Experimental Evaluation of SpaceFibre Resource Requirements
	Suvorova - Network Layer Support in SpaceFibre Protocol
	Rastetter - SpaceFibre Demonstrator: Demonstration and Testing
	Goussev - Advanced Oversampling Techniques for the SpaceFibre

	Onboard Equipment & Software (Short)
	Senior - The draft ECSS SpaceWire Backplane Standard
	Yu - Integrating STAR-Dundee SpaceFibre Codec with TITLK2711
	Gasti - MARC – Lessons Learnt
	Paterson - An RTEMS Port for the AT6981 SpaceWire-Enabled Processor : Features and Performance

	Test & Verification (Short)
	Dellandrea - MOST: Modeling of SpaceWire & SpaceFibre traffic
	Stohlmann - Automatic Performance Tracking of a SpaceWire Network
	Mudie - Recording SpaceWire Traffic
	Mills - High Speed Test and Development with the SpaceWire Brick Mk3
	Arase - SpaceWire-to-GigabitEther and SpaceWire backplane
	Mason - Using SpaceWire with LabVIEW

	Standardisation (Short)
	Notebaert - SpaceWire 2: Needs and Evaluation Metrics
	Rakow - Manchester Coding Option for SpaceWire:providing choices for system level design
	Suvorova - SpaceWire Control Codes in SpaceWire, GigaSpaceWire and SpaceFibre Networks

	Missions & Applications (Long)
	Kollias - Flight equipment Validation with iSAFT: The EUCLID Fine Guidance Sensor case

	Papers Indexed by Author
	Papers Indexed by Session
	Exhibitors

