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Preface 
 

These proceedings contain the papers presented at the 2014 International SpaceWire 

Conference, held in Athens, Greece, between 22
nd

 and 25
th
 September, 2014.  The International 

SpaceWire Conference aims to bring together SpaceWire product designers, hardware engineers, 

software engineers, system developers and mission specialists interested in and working with 

SpaceWire to share the latest ideas and developments related to SpaceWire technology. SpaceWire 

technology is now being used or designed into over one hundred spacecraft, covering science, 

exploration, Earth observation and commercial applications. High profile missions like James Webb 

Space Telescope, Astro-H, GAIA, ExoMars, Bepicolombo, Solar Orbiter, Sentinels 1, 2, 3 and 5 

precursor, and GOES-R are using SpaceWire extensively. SpaceWire is being used in Europe, Japan, 

USA, Russia, China, India, and other countries of the World. 

The conference covers many different aspects of SpaceWire technology and includes both 

academic and industrial presentations. Sessions address recent developments of the SpaceWire set of 

standards, space missions and other applications using SpaceWire, new components, sensors and 

cables which support the SpaceWire standard; products supporting SpaceWire including onboard 

equipment, instruments and related onboard software; methods and equipment to aid the test and 

verification of SpaceWire components, units and systems; and SpaceWire networks, their 

architecture, configuration, and discovery, as well as “plug and play” concepts, other higher level 

protocols and related hardware and software design issues. 

Technical seminars at the conference covered SpaceWire Missions and SpaceWire Protocols. 

The SpaceWire Missions tutorial looked at how SpaceWire has been used in several NASA, JAXA 

and ESA missions. The SpaceWire Protocols tutorial covered several protocols that run on top of 

SpaceWire. Each protocol was described in detail to provide a good understanding of its purpose and 

how it works. Part 1 of this tutorial looked at protocols that have been approved or that are in the 

process of being approved, while part 2 covered new protocols that are in the process of being 

specified. 

The community of engineers working on SpaceWire meet regularly at the SpaceWire 

Working Group meetings to help with the further development of SpaceWire and related standards 

and technologies. This group includes engineers from many parts of the World with substantial 

contributions from Europe, USA, Japan, and Russia. The SpaceWire Conference complements these 

Working Group meetings with more formal presentations from a wider range of contributors.   

There is growing interest in the SpaceFibre which aims to provide multi-gigabit/s network 

technology for future space flight application like high-resolution multi-spectral imaging and 

synthetic aperture radar. The number of papers presented at the conference on SpaceFibre and related 

technologies continues to grow.  

The conference committee would like to acknowledge the support and hard work of the many 

individuals who made International SpaceWire Conference 2014 a reality.  First, we thank the authors 

and the keynote speakers for their contributions.  We express our gratitude to the Technical 

Committee for their assistance in the review process.  We thank all people supporting us at Teletel, 

the Space Technology Centre of the University of Dundee, and the European Space Agency. 
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Programme Overview 

Monday 22 September 

14:00 – 18:00 Registration 

15:00 – 19:15 Tutorials of SpaceWire Missions and SpaceWire Protocols 

Tuesday 23 September 

09:00 – 10:15 Conference Opening / Keynote Presentations (75 min) 

10:35 – 12:15  Networks & Protocols Long  1 (100 min) 

13:40 – 14:25 Components Short (45 min) 

14:25 – 15:10 Missions & Applications Short (45 min) 

15:30 – 16:20 Standardisation Long  (50 min)  

16:20 – 16:45 Test & Verification Long (25 min) 

Wednesday 24 September 

08:45 – 10:15 Networks & Protocols Short (105 min) 

10:35 – 12:15 Components Long (100 min) 

13:15 – 14:30 SpaceFibre Long (75min) 

14:30 – 16:00 Poster Session (90 min) 
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Thursday 25 September 

09:00 – 09:50 Networks & Protocols Long 2 (50 min)   

09:50 – 10:50 SpaceFibre Short (60 min)   

11:10 – 12:10 Onboard Equipment & Software Short (60 min) 

13:25 – 14:55 Test & Verification Short (90 min) 

15:15 – 16:00 Standardisation Short (45 min)   

16:00 – 16:25  Missions & Applications Long (25 min)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Programme is subject to change 
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Tuesday 23 September 
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FDIR Techniques for Payload Streaming 
Applications using SpaceWire-based Networks 

Networks and Protocols, Long Paper 
 

Felix Siegle, Tanya Vladimirova 
University of Leicester 

Leicester, LE1 7RH, United Kingdom 
 
 

Jørgen Ilstad 
European Space Agency / ESTEC 

2200 AG Noordwijk, The Netherlands 
 
 

Omar Emam 
Airbus Defence and Space 

Stevenage, SG1 2AS, United Kingdom

 
Abstract—This paper is concerned with a novel Fault Detec-

tion, Isolation and Recovery (FDIR) methodology for multi-
Field-Programmable Gate Array (FPGA) systems. It features an 
embedded hardware platform, which supports adaptive redun-
dancy whereby redundant processor instances can be distributed 
over multiple FPGA devices. This is achieved by utilising a Net-
work-on-Chip (NoC), which is heavily based on SpaceWire. 

Index Terms—FDIR, Majority Voting, Redundancy, SoCWire, 
Spacecraft Electronics, SpaceWire, SRAM-based FPGAs 

I. INTRODUCTION 
Modern approaches to satellite payload data processing 

demand increased processing capabilities. Ideally, the payload 
data can be processed in real time while being streamed from 
an on-board sensor, e.g. a camera to a mass memory device. 
The processing data path may contain several processor nodes 
connected in series. 

Camera

Image Filter

Image

Compression

Image

Encrpytion

Mass

Memory

Device

Raw RGB Raw RGB JPEG Data

Encrypted JPEG Data

 
Figure 1: Example for an image-processing pipeline. 

An example would be an image processing pipeline, as out-
lined in Figure 1, in which video data is first filtered, then 
compressed and finally encrypted. To make such a processing 
pipeline adaptable in terms of functionality and reliability, the 
different processing steps can be implemented on reconfigura-
ble Field-Programmable Gate Arrays (FPGAs). Since fast 
hardware implementations of the processing steps can be rather 
resource demanding, techniques are necessary to also exploit 
multi-FPGA systems. An example for such a system is the 
Dynamically Reconfigurable Processing Module (DRPM) 
developed by University of Brunswick, Germany and Airbus 
Defence and Space, UK [1], shown in Figure 2. This hardware 
development platform comprises a scalable number of payload 
data processing units with two reconfigurable SRAM-based 

Virtex-4 FPGAs and one LEON3 microprocessor per unit. The 
DRPM platform is being used in a research project carried out 
at the University of Leicester, which is aimed at the develop-
ment of Fault Detection, Isolation and Recovery (FDIR) tech-
niques for payload streaming applications implemented on 
SRAM-based FPGAs.  

A novel FDIR technique called Distributed Failure Detec-
tion aimed at utilising multi-FPGA systems more efficiently 
was presented in [2] that makes use of a SpaceWire-based 
Network-on-Chip (NoC). However, the technique was not 
capable of dealing with the asynchronous network streams, 
which usually occur when the network nodes are located in 
different clock domains. By introducing a stand-alone failure 
detector, which is able to synchronise incoming data streams 
automatically, the technique was further developed in [3]. 
Based on the results of a Failure Mode and Effects Analysis 
(FMEA), the detector module is designed in such a way that it 
can handle typical failure modes occurring in network architec-
tures.  

In this paper, an upgraded version of this technique is pre-
sented, in which the failure detector modules are embedded 
into routing switches. By doing so, it is finally possible to de-
tect failures in redundant asynchronous network streams, 
which are provided by network nodes that can be arbitrarily 
placed within the network. In addition, a novel scheme for the 
data synchronisation after failure recovery is discussed and a 
new evaluation of our technique in terms of power, area and 
performance is presented. 

 

SpW

10x

Router

Xilinx

Virtex-4

Xilinx

Virtex-4

LEON3

SoC

SpW-

RTC

Host PC

Configuration

SoCWire

Configuration

SoCWire

SoCWire

 
Figure 2: Block Diagram of the DRPM Demonstrator Platform. 
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The paper is structured as follows. In Section II, the archi-
tecture of the basic building blocks, the so-called stream pro-
cessors, is described. In Section III, an example is given of how 
the Distributed Failure Detection technique allows the distribu-
tion of redundant processors throughout the network. In Sec-
tion 0, results of the conducted FMEA [3] are presented. Then, 
the designs for a majority voter module and a broadcast mech-
anism, both based on the results of the FMEA and now inte-
grated into routing switches, are described in Section V. In 
Section VI, a novel data resynchronisation scheme for freshly 
repaired stream processors is discussed. Section VII evaluates 
the power, performance and area overhead of the proposed 
techniques before Section VIII concludes the paper. 

II. STREAM PROCESSOR ARCHITECTURE 
In the proposed FDIR framework, different processing 

steps are executed by dedicated stream processors, which can 
process incoming data streams independently. 
A typical architecture of such a stream processor is shown in 
Figure 3. An Intellectual Property (IP) core of the desired func-
tionality, e.g. for data compression, encryption or filtering, is 
embedded into a wrapper.  

 

State
Variable
Memory

State
Machine

NoC
Interface

Data In
Interface

Control
Interface

Data
Out

Interface

Protocol
Gen-
erator

IP Core, e.g. compression,

encryption, filtering, etc.

 
Figure 3: Stream Processor Architecture. 

This wrapper comprises a NoC interface for the data ex-
change, some state machine logic and a memory for state vari-
ables. The state machine interprets input control words whereas 
input data words are directly fed into the IP core. An additional 
memory holds all variables that are necessary to configure the 
IP core. If the processing chain uses a specific network proto-
col, a protocol parser and/or protocol generator may be added 
to the input and output of the core (here, the CCSDS Space 
Packet Protocol [4] was adopted). Partitions, which can host 
such a stream processor, are implemented on SRAM-based 
FPGAs. They are connected to a packet-switched, flow-
controlled NoC and can be reconfigured during operation by 
means of dynamic partial reconfiguration. 

The here presented work is based on a NoC implementation 
called SoCWire [5]. SoCWire is a minimal version of Space-
Wire. In this protocol, each network packet may start with a 
logical address (that is typically used for routing purposes) and 
is terminated by an End of Packet (EOP) marker. Every time 
the receive buffer has space for eight more characters, the re-
ceiving node sends out a Flow Control Token (FCT). There-
fore, the receiving node can apply backpressure to a communi-

cation channel, i.e. it can force the source node to freeze by 
simply ceasing the transmission of further FCTs. 

III. NOVEL DISTRIBUTED FAILURE DETECTION METHOD 
With our Distributed Failure Detection methodology, first 

outlined in [2], failure detectors become part of a network. This 
novel approach allows the free distribution of redundant pro-
cessors throughout the network because the output of each 
processor can be routed to any failure detector, independent of 
its location in the network. The network can even span over 
several FPGAs, i.e. links may connect network nodes on-chip 
but also off-chip.  

The possibility to place redundant stream processors on 
several FPGAs has many advantages, for example in cases 
where the chip area of one FPGA is not sufficient to host a full 
fault-tolerant design. 
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Figure 4: Distributed Failure Detection example. 
 
An example network topology is shown in Figure 4. Sever-

al partitions (circles) are interconnected via routing switches. A 
processor has been triplicated and the resulting instances (grey 
circles) are placed on some of these partitions. Say, data is sent 
from a source node Src to the processor and the processor 
sends the processed data to sink node Sink. As the processor is 
triplicated, the data must first be broadcast within the routing 
switches. For instance, routing switch 1 broadcasts the packets 
to output port 1, 3 and 4. In switch 2 and 3, the packets are then 
routed to the other two redundant instances. After processing, 
the resulting packets are routed to the failure detector, which in 
this case is the voter module V, connected to routing switch 3. 
Finally, the output of the voter is routed to the sink node.  

Typically, the network packets do not arrive simultaneously 
at the redundant processors. The latency between each redun-
dant processor and the failure detector may differ too. In addi-
tion, the partitions might be implemented in different clock 
domains. As a result, the voter module must be able to deal 
with asynchronous network streams. 

IV. FAILURE MODE AND EFFECTS ANALYSIS 
In a recent Failure Mode and Effects Analysis [3], it was 

found that two types of failure modes must be expected, those, 
which affect the payload of network packets (i.e. the 

12



application data), and those, which affect the network traffic 
itself. A summary of the FMEA results is shown in Figure 5. 

 
Case (A): Typical operation. The network packets are 

identical but may arrive at different points in time at the voter 
module. This non-synchronicity can be handled by exploiting 
the flow control of the network architecture. The voter module 
applies backpressure to the network channels that already 
received some data until at least one data character has arrived 
in all slots. 
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TIP

TIC
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Case (B)
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Case (D)

Case (E)

Flow Direction

 
Figure 5: Different observable failure modes in network streams. 

 
Case (B): The network packets have an identical structure, i.e. 
the network protocol is faultless, but their payload differs due 
to a failure in the application. In most applications, this case 
will be the most observed one because the probability of a 
failure in the application is usually larger than the probability 
of a failure in the network related components. This failure 
mode can be detected by a voter mechanism that compares the 
(synchronised) network streams character by character.  
 
Case (C): One of the network packets does not arrive at all. It 
seems as if the corresponding processor became faulty and 
ceased the transmission for some reason. This case can be han-
dled by a timeout mechanism with a timeout value TIP, hereaf-
ter also referred to as Inter-Packet Timeout, which is triggered 

once the first redundant packet arrives in one of the slots (i.e. a 
receive buffer assigned to a particular processor) of the voter 
module. If the timeout elapses and one of the redundant net-
work packets has not arrived in its slot, this slot is marked as 
faulty. 
 
Case (D): The transmission of one of the network packets sud-
denly stops before the EOP marker is reached. This case can be 
handled by a second timeout mechanism with a timeout value 
TIC, hereafter also referred to as Inter-Character Timeout, 
which is always retriggered when data character(s) are availa-
ble in some slots but not in others. If the timeout expires, it 
must be assumed that the processor associated with the still 
empty slot suddenly stopped the transmission and thus this slot 
is marked as faulty.  
 
Case (E): One processor becomes a babbling idiot and is 
transmitting undefined data at undefined points in time. Deal-
ing with this case can be problematic if the data from the bab-
bling idiot arrives much earlier than the data from the two other 
healthy processor instances. Then, the Inter-Packet Timeout 
would expire first and the two healthy slots would be spurious-
ly marked as faulty (actually all slots would be marked as 
faulty because further voting is not possible). As it is rather 
unlikely that two processors fail at the same time, this case is 
handled by assuming that the early packet is wrong, i.e. the 
corresponding slot is temporarily marked as faulty. Then, a 
second timeout value TLR, hereafter also referred to as Last 
Resort Timeout, is started. If the packets from the healthy pro-
cessors arrive within this timeout period, no further action is 
required. If they do not arrive, however, all slots must be 
marked as faulty. 
 

Aside from the aforementioned failure modes, another mode 
must be considered when broadcasting data. If a processor 
becomes faulty, it may block incoming traffic. This case can be 
handled by using a non-blocking broadcast mechanism that 
comprises a Broadcast Timeout. If one of the processors blocks 
incoming data throughout the timeout period, it is afterwards 
excluded from the broadcast until the end of the current packet 
transmission. 

V. VOTER AND BROADCAST DESIGN 

A. Addressing Scheme 
For this work, a NoC routing switch has been prototyped 

that comprises a logical address table similar to the one known 
from SpaceWire devices like the SpaceWire 10X Router ASIC 
[6]. The table can be remotely programmed using a simple 
protocol and assigns one or more physical output ports to a 
specific logical address. If more than one port is assigned to an 
address, network packets with this address are broadcast to all 
output ports (this behaviour is in contrast to some SpaceWire 
devices that implement adaptive routing). 
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Figure 6: Circuit diagram of the broadcast mechanism. 

 
The proposed concept implements a double addressing 

scheme. In the targeted streaming applications, network nodes 
are arranged in a processing pipeline and hence each node 
sends its data to only one remote node. To simplify the imple-
mentation, each network node is fixed to one logical address, 
i.e. instead of assigning a logical address to the remote node 
the logical address is actually assigned to the source node. This 
addressing technique was chosen because it allows a network 
node to be not aware of the logical address of its successor 
node and it is therefore sufficient to hardcode the logical ad-
dress into the hardware module. However, there is one excep-
tion: The data resynchronisation mechanism, see Section 0, 
necessitates that a network node is also directly accessible. 
Thus, a second logical address, also referred to as synchronisa-
tion address, is assigned to each node. 

The FMEA revealed that babbling idiots must be expected. 
In theory, such a node can send out any random data but in 
practice it is more likely that these packets are filled with ze-
roes or ones due to stuck-at faults. Therefore, to isolate such 
failures, the logical addresses 0x00 and 0xFF are forbidden 
and any packet carrying one of these addresses is automatically 
spilled within a routing switch.  

Aside from babbling idiots, addressing failures are espe-
cially critical since packets can potentially block essential parts 
of the network. Thus, we ensure that all used logical addresses 
have at least a hamming distance of 2. By doing so, a Single 
Event Upset (SEU) in an address register can only create an 
invalid address but not another valid address. Since packets 
with invalid addresses are spilled within the routing switches, 
such address failures are successfully isolated too.  

B. Non-blocking Broadcast Mechanism 
Broadcasting data to redundant stream processors is done in 

a distributed manner within the routing switches. As mentioned 
in Section 0, the broadcast mechanism must be of non-blocking 
nature to handle faulty processors that block incoming network 
traffic. 

A conceptual circuit diagram of the non-blocking broadcast 
mechanism is shown in Figure 6. Say, a network packet arrives 
at port 0 and its logical address is assigned to physical port 1, 2 
and 3. Then, the broadcast mechanism will transfer a data char-
acter to port 1, 2 and 3 if the receive buffer of port 0 is not 
empty and all transmit buffers of port 1, 2 and 3 are not full. 
This is done by using the handshake signals full, empty, 
nread and nwrite: 
 
minOneFull  :=(full(1) and broadcastEn(1))or 
              (full(2) and broadcastEn(2))or 
              (full(3) and broadcastEn(3)) 
nwrite(1:3) := empty(0) or minOneFull 
nread(0)    := minOneFull 
      

To tolerate potentially faulty stream processors, a Broad-
cast Timeout mechanism is used which is always active if one 
and only one output port of all active output ports is full: 
 
timerReload := true if not    
only_one_set(full(1:3) and broadcastEn(1:3)) 
 

If this timeout elapses, it is assumed that the stream proces-
sor, which is associated with the blocking output port, is faulty. 
Then, the output port is removed from the current broadcast 
round by setting its broadcastEn flag to zero. As a result, 
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the remaining redundant stream processors receive input data, 
although some additional latency, equal to the broadcast 
timeout period, must be expected. 

C. Voting Mechanism 

NoC

Codec 1

NoC

Codec 2

NoC

Codec N

Switch

Matrix

Slot 1

Slot 2

Slot 3

TX Buf.

Word

Voter

Voter State Machine

Slot Health Status (2:0)

 
Figure 7: Voter module integrated into NoC routing switch. 

The voter module that is used as failure detector is embed-
ded into a NoC routing switch as outlined in Figure 7. It com-
prises three receive buffers, also referred to as slots, a transmit 
buffer, a combinational majority word voter and some sequen-
tial state machine logic. The voter module is connected to an 
external supervisor (here a LEON3 microprocessor) via bidi-
rectional Slot Health Status flag signals. If one of the slots is 
detected to be faulty, the supervisor will initiate a recovery 
procedure of the corresponding processor. In the meanwhile, 
the voter module automatically degrades to a comparator mod-
ule. Once the faulty stream processor is repaired, the supervisor 
can instruct the voter module to reintegrate the freshly recov-
ered slot by simply updating the health status. 
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T2b

T3b

T3a

T3c
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T4bT5a
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Figure 8: Voter module state diagram. 

The state diagram of the voter module comprises five states 
as shown in Figure 8: 
 
State S1: The state machine remains in this idle state until the 
first character of the first redundant network packet arrives in 
one of the slots. Then, it moves via transition T1 to state S2. 
 
State S2: This is the synchronisation state, in which the state 
machine awaits all other redundant packets to arrive at the 
voter module. While being in this state, the Inter-Packet 
Timeout is active. Two possible exit conditions can be true: If 
all active slots received some data, the state machine moves via 
T2a to state S4. If one or two slots miss data, the state machine 
moves via T2b to state S3. 
 
State S3: First, this state determines which one of the aforemen-
tioned exit conditions is true. If two slots received data, the 
third slot without data is now marked as faulty and the state 
machine moves via T3a to state S4, i.e. the voter module just 
degraded automatically to a comparator and continues its nor-
mal operation. If only one slot received data, however, it is 
assumed that a babbling idiot sent this data and the slot is 
marked as faulty. Then, the Last-Resort Timeout is started and 
the state machine moves via T3b back to state S2, giving the two 
missing packets some additional time to arrive at the voter 
module. If they do arrive within this timeout period, the state 
machine moves via S3 to normal operation state S4 (now work-
ing as a comparator). If they do not arrive, the voter module 
cannot continue its operation (which is again determined in 
state S3) and the state machine moves back to its idle state S1. 

State S4: The state machine remains in this state during normal 
operation. The redundant network streams are synchronised 
and the state machine sends character by character through the 
combinational majority voter, or, depending on the mode, 
through the comparator circuit as long as data is available in 
all active slots. Every time data is available in some slots but 
not in others, the Inter-Character timeout mechanism is trig-
gered. Two possible failure modes can occur in this state: 
Either the Inter-Character timeout expires or a voting / com-
paring mismatch occurs. In both cases, the state machine 
moves via transition T4b to state S5. If none of these failure 
modes occurs and an EOP marker is received, the state ma-
chine moves via transition T4a back to its idle state S1. 

State S5: This state determines which failure mode occurred in 
state S4 and reacts accordingly. If the Inter-Character timeout 
elapsed, the slot that misses data is marked as faulty. In case 
of a voting mismatch, the slot that contains wrong data is 
marked as faulty, in case of a comparing mismatch both in-
volved slots are marked as faulty. Two possible exit condi-
tions can be true: If two slots are still functional, the voter 
module continues its work as a comparator in state S4. Other-
wise, the state machine moves back to its idle state S1 via T5b. 

VI. DATA RESYNCHRONISATION 
An often-mentioned problem in connection with modular 

redundancy is the required data resynchronisation between the 
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redundant module instances after a module has been success-
fully repaired. Fortunately, typical payload processing applica-
tions do not depend on too many state variables. The number 
of state variables required for the initialisation of a processor 
after reset is often limited to a handful of configuration and 
feedback variables. For instance, an image compression core 
might need a variable storing the compression quality and one 
storing the image line width. Another example could be an 
encryption algorithm used in some feedback mode. Here, a 
feedback variable storing the last cipher text might be needed 
to initialise the freshly repaired processor. 

Assuming that the processing chain has more network 
bandwidth available than the input data stream or alternatively, 
that well dimensioned buffers are available in the network, the 
data processing could be stopped for a short time period in 
which the state variables are shared between the currently func-
tional stream processors and the freshly repaired stream pro-
cessor. We propose to use the already available resources in the 
here presented FDIR methodology to accomplish this task. 

As can be seen in Figure 3, each stream processor already 
comprises a state variable memory, which stores all required 
initialisation variables externally to the embedded IP core. 
Thus, it is sufficient to dump theses variables over the network 
to the freshly repaired processor, which can then store this 
variable set in its own state variable memory. To increase the 
reliability of this mechanism, the state variables of the two 
functional processors could be first compared before the fresh-
ly repaired processor registers them. Since each voter module 
also works as comparator, an elegant solution would utilise the 
voter module for this task. Consider the example shown in 
Figure 4. Say, the processor connected to routing switch 1 has 
been just repaired and needs to be updated with initialisation 
variables. The other two processors could stop the data pro-
cessing after finishing the processing of the current block of 
data and send their state variables to voter module V. The voter 
module could compare the network packet, which contains the 
state variables, and forward all identical state variables to the 
freshly repaired processor which then updates its own memory. 

However, there are two main issues that must be taken into 
account: 

1. The two functional stream processors are not run-
ning synchronous and therefore a synchronous re-
quest to dump the state variable memory could 
lead to situations where one processor is dumping 
newer and hence other variables than the second 
processor. 

2. The two functional stream processors must stop 
any data processing until the freshly repaired in-
stance has updated its own state variable memory 
and resumed its operation. Otherwise, the shared 
variables might be already invalid once they be-
come active in the freshly repaired processor. 

To solve the first problem, the request to dump the state 
variables must be injected into the input data stream. For in-
stance, a small hardware module placed at the front of the pro-
cessing chain could send out a small synchronisation request 
packet containing the synchronisation address of the freshly 

repaired stream processor. This request packet would traverse 
the network like the regular network stream. Relative to this 
input data stream it would arrive at the same bit position and 
thus it could be ensured that the still functional processors re-
ceive this request packet when they are both in the exact same 
state. Then, the functional processors could bundle their state 
variables together with the received synchronisation address 
into a synchronisation packet, which is attached to the output 
data stream. 

At some point, the voter module would receive the redun-
dant synchronisation packets. The voter module is able to de-
tect this special kind of packet and would move into a resyn-
chronisation mode. While in this mode, the aforementioned 
second issue could be simply solved by applying backpressure 
to the slots associated with the two functional processors. In 
other words, after receiving the synchronisation packets, no 
more data characters are taken out from the slot buffers and 
therefore the functional processors would be forced to stop the 
data processing (with some latency as the buffers in the net-
work path would fill up first). In addition, the voter module 
could start a Data Synchronisation Timeout. The timeout peri-
od must be chosen wisely to (i) give the freshly repaired mod-
ule enough time to update its state variable memory but (ii) 
also take the buffer sizes and bandwidths within the network 
into account. The voter module would then send the synchroni-
sation packet to the synchronisation address and thus to the 
freshly repaired stream processor. If no comparison mismatch 
occurred, the voter module would go into a special wait state 
afterwards. 

A short time later, the synchronisation packet would arrive 
at the freshly repaired processor, which would update its state 
variable memory and resume operation. Once the first data is 
processed, its first output packet would arrive at the voter 
module, which is still in its wait state applying backpressure to 
the other two redundant processors. 

Now, the voter module would reintegrate the freshly re-
paired stream processor because the first output packet of the 
freshly repaired processor would be identical to the output 
packets of the other two redundant processors. It would stop 
the backpressure and resume normal operation. However, if the 
Data Synchronisation Timeout elapsed, it would be assumed 
that something went wrong during resynchronisation. In this 
case, the backpressure would be released and normal operation 
would be resumed without reintegrating the freshly repaired 
processor. 

VII. POWER, AREA AND PERFORMANCE OVERHEAD 
Aside from the practical benefits offered by the here pro-

posed FDIR methodology, it is of interest how well it performs 
in terms of power, chip area and clock frequency, compared to 
classic mitigation approaches for SRAM-based FPGAs. 

Typically, Triple Modular Redundancy (TMR) is applied at 
a very low level by triplicating FPGA building blocks and 
inserting bit voters into the netlist of a circuit. In the following, 
our approach is compared to this mitigation technique. The 
proof-of-concept system used here comprises a stream proces-
sor that implements JPEG image compression. 
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Figure 9: Failure Masking and Detection Techniques. From left to 
right: (a) No Redundancy, (b) Modular TMR as proposed here, (c) 
Classic Netlist-TMR approach. 

Three scenarios, as depicted in Figure 9, are investigated. In 
scenario (a), a single JPEG stream processor is connected to 
the NoC routing switch; the voter module was removed (grey). 
In scenario (b), three redundant JPEG stream processors are 
connected to the NoC routing switch and the voter module is 
implemented. In scenario (c), Netlist-TMR is applied to a 
single JPEG stream processor by using the Xilinx TMRTool  
[7]; the voter module was again removed. The used FPGA is a 
Xilinx Virtex XC4VSX55-10. In the following, the power 
measurements were conducted using a Tektronix TDS5054B 
oscilloscope that was connected to a high precision current 
probe TCP312. All results are post-place & route. 

TABLE I.  REQUIRED CHIP AREA. 

Scenario Slices RAMBs DSP48s 
(a) No redundancy 9,953 (40%) 90 (28%) 10 (1%) 
(b) Modular TMR 21,852 (88%) 260 (81%) 30 (5%) 
(c) Netlist-TMR 20,909 (85%) 258 (80%) 30 (5%) 

 
In Table I, the required chip area is listed for the three sce-

narios in terms of Slices, Block RAMs (RAMBs) and Digital 
Signal Processing Blocks (DSP48s). The Modular TMR ap-
proach used by the proposed FDIR framework requires slight-
ly more slices and one additional Block RAM compared to the 
classic Netlist-TMR approach. 

TABLE II.  PERFORMANCE RESULTS. 

Scenario Min. Period [ns] Max. Freq. [MHz] 
(a) No redundancy 9.04 110.66 
(b) Modular TMR 9.52 105.02 
(c) Netlist-TMR 10.10 98.97 

 
Table II lists the maximum clock frequency, respectively 

the minimum period for the three scenarios. Both TMR ap-
proaches perform naturally worse than systems to which no 
redundancy is applied. Main reason for scenario (b) is the fact 
that the three partitions hosting the stream processors are area 
constraint, which limits the capabilities of the place & route 
tool. In scenario (c), the critical path length is increased be-
cause many one-bit voters are inserted into the netlist. The 
Modular TMR approach used by the proposed FDIR method-
ology performs much better than the classic Netlist-TMR ap-
proach. This is especially an advantage for payload data pro-
cessing systems where performance is more important than 
area overhead.  

TABLE III.  POWER CONSUMPTION 

Scenario Relative Power [W] 
Not configured 0.00 

(a) No redundancy 1.01 
(b) Modular TMR 1.87 
(c) Netlist-TMR 2.08 

 
The figures in Table III show that the proposed Modular 

TMR approach also consumes less power than the Netlist-
TMR approach, another beneficial aspect for payload data 
processing systems with power demanding circuits. 

VIII. CONCLUSIONS 
The Distributed Failure Detection technique in its final de-

velopment stage offers many advantages compared to classic 
mitigation approaches for SRAM-based FPGAs, as presented 
above. On the one hand, the methodology is adaptive, i.e. re-
dundancy can be added or removed during flight to either in-
crease the system availability or the power consumption of the 
system. On the other hand, by utilising a NoC as communica-
tion architecture, redundant stream processors can be distribut-
ed over several FPGAs and hence, multi-FPGA systems can be 
utilised more efficiently. Although data resynchronisation after 
repair is a serious issue, a novel resynchronisation scheme was 
proposed, which results in low implementation complexity and 
area overhead. Furthermore, it was shown that for some appli-
cations, the modular redundancy approach performs better than 
the classic Netlist-TMR approach in terms of power consump-
tion and maximum clock frequency while the required chip 
area is only slightly increased. 

The FDIR methodology is not technology-dependent and 
could be applied in a similar way to other systems consisting of 
multiple processing elements by choosing, for instance, 
SpaceWire or SpaceFibre as the network architecture.  
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Abstract—Aeroflex Gaisler has developed, under European 

Space Agency (ESA) contract 4000104519, a draft ECSS 

protocol for the transmission and synchronization of CCSDS 

Unsegmented Code (CUC) time in SpaceWire networks. The 

working name of the protocol is "Time Distribution Protocol“. 

Apart from transmission and synchronization of time across 

the SpaceWire network, the protocol also provides guidelines 

to achieve highly accurate time synchronization by mitigating 

jitter and latency affecting SpaceWire Time-Code transmission 

in a SpaceWire network. The protocol also provides guidelines 

for correcting clock drift appearing in local SpaceWire nodes. 

A prototype implementation of the protocol was performed 

and analyzed for intended functionality. The implementation of 

jitter and drift mitigation is based on a simple time interval 

measurement of incoming SpaceWire Time-Codes using local 

clock. Statistical information is gathered, which is then used to 

calculate an average correction value that is applied to modify 

a frequency synthesizer which provides inputs for the time 

generation. By controlling the frequency synthesizer the time is 

maintained stable without drift arising from oscillator or 

crystal used to generate the local clock. Distributed interrupts 

are used for latency measurement between two nodes in a 

SpaceWire network. Time-stamping of reception and 

transmission of distributed interrupts provides the values 

needed to calculate latency. The calculated latency value is 

used for correcting the time maintained in the system. By 

performing CCSDS Unsegmented Code (CUC) transmission 

and latency, jitter, drift mitigation a stable time keeping in a 

system is achieved. 

Index Terms— SpaceWire, Network, Time-code, Jitter, 

Latency, Distributed Interrupts. 

I. INTRODUCTION 

Time synchronization in spacecraft is becoming 

increasingly important. Traditionally time synchronization 

has been done via dedicated signals or via deterministic on-

board buses. With the advent of SpaceWire links and router 

switches being used for critical control functions, the need 

for accurate time synchronization via this network has arisen. 

The SpaceWire protocol provides rudimentary time-code 

transmission for time synchronization but the transmission 

and reception of time codes suffer from time distribution 

delay (or latency) and jitter in a system. Further the time is 

generated using the local clock available in a system. The 

oscillator or crystal used to generate the local clock may not 

only have an incorrect frequency, it may also experience 

frequency variations over time (drift), which will directly 

affect the time keeping in a system [1]. 

The aim of this implementation is to synchronize the 

time in an initiator to the time in a target. The initiator being 

the master maintains its time and no changes is made to the 

master time after setting it up with an initial reference. The 

target time is synchronized by using the time and SpaceWire 

Time-Code transmitted from initiator. The time mentioned 

here is based on CCSDS Time Code (time message) and 

CCSDS Unsegmented Code (CUC) is used in this 

implementation [2]. The SpaceWire Time-Code is mapped 

from this CUC time and the structure of the SpaceWire 

Time-Code is as per the SpaceWire standard [3]. The time 

synchronization protocol defined is briefly explained in the 

next paragraph. 

The Time Distribution Protocol provides the means for 

transferring time of initiator to targets and for providing a 

synchronization point in time. The time is transferred by 

means of an remote memory access protocol (RMAP) write 

command carrying a CCSDS Time Code (time message) [4]. 

The synchronization event is signaled by means of 

transferring a SpaceWire Time-Code. The transfer of the 

SpaceWire Time-Code is synchronized with time maintained 

by the initiator. To distinguish which SpaceWire Time-Code 

to use for synchronization, the value of the SpaceWire Time-

Code is transferred from initiator to target by means of an 

RMAP write command prior to the actual transmission of 

SpaceWire Time-Code itself. When there is more than one 

target the CCSDS Time Code needs to be transferred to each 

individual target separately [5]. 

Accurate time synchronization through SpaceWire 

should enable and promote the use of SpaceWire for critical 

control functions on-board a spacecraft. It will also allow 
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reduction of the number of on-board buses required in on-

board systems. 

This paper will discuss about the details of protocol 

implementation, methodology to achieve highly accurate 

time synchronization, prototype hardware developed, testing 

and validation and provides results of accuracy in time 

synchronization achieved. 

II. IMPLEMENTATION 

The VHDL IP core (named SPWTDP) developed 

implements the draft Time Distribution Protocol (TDP) [4]. 

As shown in Fig. 1 the SPWTDP sends and receives 

SpaceWire Time-codes and distributed interrupts by 

interacting with a SpaceWire interface. The SpaceWire 

interface is also responsible for RMAP command processing.  

Figure 1 also explains the complete system which can act as 

initiator or target. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.   SPWTDP IP core with a SpaceWire Interface 

A. Initiator 

The initiator which acts as time master is the only node 

capable of sending time message and SpaceWire Time-

Codes in a network. There can be only one initiator in a 

SpaceWire network during a mission phase. The initiator 

also requires SpaceWire link interface implements a RMAP 

initiator capable of transmitting RMAP commands and 

receiving RMAP replies. 

1) The initiator performs the following task 

a) Send SpaceWire Time-Codes. The SpaceWire Time-

Codes are provided by the SPWTDP component and 

transmission of those codes to targets should be performed 

by a SpaceWire interface.  

b) Send and receive distributed interrupts 

c) Transmission of time messages using RMAP 

d) Latency measurement and transmission of latency 

value using RMAP. 

B. Target 

The target should implement RMAP target and capable 

of receiving RMAP commands and transmitting RMAP 

replies. There can be one or more targets in a SpaceWire 

network. 

1) The target performs the following task 

a) Reception of SpaceWire Time-Codes. The 

SpaceWire Time-Codes sent from initiator are received by 

SpaceWire interface and provided to SPWTDP component 

in target. 

b) Reception of time messages through RMAP 

c) Qualification of received time messages using 

SpaceWire Time-Codes 

d) Initialization and Synchronization of received 

CCSDS Time Codes with local time in SPWTDP component 

e)  Latency measurement and correction 

f) Jitter and drift mitigation 

C. Generation of local time from local clock  

The local time counter (time) is implemented complying 

with the CUC T-Field. The counter is incremented on the 

system clock only when enabled by the frequency 

synthesizer. The binary frequency required to determine the 

counter increment is derived from the system clock using a 

frequency synthesizer. The frequency synthesizer is 

incremented with a pre-calculated increment value, which 

matches the available system clock frequency. The frequency 

synthesizer generates a tick every time it wraps around, 

which makes the local counter to step forward with the pre-

calculated increment value. The output of frequency 

synthesizer is used for enabling the increment of local 

counter. The increment rate of the local time counter and 

frequency synthesizer counter is set according to the system 

clock frequency. The frequency synthesizer increment value 

is calculated as in Eq. 1, where FTW - Fine time width of the 

CUC T-Field, FSW - Frequency Synthesizer width, FSINC 

Frequency Synthesizer increment value, F - Frequency of the 

system clock.  

                    FSINC = ((2 ^ FSW) * (2 ^ FTW)) / F (1) 

Both the initiator and target will have its respective local 

time and frequency synthesizer counters. After an initial 

value the initiator counters remain constant but the target 

counters are varied to achieve time synchronization (the 

variations are explained in detail later in this paper). 

D. Generation of SpaceWire Time-Codes 

SpaceWire Time-Codes are continuously transmitted 

from an initiator node (time master) to all target nodes. The 

transmission of the SpaceWire Time-Code is synchronized 

with the local time counter in the initiator node. The six bits 

of the Time-Code time information corresponds to six bits of 

the local time counter. The local time bits with lower weights 

than the size bits mapped to Time Code time information bits 

are all zero at the time of SpaceWire Time-Codes 

transmission. 

E. Initialization and synchronization of target through 

RMAP 

The Local time available in an initiator is transmitted to 

synchronize time across a SpaceWire network. The initiator 

 

20



transfers time message using RMAP across the SpaceWire 

network and the target extracts the time message. The Time 

message transmitted using RMAP should be an exact 

mapping of the command field available in the SPWTDP 

component [5]. The Time message transmitted writes the 

command field available in target. Control register available 

in command field specify whether the target should be 

initialized or synchronized, at which SpaceWire Time-Codes 

it should happen (synchronization event) and details of 

coarse and fine time available in the time message. 

In target, the command field will contain the time 

message when it is written by the initiator through RMAP. 

When the control register with a Time-Code value in 

command field matches with a received SpaceWire Time-

Code then initialization or synchronization will occur to the 

local time counter available in the target SPWTDP 

component. Initialization completely writes the time message 

command time values into the implemented local time 

counter whereas synchronization verifies whether the time 

message command time and local time counter matches till 

the mapped SpaceWire Time-Code level (with a tolerance of 

previous value) and only modifies the local time if there is a 

mismatch.  

After the time in target is initialized, the time needs to be 

corrected for time distribution delay (latency) introduced by 

the time qualification process i.e. the SpaceWire Time-Codes 

are used for time qualification as the time codes undergo 

distribution delay the time maintained also delayed and any 

variation in the oscillator and local clock drift must also be 

corrected for keeping the time synced. 

F. Latency measurement using Time-Stamps 

The SpaceWire interface available in both the initiator 

and target has the capability to send and receive distributed 

interrupts. The incoming and outgoing SpaceWire distributed 

interrupts are time stamped in initiator and target. The 

initiator calculates latency based on these time stamp values. 

The time stamp values in target are obtained from initiator 

through RMAP. 

The distributed interrupt transmission from initiator 

(which performs the latency calculation) can be configured 

to set how often and at which time code distributed interrupts 

are transmitted and time stamping is performed. The time 

stamping can be performed in two methods (only Interrupts 

or Interrupts and Acknowledgement). Initially initiator sends 

a distributed interrupt and when the target received this 

interrupt it will send another interrupt (or acknowledgement 

is provided by the interrupt handler) which will be received 

by the initiator. At each end transmission and reception is 

time stamped i.e. the current local time is stored as time 

stamp values. The latency is calculated from these time 

stamp values based on Eq. 2, where IRX - initiator time stamp 

received, ITX - initiator time stamp transmitted, TTX - target 

time stamp transmitted and TRX - target time stamp received. 

              Latency = ((IRX – ITX) – (TTX – TRX)) / 2 (2) 

By calculating the latency value repeatedly (at least for 

about 128 times) and taking an average of it will provide the 

final latency value. The initiator then transfers the latency 

correction information to the latency field available in the 

target by means of RMAP transfer. When the latency values 

are written it will be adjusted to local time in the target 

which cancels the distribution delay. The calculations are 

performed by the software by accessing the time -stamp 

values and written in the target latency field using RMAP. 

The transmission of SpaceWire Time-Codes and 

distributed interrupts should be separated by a delay; the 

transmission of a Time-Code should not influence the 

transmission of distributed interrupt in order to obtain the 

exact latency of time code transmission. The delay must be 

greater than the time required to transmit the SpaceWire 

Time-Code in the initiator. 

G. Mitigation of jitter and drift 

The jitter and drift correction is performed only in the 

target. The frequency synthesizer clocked by the local clock 

drives the local time at a given rate. By changing the 

frequency synthesizer settings one can adjust the local time. 

The coupling between local clock and the local time 

(frequency synthesizer increment value FSINC) is adjusted to 

the amount of variations seen in the target due to drift or 

jitter. The variations are obtained in local clock count and 

adjusted to the frequency synthesizer [6].  
The correction needed to be performed for time 

synchronization are initial offset difference in local oscillator 

(incorrect frequency), jitter and drift variations. The 

variations are calculated as differences in local ticks and 

external ticks. The external ticks are provided by the 

SpaceWire interface to the SPWTDP component when 

SpaceWire Time-Codes are received from a remote initiator. 

The local ticks in target are provided internally in the 

SPWTDP component, it happens when a local SpaceWire 

Time Code is generated (generated from the local time) 

which is only used for internal calculations. 

1) Initial offset difference 

The number of local clock counts between two local ticks 

is obtained; similarly number of local clock counts between 

two external ticks is obtained. These two values are 

subtracted and the difference is collected over a 64 samples 

and averaged to get a variation value in local clock count. 

The variation obtained is based on the local clock of the 

target node. This variation is multiplied with compensation 

value and provided to frequency synthesizer to get the initial 

offset difference corrected. The compensation value is 

calculated from Eq. 1, considering the target system clock 

frequency and the number of SpaceWire Time-Codes 

transmitted every second. 

2) Jitter correction and drift mitigation 

The number of system clock ticks between local tick and 

external tick is obtained and averaged over a number of 

samples (512 samples is used in this implementation). The 

averaged value is multiplied with compensation value to 

obtain the correction value and fed into frequency 
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synthesizer. The main aspect of jitter correction is to keep the 

local tick in the center of arriving external ticks (or jitter 

free), the correction value is immediately applied and the 

local tick is got back to the center, further the correction term 

is equally distributed to the entire correction interval. The 

variation in local clock drift is seen as local tick movement 

from the center which is caught by the averaging process and 

correction values are fed back as explained above. This will 

keep the local ticks jitter and drift free. Figure 2 shows the 

jitter and drift mitigation process and FS stands for 

Frequency Synthesizer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Jitter and drift correction 

H. Time keeping complete process 

The initiator initiates the target node through a time 

message transfer, calculates latency using distributed 

interrupts and provides latency correction value and starts 

the jitter and drift mitigation process in the target. The 

initiator can also send synchronization time messages at 

regular intervals and the target checks the local time with the 

received synchronization time messages and adjust the local 

time if any variations. The transmission of SpaceWire Time-

Codes at regular intervals helps to correct any clock drift in 

the target. 

III. VERIFICATION 

The IP core developed is verified using simulation for 

proper functionality. The following section explains about 

the accuracy achieved in simulation and explains about the 

verification process. 

A. Verification of functionality 

A VHDL test bench was developed to verify the 

functionality of the VHDL IP core. The Test bench consists 

of initiator and target each with GRSPW2 SpaceWire 

interface, SPWTDP, AMBA controllers and other 

components needed for verification. The time 

synchronization achieved between initiator and target is 

verified using this test bench. The Time messages from 

initiator are transferred to target using RMAP writes through 

SpaceWire link and qualification of these time messages is 

performed by the SpaceWire Time-Codes transmitted from 

initiator to target. The target local time is initialized and 

synchronized (using time messages). The latency is 

calculated based on the values obtained by time-stamping of 

received and transmitted distributed interrupts and calculated 

value is transmitted using RMAP writes to the target.  

The local time maintained in both initiator and target is 

nearly equal, only a single difference (local time least 

represented value) between the initiator and target local time 

was noticed. The number of bits used to represent coarse 

time is 32 bits and fine time is 24 bits, system clock used is 

50 MHz and verification is performed for 10 Mbps and 200 

Mbps transmission data rate, in both cases only a single 

difference between the initiator and target local time was 

noticed. This corresponds to an accuracy of 60 ns, i.e. the 

difference seen in the 24th fine time bit which represents   

2^-24 (~60 ns). The simulation is performed between two 

SpaceWire nodes without any routers and no additional data 

traffic in the network other than NULL control codes and 

Time-Codes.  

B. Verification of jitter and drift correction unit 

The Jitter and drift correction unit is verified in 

simulation using a separate VHDL test bench before 

integrating into the complete system. The local ticks and 

external ticks are generated from different counters (local 

time) and external ticks are provided with delay (latency) 

and variations in delay (jitter) similar to latency and jitter 

experienced by a SpaceWire Time-Code passing through the 

network. The clock provided to one of counters (the one 

which acts as target) is also modified slowly to simulate drift 

in the local clock of target. 

 The correction unit must perform the following,  

  move the local tick in the center of arriving external 

ticks (or jitter free) 

 adapt the frequency synthesizer according to the drift 

introduced in the local clock 

 

 

 

 

 

 

Fig. 3.  Adapting to variations in clock drift 

The correction unit performed both the needed 

corrections. The FSINC provided to the frequency synthesizer 

is also monitored whether it varies according to the amount 

of drift induced in the local clock, we know the local clock 

frequency variation and by using the Eq. 1, we can calculate 

what the FSINC value should be for this frequency variation, 

the FSINC value varied accordingly and local time remained 

stable and the influence of drift from local clock is nullified. 

Figure 3 shows an image taken from the simulation tool, 

the comp is the FSINC value provided to frequency 

synthesizer, initially the simulation started with a frequency 

of 50 MHz and corresponding FSINC value of 360287970 and 

the FTW value is 24 (fine time width). The local clock 

frequency is increased and decreased to simulate the drift in 
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either direction and verified for adaptation in frequency 

synthesizer. Also the real-world data collected during the 

independent ESA measurements have been used as stimuli to 

validate the jitter and drift mitigation technique implemented 

in the correction unit [7]. 

IV. FPGA BASED PROTOTYPING 

FPGA based rapid prototyping has been used during the 

development. The developed VHDL IP core is integrated 

into reference avionics system testbed architecture (RASTA) 

testbed [8]. The testbed consists of GRSPW2 SpaceWire 

interface with RMAP target and cores like AMBA controllers 

required for the implementation of protocol. Figure 4 shows 

the test setup. 

 

 

 

 

Fig. 4.  Test Setup 

The necessary RTEMS drivers required for the RASTA 

systems to operate the added functionality is developed. A 

test application is developed to demonstrate the time 

synchronization functionality.  

A. Board setup 

The actual picture of the test setup used in this 

implementation is shown in Fig. 5. The setup consists of GR-

RASTA-105 acting as an initiator consist of GRSPW2 

SpaceWire interface integrated with the newly developed 

SPWTDP IP core, the GR-RASTA-TMTC act as target 

which also consist of GRSPW2 SpaceWire interface and 

SPWTDP IP core. Figure 5 shows 2 GR718 SpaceWire 18x 

routers which are connected in between the initiator and 

target. The system clock used in all the hardware is 50 MHz 

except the target system which used 33 MHz system clock. 

The time synchronization functionality is tested without any 

routers in the middle and also with 1 and 2 routers in the 

middle, the functionality is tested for varying link data rate 2, 

10, 50, 100 Mbps. The number of time codes transmitted per 

second is 64. The target was also replaced with GR-RASTA-

105 with system clock 50 MHz and tested similar to the 

previous set up with 2, 10, 50, 100 and 200 Mbps link data 

rate. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  Picture of test setup 

V. RESULTS 

The tick generated in initiator during SpaceWire Time-

Code transmission and similar diagnostic tick from target 

(SpaceWire Time-Code and tick is generated just for 

diagnostics in target) is pulled out and monitored using an 

oscilloscope. When a tick occurred the local time with lower 

weights than the size bits mapped to SpaceWire Time-Code 

time information bits are all zero, so comparing the instance 

at which ticks generated provides the accuracy in time 

maintained between the initiator and target. 

The Initial oscillator frequency offset in the target is 

nullified for all the cases mentioned in the previous section 

and a stable time is maintained between the initiator and 

target. When the mitigation is disabled (correction unit 

disabled) in target due to the differences in the local 

oscillators of initiator and target the tick moved away and 

time maintained between the system is incorrect, but when 

the mitigation is enabled the target ticks does not move away 

from the initiator ticks and maintain a stable time difference. 

This proves that the effect of oscillator frequency offset is 

nullified by the mitigation unit. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.  Before latency correction 

Figure 6 shows the ticks viewed through an oscilloscope, 

yellow in the top (1) is the initiator tick, green in the middle 

(2) is the incoming ticks with jitter in the target (generated 

when time codes are received) and pink in the bottom (4) is 

the final diagnostic tick from the target. Figure 6 shows 

before latency correction in target and Fig. 7 shows after 

latency correction. For Fig. 7 the data rate is 2 Mbps with 2 

routers in the middle and the initiator running at 50 MHz 

system clock and target running at 33 MHz system clock. 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  After latency correction, link data rate is 2 Mbps 
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Fig. 8.  After latency correction, link data rate is 10 Mbps 

For Fig. 8 the data rate is 10 Mbps with 2 routers in the 

middle and the initiator and target running at 50 MHz system 

clock. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.  Camera image of oscilloscope output 

In order to depict the incoming time code jitter a direct 

image of oscilloscope output is shown in Fig. 9. 

The time in initiator and target was monitored directly by 

freezing them to a register by an external trigger which 

occurs at same instance to initiator and target. The contents 

of the registers are read out using two debug monitor 

(GRMON) and the values of local time are compared [9]. 

The local time differences seen are in correspondence to the 

time differences seen between the ticks of initiator and 

target. 

 Figure 10 shows an image of the two debug monitors, 

initiator in the left and target in the right. The frozen time 

value is marked with a box and the difference in time is only 

a single unit difference between the initiator and target time 

is noticed. 

 

 

 

 

 

 

 

 

Fig. 10.  Time in initiator and target frozen and stored in a register. 

Initially the accuracy was measured between the initiator 

and target without any additional traffic (other than NULL 

control codes and SpaceWire Time-Codes) the time 

maintained in both initiator and target have only a single 

difference between the initiator and target time was noticed 

and this corresponds to an accuracy of 60 ns, i.e. the 

difference seen in the 24th fine time bit which represents   

2^-24 (~60 ns).  

The same level of accuracy was not able to achieve with 

data traffic in the network. The variation in jitter because of 

data traffic influences this accuracy. The data characters are 

10 bits length whereas the NULL's are 8 bits, the jitter varies 

from 8 to 10 bits of transmission period. The jitter mitigation 

technique implemented in this design tries to nullify the jitter 

by being in the center of the incoming Time-Codes, the 

variation in jitter from 8 to 10 bits due to variation in traffic 

results in an inaccuracy of single transmission bit period per 

link. 

CONCLUSION 

The implementation successfully mitigates effects of the 

oscillator in the target and maintains a stable time between 

initiator and target i.e. the time in the target and time in the 

initiator is maintained at a constant rate. The implementation 

also nullifies the impact of drift (local clock oscillator) in 

local time in the target. A methodology to calculate latency 

using distributed interrupts is defined, implemented and 

verified. The inaccuracy resulting from the jitter variation 

have a significant impact for low link data rate like 2 Mbps 

(500 ns) the effect of jitter variations will have less impact 

for higher data rate like 200 Mbps (5 ns). Even with a defect 

in correction principle the jitters impact on time keeping is 

reduced by a factor of 10 for any number of links.  
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Abstract— SpaceWire is a data-handling network for 

spacecraft which combines simple, low-cost implementation, with 

high performance and architectural flexibility. SpaceWire is 

intended for data-handling applications but does not address 

such aspects of quality of service as robustness, determinism and 

durability that are essential requirements. Nowadays there is a 

number of transport protocols intended to operate over 

SpaceWire. They are: RMAP, CCSDS PTP, STUP, JRDDP and 

STP. Each of them is designed to solve its particular tasks. 

However, there is no SpaceWire oriented transport protocol 

providing reliability, guaranteed services and scheduling. 

The paper presents the new Transport protocol STP-ISS for 

SpaceWire networks. Firstly, it gives an overview and analysis of 

SpaceWire oriented transport protocols, then, considers general 

requirements for the Transport protocol to operate over the 

SpaceWire network technology. Finally, we describe the current 

status of the STP-ISS specification and consider the future 

evolution of the standard. 

Index Terms— SpaceWire, STP-ISS, Transport Protocol, On-

board Network, Quality of Service. 

I. INTRODUCTION 

SpaceWire is a data-handling network for the spacecraft 

which combines simple, low-cost implementation with high 

performance and architectural flexibility [1]. MIL-STD 1553 

has long been the communications bus of choice for spacecraft 

avionics. Limited to 1 Mbits/s aggregate data rate and 

constrained to the bus topology, MIL-STD 1553 is struggling 

to cope with today’s spacecraft requirements. So new 

technologies are being actively integrated into new spacecrafts, 

and SpaceWire is one of them. SpaceWire is now being used 

on more than 30 high profile missions and by all of the major 

space agencies and space industry over the world. 

The basic SpaceWire protocol standard covers three bottom 

layers of the OSI model and does not provide transport 

services. There are a number of transport protocols that had 

been specially developed to operate over SpaceWire. So the 

first part of the paper gives the overview and analysis of these 

protocols. 

II. SPACE ORIENTED TRANSPORT PROTOCOLS REVIEW 

A. Remote Memory Access Protocol 

The Remote Memory Access Protocol (RMAP) has been 

designed to support a wide range of SpaceWire applications. Its 

primary purposes however are to configure a SpaceWire 

network, to control SpaceWire nodes and to gather data and 

status information from those nodes [2]. RMAP can be used for 

the SpaceWire configuration, setting the parameters of a device 

and network information gathering. Also it can be used for data 

transmission, with polling as the main mode of operation. 

The RMAP protocol can be described by its following 

general features: 

 RMAP is a connectionless transport protocol; 

 supports path, logical and regional addressing;  

 write commands can be acknowledged or not 

acknowledged, verified and not verified; 

 provides means for reading and writing of data into the 

memory by just one command (read-modify-write 

command); 

 no timeouts mechanism; 

 no flow control. 

RMAP defines three types of commands: 

 write commands;  

 read commands;  

 read-modify-write commands [2, 3]. 

The RMAP protocol provides guaranteed delivery service 

in the acknowledged mode and best effort service in a non-

acknowledged mode. 

B. CCSDS Packet Transfer Protocol 

CCSDS Packet Transfer Protocol (CCSDS PTP) – is a 

packet transfer protocol which encapsulates a CCSDS Space 

Packet into a SpaceWire packet, transfers it from an initiator to 
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a target across a SpaceWire network, extracts it from the 

SpaceWire packet and passes it to the target user 

application [4]. 

The CCSDS PTP protocol can be described by its 

following general features: 

 connectionless protocol; 

 user may request data transfer at any time; 

 variable or fixed packet length (minimal length is 7 

bytes, maximal – 65542 bytes); 

 unidirectional data transfer without acknowledgments; 

 no data retransmission mechanism; 

 no packet verification (it’s a user application 

functionality) [4]. 

CCSDS PTP does not provide any mechanisms for 

guaranteeing a particular quality of service [4]. 

C. Serial Transfer Universal Protocol 

Serial Transfer Universal Protocol (STUP) is intended for 

data transfer over the SpaceWire network. Its main feature is a 

minimized complexity [5]. 

The general features of the STUP protocol are: 

 connectionless protocol; 

 easy to implement protocol (minimized complexity); 

 just 2 types of commands: write and read; 

 does not provide guaranteed delivery services. 

STUP commands have checksum fields for verification of 

received data [5]. 

D. Joint Reliable Data Delivery Protocol 

The Joint Architecture Standard Reliable Data Delivery 

(JRDDP) is a protocol which provides reliable data 

transmission. It uses the lower-level SpaceWire data link layer 

to provide reliable packet delivery services to one or more 

higher-level host application processes [6]. 

The JRDDP protocol has the following main features: 

 connection-oriented protocol; 

 multiple logical connections; 

 reliable data delivery; 

 detection of missing packets; 

 out-of-sequence packet reordering; 

 buffer fragmentation and reassembly [6]. 

The JRDDP defines the following packet types: 

 application data; 

 acknowledge; 

 open/reset command; 

 close command; 

 urgent. 

JRDDP provides three types of quality of service: priority, 

guaranteed and best-effort data delivery. According to JRDDP 

specification the data flows should have the following 

priorities: acknowledgment packets, control packets, urgent 

packets, retransmit packets, data packets. 

Best-effort QoS is optionally used for urgent messages 

delivery such as time broadcasts, messages with exceptions and 

errors control, meta-messages, etc. [6]. 

The JRDDP protocol provides fault detection and fault 

tolerance by means of CRC checksum and packet sequence 

numbering. Moreover, it uses timeouts for detection of missing 

and duplicate packets and acknowledgements for indication a 

successful packets delivery. 

E. Streaming Transport Protocol 

The Streaming Transport Protocol (STP) is developed for 

streaming data transmission over SpaceWire network. This 

protocol also supports simultaneous transmission of multiple 

coherent data flows [7]. 

The STP protocol is oriented for asymmetric establishment 

of transport connection: on the one side there is a host (master), 

and the slave device is on the other side. The host device is an 

initiator of a transaction session. The master performs the 

connection establishment, configuration of connection 

parameters and packets flow control [7]. 

The STP protocol can be described by its following general 

features: 

 connection-oriented protocol; 

 reliable handshake for connection establishment and 

teardown (3-way handshake); 

 asymmetric connection (data transmission is performed 

from slave to host device); 

 multi-streaming (up to 65535 connections); 

 fixed length of transmitted data; 

 periodical data transfer in specified time period in 

accordance with the configuration parameters and 

during the whole duration of the connection; 

 data delivery without acknowledgements and 

retransmission; 

 data flow control. 

The STP protocol uses the following mechanisms to 

provide fault detection and fault tolerance: 

 packet fields verification, header and payload CRCs; 

 timeouts mechanism; 

 terminal node status monitoring procedure (status 

command sending). 

F. Protocols comparison 

General features of each overviewed protocol are given in 

the Table I [8]. 

It is clear from the Table 1, that there is no such a protocol 

existing for the SpaceWire networks which provides reliability, 

guaranteed data delivery, scheduling and configuration 

flexibility. Therefore, a new Transport protocol should be 

developed to operate over SpaceWire.  
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TABLE I.  PROTOCOLS COMPARISON 

Protocol 

 

Feature R
M

A
P

 

P
T

P
 

S
T

U
P

 

J
R

D
D

P
 

S
T

P
 

Configuration flexibility  – – –  

Multiple applications – – –   

Data flows of different priorities – – –  – 

Data flow control – – –   

Transport connection establishment – – –   

Segmentation – – –  – 

Data correctness check  –    

Data sequence check – – –  – 

Data retransmission – – –  – 

Acknowledgements  – –  – 

Scheduling – – – – – 

III. GENERAL REQUIREMENTS FOR THE TRANSPORT 

PROTOCOL 

This section gives a list of the main requirements to the 

new Transport protocol. These requirements were elaborated in 

such a way that the new Transport protocol will cover all 

previously unsolved problems. 

A. Transport interface 

The Transport layer protocol should provide transmission 

of the following general data flows passing from the 

Application layer: control commands, application messages, 

SpaceWire time-codes, SpaceWire interrupt codes and 

interrupt-acknowledge codes. 

B. Segmentation 

Segmentation of large messages should be performed by 

the Application layer. The target segments with the additional 

service information should be passed from the Application 

layer to the Transport layer. The transport layer should give 

ability for the Application layer to assemble the message from 

a number of segments, so it should support transmission of 

additional information in the secondary header (for example, 

segment number). 

C. Data flows and priorities 

Each data flow should have its particular priority. The data 

flows should have the following precedence: 

1. Control commands – the highest priority; 

2. Urgent messages; 

3. Common messages – the lowest priority. 

D. Buffering on the transmitter side 

Transport protocol should contain a separate logical buffer 

for each data flow priority. 

E. Quality of service 

The target Transport protocol should provide additional 

fault detection over the SpaceWire connection by means of the 

following mechanisms: 

 CRC checksum; 

 successful packet transmission acknowledgements; 

 detection of lost packets by timeouts. 

Each transport data flow is characterized by particular 

features and, consequently, requires its particular quality of 

service. The priority quality of service is required by all data 

flows. Control commands and urgent messages should be 

delivered with guaranteed quality of service. In turn, common 

messages can be transmitted with guaranteed or best effort 

quality of service. 

Taking into account the transport protocol analysis and the 

technical requirements, we proposed a list of technical 

solutions for the first revision of STP-ISS transport protocol. 

At the moment a first version of the STP-ISS specification is in 

the modeling stage. The next section of the paper gives an 

overview of the STP-ISS transport protocol and shows its 

further evolution plans. 

IV. STP-ISS TRANSPORT PROTOCOL 

Figure 1 shows an example of the on-board network for a 

small-sized satellite. Dotted lines show the information flows 

from sensors to the other parts of the satellite. It is just an 

example of the applied topology, and STP-ISS can be used for 

the much more complex networks also. 
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On-board 

device #0

Sensors
On-board 

device #1

 

Fig. 1.  An example of the onboard network topology 

A. STP-ISS general description 

STP-ISS is a transport layer protocol that describes the 

informational and logic interaction between onboard devices, 

packets’ formats and packet transmission rules for the 

SpaceWire network. The onboard software performs the 

functions of the session, presentation and application layers 

according to the OSI model [9]. STP-ISS protocol corresponds 

to the Transport layer and provides means for transmission of 

data between the nodes of the network with the required quality 

of service type and data flow priority. This protocol gives 

ability for data resending in case of the error detection in the 

received data. This procedure is called resending. The place of 
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the STP-ISS protocol in the SpaceWire standard’s family and 

conformity to the OSI model is shown in Fig. 2. 
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Fig. 2.  STP-ISS protocol and OSI model 

B. STP-ISS interfaces  

There are three interfaces for the interaction between the 

STP-ISS and Applications: Data Interface, Configuration 

Interface and Control Codes Interface. In addition, there are 

two interfaces for the interconnection with the SpaceWire: 

SpaceWire packets interface and Control Codes Interface 

(see Fig. 3). 
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Fig. 3.  STP-ISS interfaces  

STP-ISS provides transmission of the following types of 

data through those interfaces: 

 control commands; 

 data packets; 

 SpaceWire time-codes; 

 SpaceWire distributed interrupts and interrupt-

acknowledges. 

The data interface provides transmission of control 

commands and data messages. Messages and control 

commands are transmitted to the remote node by encapsulation 

into SpaceWire packets. 

The configuration interface provides means for the STP-

ISS configuration parameters change and for transmission of 

status information and reset commands. 

The control codes interface passes the SpaceWire time-

codes and distributed interrupts to the SpaceWire and then – to 

the other nodes of the network. 

C. STP-ISS application messages  

One of the main tasks of the STP-ISS transport protocol is 

to provide the transmission of messages from the Applications 

to the remote nodes of the SpaceWire network. The message is 

a data block that is passed to the STP-ISS from the application 

layer. There are two types of application messages:  

 urgent messages (higher priority);  

 common messages (lower priority). 

Messages from Applications are encapsulated into 

SpaceWire packets at the transport layer (see Fig. 4). 
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Fig. 4.  STP-ISS encapsulation of a message into a SpaceWire packet  

The length of each message should not exceed 2048 bytes, 

because the STP-ISS transport protocol does not perform 

segmentation. Segmentation of messages is done by the 

application layer and STP-ISS processes these segments as 

usual independent messages. The Application layer of the 

remote node assembles the segments into the original message. 

The message should be assembled basing on the segment 

identifiers that should be transmitted in the segment header. 

For this purpose STP-ISS packet has a secondary header, 

which should be used by the Application to transmit the 

information for the messages assembling (for example, a 

number of the segment). 

STP-ISS provides the reliable data transmission by using 

CRC-16 for protection of payload and packet header and for 

errors detection. CRC-16 covers the packet starting from the 

first byte of the STP-ISS packet header and finishing with the 

last byte of data, excluding the end of packet symbol EOP 

(see Fig. 5). 

Header CRC EOPData

0 : 42 bytes 1 : 2048 bytes 2 bytes

 

Fig. 5.  STP-ISS data packet format  
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D. STP-ISS lifetime timers 

STP-ISS protocol has a special packet lifetime timer, which 

counts the time, when the packet is still actual in the 

SpaceWire network. Each packet is stored in the buffer during 

its lifetime. The value of the lifetime timer is an STP-ISS 

configuration parameter and it could be set during the 

configuration stage. Each packet type could have different 

values of lifetime timer. The lifetime timer should start when 

the packet is written to the buffer. The packet should be deleted 

from the buffer when the lifetime timer expires.  

E. Resend buffers 

The transmitter side of the protocol has separate buffers for 

each priority of the transmitted data: 

 control commands buffer; 

 urgent messages buffer; 

 common messages buffer; 

The size of these buffers should be set depending on the 

message or segment size, which the node uses for the data 

exchange. Also the size of the buffer depends on the type of the 

device, which implements STP-ISS, also. But for each buffer 

(on the transmitter of receiver side) it is recommended to set 

the size such a way, that buffer should be able to store 

minimum two packets. These buffers are shown in Fig. 6. 
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Fig. 6.  STP-ISS resend buffers  

The packet should be stored in the buffer until one of the 

following events occurs: 

 the STP-ISS transmitter received an acknowledgement 

for this packet; 

 transmission of the packet with the best effort quality 

of service to the SpaceWire network; 

 lifetime timer for this packet expired. 

The receiver side of the transport protocol has one buffer 

for all types of the packets, because SpaceWire packets come 

from the SpaceWire interface sequentially. 

F. STP-ISS quality of service 

One of the benefits of the STP-ISS is the possibility to 

transmit data using the following quality of service types: 

 Priority quality of service; 

 Guaranteed delivery quality of service; 

 Best effort quality of service. 

G. Priority quality of service  

Priority quality of service is the main quality of service type 

that should be supported by all the network end-node devices, 

which communicate with STP-ISS. According to this quality of 

service type, the data with the higher priority should be 

transmitted first. Current STP-ISS specification supports 7 

levels of priorities:  

1. Acknowledgement packets; 

2. Control command packets; 

3. Resend control command packets; 

4. Urgent data packets; 

5. Resend urgent data packets; 

6. Resend common data packets; 

7. Common data packets. 

H. Guaranteed delivery quality of service  

Guaranteed delivery quality of service provides 

confirmation for the successful packet transmission by sending 

the acknowledgement packets. Also it resends the data from 

the transmitter end-node if the acknowledgement is lost 

(resending mechanism).  

Guaranteed delivery is provided by a number of 

mechanisms such as resend timers and successful transmission 

acknowledges. Data resending is based on the packets 

numeration. This numeration is performed by the application 

layer by giving an identification number for each packet that is 

transmitted from a particular application. So the combination 

of the application identifier and a packet identification number 

uniquely identifies each packet. 

If a packet is passed to the network layer with the 

guaranteed delivery quality of service, STP-ISS should start the 

resend timer for this packet. If a resend timer expires before the 

receipt of an acknowledgement, this means that the packet or 

its acknowledgement is lost, or the packet has been corrupted 

during the transmission. So when the resend timer expires, the 

corresponding packet should be sent to the network again. 

Each transmitted packet should have its own resend timer.  

The acknowledgement packets are used for confirmation of 

the packet’s successful receipt. Acknowledgements are sent 

when there is no CRC error, the data length field is correct and 

there is a flag “Guaranteed delivery packet” set to 1 in the 

received packet’s header. Within the acknowledgement the 

receiver sends a combination of the application identifier and 

the transmitted packet’s identification number. When the 

transmitter gets the acknowledgement, the corresponding 

packet should be deleted from one of the transmitter’s resend 

buffers. All the timers associated with this packet should be 

stopped. 

I. Best effort quality of service  

Best effort quality of service provides data transmission 

without sending acknowledges. Such packets have the flag 

“Guaranteed delivery packet” set to 0 and they do not need 

resend timers. When STP-ISS receiver gets a best effort packet 

it checks the CRC and data length, but in case of error or if the 

packet ends with EEP, data packet still should be sent to the 

Application, but with an error indication. 
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J. STP-ISS configuration parameters 

The important STP-ISS feature is the configuration 

flexibility. The protocol has a number of configuration 

parameters, which give ability to tune the protocol depending 

on the developer needs (required quality of service, onboard 

equipment type, resource constrains, etc.). Configuration of the 

STP-ISS protocol is performed via the configuration interface. 

Configuration is done in the following cases: 

 switching-on/off the device; 

 reset; 

 switching to the redundant onboard device; 

 emergency recovery. 

The current STP-ISS specification describes 5 

configuration parameters: 

1. Control command lifetime; 

2. Urgent message lifetime; 

3. Common message lifetime; 

4. Resend timeout; 

5. Guaranteed / best effort data transmission. 

K. Reset and Flush 

There are two additional signals that could be passed from 

the application layer to the STP-ISS though the configuration 

interface: Reset and Flush. Reset corresponds to the warm 

reset, and Flush is used for the clearing of both transmit and 

receive buffers.  

When STP-ISS gets the Reset, it should clear transmit and 

receive buffers, stop all the timers corresponding to deleted 

packets and set all the configuration parameters to the default 

settings.  

When STP-ISS gets the Flush, it also should clear transmit 

and receive buffers and stop all the timers corresponding to 

deleted packets, but all the configuration parameters should not 

be changed. 

V. CONCLUSION 

The paper gives an overview of STP-ISS transport protocol 

for the onboard SpaceWire networks. The current revision of 

the STP-ISS is the first version and the protocol will be 

actively evolved and trialled; further updates are planned also. 

The following additions are considered to be included to the 

second revision of the STP-ISS: 

1. Scheduled quality of service, when each node of the 

SpaceWire network will have a permission to send the 

data during the particular time-slot only. 

2. Connection-oriented data transmission. 

3. Flow control mechanism for each transport connection. 

4. Duplicate packets detection. 

Also we plan, that the second revision of STP-ISS would 

successfully work with the first revision. 
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Abstract—This paper will primarily present a design for high 

speed copper-based links, capable of transmitting SpaceFibre 

signals at 2.5Gb/s or higher, using a custom interface connector 

not significantly larger than the 9 way Micro-D style used for 

existing SpaceWire links.  The paper additionally looks briefly at 

the feasibility of creating miniature, multi-channel SpaceFibre 

links for short lengths or ‘inside the box’ applications. 

Index Terms—SpaceFibre, SpaceWire, Micro-D, Nano-D, 

AXOMACH.  

I. INTRODUCTION  

Axon’ Cable has been working recently on a copper-based 

solution for transmitting SpaceFibre signals at 2.5Gb/s or 

higher – using connectors (for a single channel version) with 

approximately the same space envelope as the current 9 way 

Micro-D style connector used for SpaceWire links.  This work 

is being carried out in connection with the SpaceFibre 

Demonstrator contract A0/1-7489/13 for ESA and the 

University of Dundee. 

An additional remit of this contract is to explore initial 

feasibility of creating miniature, multi-channel links for short 

length applications, similar in performance to existing 

commercial products such as eSATA or PCIe, but using space 

grade componentry. 

Regarding the prime objective of the contract, Axon’ has 

elected to propose a design based on a modified version of its 

AXOMACH product. 

 

II. AXOMACH HERITAGE 

The AXOMACH product range is a space grade family of 

cable assemblies capable of operation at up to 10 Gb/s per 

channel.  Developed originally for a military space application, 

the product has since been extensively evaluated by the CNES 

French Space Agency, and is currently in the process of being 

created as a ESA ECSS component.  It is based on two RF 

quality coaxial cables per channel, terminated into impedance-

matched, EMC optimized and polarized connectors. 

The existing 2 channel crossover version of this product has 

already been successfully demonstrated by Star Dundee in their 

SpaceFibre simulator, operating at 2.5Gb/s. 

 

 

As well as the original (classified) military satellite use, 

AXOMACH has, among other applications, been integrated 

within the Mars Atmosphere and Volatile EvolutioN 

(MAVEN) mission,  launched on November 18, 2013.  The 

probe is scheduled to start orbiting Mars on September 21, 

2014, to explore the planet’s upper atmosphere, ionosphere and 

interactions with the sun and solar wind to find out how and 

why the Red Planet has been losing its atmosphere over 

billions of years. 

III. DESIGN SOLUTION 

For the SpaceFibre Demonstrator Links, Axon’ has taken 

the existing 2 channel crossover version of AXOMACH and 

placed all four coaxial contacts, which together form the two 

channels, into one single D-Form on the connector face, thus 

minimizing the overall connector width.  This brings the 

overall connector space envelope quite close to that of the 

existing 9 way Micro-D connector currently used for 

SpaceWire links.   

For clarity, this solution, although similar in size, is 

completely different from a SpaceWire connector and is not, 

therefore, backwards compatible with SpaceWire. 

Axon’s intention is to make this family an open source 

solution and put the product forward for ECSS approval. 

 

 

 
Fig. 1: Left: Reduced size SpaceFibre Demonstrator connector;  

           Right: Existing 2 channel AXOMACH connector 
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Fig. 2: Inline version of SpaceFibre connector 

 

  
Fig. 3: PCB version of SpaceFibre connector 

 

One of the main goals of the study is to reduce the size of 

the existing connector. The re-design from the AXOMACH 

starting point saves around 38% surface area on the equipment 

interface: 

 

 

 
Fig. 4: Surface reduction: 28.07 x 9.07 to 23 x 8:  

                38% saved 

 

IV. PERFORMANCE RESULTS – AXOMACH STYLE 

SPACEFIBRE LINKS 

At the time of writing this paper the very first SpaceFibre 

Demonstrator links had just been manufactured and rapidly 

tested.  In general, Axon’ was expecting that the overall 

SpaceFibre performance would be acceptable, but particular 

attention was to be paid to crosstalk results due to the 

‘compressing’ of all four contacts into the same D-form space. 

Initial results are summarised later in Table I. 

 

IV.1 Production of Different elements 

 

The RF coaxial cable is exactly the same cable reference, 

Ax2.4, as already used for the AXOMACH range – no more 

difficult to manufacture. 

The connector, however, needs very specific tooling to 

manufacture it in order to make the assembly of all the parts, 

including cable soldering, insulation parts and contact 

insertion.  Particular attention is required on skew reduction 

during the cutting phases of the coaxial cables.   

 

A transmission test is performed on each link using an Eye 

Pattern mask to verify the signal integrity.  On the left in 

Figure 5 below, a pattern generator up to 12.5Gb/s, and on the 

right, a sampling scope with 50Ghz BandWidth. 

 

 
Fig. 5: SpaceFibre Links Transmission test general setup 

 

   
Fig. 6: Connection from the scope to the harness under test using a SpaceFibre 

Test Adaptor Harness to the equipment (with SMA connectors) 
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Ultimately, within the scope of the project, five different 

lengths will be tested in order to be compatible with the range 

of lengths to be used in the future. These test vehicles are each 

made with 4 coaxial cables (Figure 7)  linked to the 

SpaceFibre dual channel (4 way) male connector at each end as 

described in Figure 8. 

 

 
Fig. 7: Ax2.4 AXOMACH and SpaceFibre coaxial cable 

 

 
Fig. 8: General design of SpaceFibre links 

 

 
Fig. 9: PCB version of SpaceFibre connectors  

 

The input signal is well defined to verify the signal 

integrity.  In order to be working in the worst case, we set the 

signal level at the minimum. (300mV) (Figure 10)   

The mask of the output signal from the harness is also well 

defined by the SpaceFibre specification (Figure 11) 

Then the measurement can be performed easily on the 

scope using the mask test sequence. 

 

  
Fig. 10: Input signal Fig. 11: Output signal mask 

 

Table I, below shows the initial test results, comparing 2M 

long versions of a classic AXOMACH 2 channel crossover 

with the same product using the SpaceFibre connector. 

TABLE I. COMPARATIVE RESULTS BETWEEN CLASSIC 

AXOMACH  AND SPACEFIBRE CONNECTOR 

CHARACTERISTIC 
AXOMACH 

crossover, 2M  

SpaceFibre 

crossover, 2M  

Limits (From 

AXOMACH) 

Insulation Resistance Similar >5000MΩ 

Voltage proof  

Leakage current 

Similar <2mA/600Vrms 

Contact resistance 

(Rated current) 
Similar 

<5mΩ 

Coax cond. resistance 
Similar <110mΩ/m 

Coaxial shield 

resistance 

Similar <45 mΩ/m 

Metal shell 

conductivity 

Similar 50mΩ 

Characteristic 

Impedance 

Similar 100 Ω +/-10 

Skew between coaxial 

cables (4) 

Similar <20pS 

Jitter PP (5) Similar <20pS 

Jitter rms Similar <5pS 

Quality factor Similar >7 

Insertion loss 
Similar <1dB (5Ghz) 

<2dB (10Ghz) 

Return loss 
Similar <12dB (5Ghz) 

<9dB (10Ghz) 

Crosstalk (TBC) 
<-45dB@5Ghz 

<-35dB@10Ghz 

<-30dB@5Ghz 

<-20dB@10Ghz 
 

Mask test Similar Go/NoGo mask 

 

       So for the static tests (continuity and insulation) and the 

dynamic tests (signal integrity), the characteristics are very 

similar to AXOMACH family.  The main difference, as 

expected, comes from crosstalk which is significantly poorer 

than that of the classic AXOMACH.  Less than -30dB up to 

5Ghz (-45dB for AXOMACH) and less than -20dB up to 

10Ghz (-35dB for AXOMACH).  These initial results on a 2M 

length, see table Figure 13, need to be confirmed on all the test 
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vehicles.V. FEASIBILITY STUDY INTO MINIATURE MULTI-

CHANNEL SPACEFIBRE LINKS 

 

A second remit of the EMITS was to explore the feasibility 

of creating Space grade miniature multi-channel links for short 

length applications.   

 

Considerations.  The links and were to be as small as 

possible, but using space grade components throughout, the 

key objective being the possibility of having multiple channels 

in the same connector. 

 

Initial design proposal:  multiple, sub-miniature space 

grade coaxial cables, style SM50, terminated into ESA 

evaluated Nano-D connectors, according to ESCC 3401-086  

Principle:  4 x SM50 coaxials form one dual way channel 

of SpaceFibre.  By terminating the central coax core to one 

contact and adjacent coaxial contact to the next-but-one contact 

(i.e. skipping one contact each time) we can achieve the 

necessary space to terminate the coaxials, and also help with 

the impedance objective.  All the coaxial screens are 

terminated together to the outer shell of the connector. 

 

In this way, 8 coaxials can be terminated to a standard 15 way 

Nano, achieving 4 SpaceFibre channels. 

- 12 coaxials in a 25 way Nano, giving 6 channels 

- Or 24 coaxials in a 51 way Nano providing 12 

channels 

 

An initial feasibility test was conducted on a prior 

manufactured sample with a typical SpaceWire (9 way Micro-

D) connector at one end and a 15 way Nano-D connector at the 

other.  (Figure 13) 

 

 
Fig. 13: Test vehicle with MDSA 9pins and NDSA 15p, test leads fitted 

 

 

Conclusion.  The initial test results were positive, with the 

Nano-D link capable of up to 3.4 Gb/s for a 1m length, and up 

to 1.5 Gb/s for a 2.3m length, see also Figure 14. 

 

 
Fig. 14: Micro-D to Nano-D 1m link @ 2.5Gb/s 

 

 

 

V. OVERALL CONCLUSIONS 

A. Primary objective.  The dual channel SpaceFibre 

Demonstrator Crossover Link based on the modified 

AXOMACH family.   A preliminary conclusion is this can 

be a very effective space grade copper-based solution for 

transmission of 2.5Gb/s SpaceFibre signals up to 10m in 

length.  (or indeed higher speeds)  The crosstalk on the 

connector, while significantly poorer than that of the classic 

AXOMACH, is generally considered to be acceptable for 

data rates of up to 2.5Gb/s.  

 

B. Secondary objective.  Feasibility of creating space grade 

miniature multi-channel SpaceFibre links.  Early 

indications are that it may indeed be possible to design such 

a link, using the ESA approved Nano-D style of connector.  

A short paper will be produced on this subject, within the 

scope of the project for the University of Dundee, to gauge 

interest in developing such products for future applications. 
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 Abstract— Тhe article presents a Radiation tolerant 

heterogeneous Multi-core ASIC MC-30SF6 as the SoC (System–

on-Chip) for the onboard “intelligent” signals and images 

processing systems. MC-30SF6 based on a CMOS 180nm 

Radiation tolerant library and consists of the five ELVEES IP – 

cores for the processing and compression data with extra 

performance more than 9 GFLOPs. The SoC design and 

architecture support fault tolerance against SEU errors. SoC has 

built-in multichannel multiprotocol SpaceFibre/GigaSpaceWire 

(SpaceWire-RUS standard)/SpaceWire embedded networking 

subsystem. The networking subsystem provides multiple ports 

for high-rate interconnection with combination of 

SpaceWire/GigaSpaceWire/SpaceFibre links. SoC support four 

ports GigaSpaceWire/two ports SpaceWire switch. Input and 

processed data streams transmitted via 1.25 Gbps two 

multiprotocol SpaceFibre/GigaSpaceWire and four 

GigaSpaceWire links. Two SpaceWire links (ECSS-Е-50-12С) 

provide data transfer bandwidth from 2 up to 400 Mbps. The 

MC-30SF6 embedded networking subsystem on the base 

SpaceWire/GigaSpaceWire/SpaceFibre provide a balance 

between ASIC throughput and SoC performance especially for 

the multifunctional micro and nanosatellites systems. 

Index Terms — Radiation tolerant heterogeneous Multicore 

ASIC, multiprotocol SpaceFibre/GigaSpaceWire based links 

 

I. INTRODUCTION 

 

In the spacecraft signal/image processing on-board systems, 

for example, for the Earth Observation (EO) missions it is 

necessary to solve several important tasks, including: 

1. The task of delivering large amounts of data at high 

speed from the sensors to the proper processing system;  

2. The task of achieving the required performance in the 

onboard processing system, which in fact determines all the 

main qualitative characteristics of the optical/radar monitoring 

or "intelligent" on board processing  of the synthesized images 

with “video analytics”; 

3. The compression task of optical/radar image for 

subsequent storage or for the transmission;  

4. The overall management space system task. 

Therefore these missions have the highest performance 

needs for the signal/Image processing and analysis, data 

reduction and compression. Typical application data types 

demand both fixed-point and floating point processing 

capability.  

Expected processing power and the key requirements needs 

for the EO Payloads have been analyzed in an ESA study [1] 

and can be summarized as follows. 

Candidate Payload - MTG IR sounder:  

- Peak sensor data rate      - 2.2 Gbit/sec;  

- Processing power              - 10 GOPS, mixed fixed 

& floating point operations.  

Candidate Payload  - High Resolution Wide Swath SAR:  

- Peak sensor data rate      - 500 Gbit/sec;  

- Peak processing power   - 1000 GOPS. 

Even the minimum requirements for the implementation of 

these tasks in the spacecraft show the global gap between these 

current (future) needs onboard processing capabilities and the 

implementation of modern silicon for space applications. 

Thus, the limiting factor in the development of modern and 

advanced high-performance and a high bandwidth on-board 

signal/image processing systems is the absence of a large 

selection of space microprocessors for the high-performance 

space computing, that provided the highly throughput by the 

links (up to the gigabits) based on modern advanced standards 

such as SpaceWire and SpaceFiber and its modifications. 

This article describes the experience in the creation of an 

actual high-performance the highly throughput "system-on-

chip" MC-30SF6 qualified for space applications with 

balanced architecture of processing IP-cores and network 

subsystem of the data exchange between ASIC resources and 

between multiprocessor networks on the SpaceWire, 

38



SpaceFiber [2] and Giga SpaceWire (SpaceWire-RUS 

standard) base. 

 

II. THE MC-30SF6 ARHITECTURE 

  

Radiation tolerant Multicore ASIC MS-30SF6 (Fig.1) was 

developed as the heterogeneous SoC (System–on-Chip) for the 

“intelligent” signals and images processing systems.  

 
 
Figure 1.    MC-30SF6 chip in the CPGA720 package. 

 

The ASIC consists of five processing MULTICORE 

platform based IP – cores for processing and compression 

images with extra performance it is provided with the rich 

periphery also.   

All ASIC processors and accelerators operate 

independently from each other (each on its own program) and, 

therefore, represent the three power core “system-on-chip” 

with MIMD - architecture (MIMD - Multiple Instructions 

Multiple Data).  

The top system manager (CPU) is a standard RISC - 

processor (RISCore32) with 4-stage pipeline. CPU has EEE-

754 compliant Floating Point Unit (FPU) supports single and 

double precision data types. With Multiply/Divide accelerator 

CPU provides the addition, multiplication and division 

operations with single/double precision in floating-point format 

(maximum issue rate of one 32x32 multiply per clock, 2 cycle 

multiply latency, 11 cycle divide latency). CPU also has a 

memory management unit (MMU) on the basis of fully 

associative address translation buffer (TLB) of 16 double cells, 

the instruction cache (I CACHE) of 32 Kbytes of data cache (D 

CACHE) of 32 Kbytes. The programmable MMU provides 

two operating modes: with TLB (Translation Lookaside 

Buffer) and FM (Fixed Mapped). On-chip JTAG IEEE 1149.1 

Debug Unit support the single stepping and data address/value 

breakpoints. 

MC-30SF6 ASIC was realized to support all architectural 

solutions, which increased its resistance to failure and fault 

tolerance. All ASIC memory blocks including the register files 

in CPU/DSP are protected by Hamming code with single 

errors correcting and two errors detecting. It was provided the 

Single event upset mitigation with Triple Modular 

Redundancy (TMR) for all triggers registers in CPU. The 

mode can be switched off in order to provide reduce power 

consumption for the all chip. 

As the RISCore32 tools we used gcc 3.2.3., Gcc 4.3.2.  To 

develop and debug programs we created the IDE MCStudio ®, 

which supports the configuration of our multicore chip based 

on RISCore32 IP - core and others IP - cores, for example, 

DSP.  

MS-30SF6 contains high-performance Dual DSP cluster 

from IP – cores library developed by ELVEES. DSP cluster 

used for digital signal/image processing with fixed and floating 

point and provides data processing with variable data formats. 

The 7-stage pipeline and flexible address modes allow realizing 

algorithms of signal/image processing with high efficiency. 

Dual DSP IP-core main features: 

- 8/16/32/64-bit fixed-point data types;  

- 32/bit floating-point data types; 

- 16/32/64/128-bit data formats; 

- high effective instruction set density: 16 bits per 

instruction; 

- configurable data/program memory size; 

- X and Y data memory pointers;  

- VLIW-type parallelism: up to 2 computational 

operations and up to 2 data transfers per cycle; 

- SIMD-type parallelism: 128-bit data vectors for 

8/16/32-bit data types. 

In one cycle DSP cluster can perform (with 140MHz 

clock): 

- 16 op/s with floating point data format (24E8, 

IEEE754)  - 2.24 GFLOPs; 

- 16 op/s with integer data format (int32) - 2.24 GOPs; 

- 48 op/s with integer data format (int16) - 6,72 GOPs; 

In addition to the named three processor cores (CPU and 

Dual DSP) the “system-on-chip” MS-30SF6 includes two 

hardware accelerators (FFT and JPEG), operating in parallel.  

Additionally, system on chip includes two hardware 

accelerators: FFT IP - core and JPEG IP-core.  

FFT (Fast Fourier Transform) Accelerator: 

- Input-output data are carried out in real time, in 

parallel with processing; 

- Entrance/output data for the user are in a direct order; 

- For calculations and data storage in a direct order 

additional memory isn't required; 

- The formats of real/imaginary component of the 

entrance and output data: 32-bit floating point format 

(IEEE-754 standard), 32-bit integer (additional code), 

16-digit integer (additional code). Format of 

calculations: 32-bit floating point; 

- The maximum amount of a directly carried out 

transformation – 8192, minimum – 16. The limit 

amount of increased transformation – 256K; 

- Performance: for one step 40 arithmetic operations 

with a floating point (24 additions/subtraction and 16 

multiplications) are carried out. That with a work 

frequency 160 MHz corresponds 6.4 GFLOPs. 

The signal/image Compression accelerator (JPEG 

Encoder) according to the JPEG standard provides Input-

output of images is carried out in real time, in parallel with 

processing.  The productivity of the accelerators image 

compression is: 

- one component (Y, by Cb or Cr) with a size of block of 

8х8 pixels is processed with a speed of 2,46 pixels for a 
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step. With a frequency of 200 MHz productivity of 

compression is equal 490 megapixels/s. 

- at three components of the same size of the YCbCr 4:4:4 

format productivity of compression is equal to 164 

megapixels/s or 75 fps Full HD. 

Parameters of the real performance of the processor units 

are similar to the peak, as input and output data and the 

intermediate results of processor cores transmitted 

simultaneously with basic data processing. 

RISC IP-core together with the signal and image processing 

IP-cores provides 9 gigaflops ASIC performance.  

The new generation МС-30SF6    applies the ability to turn 

off unused processor IP cores and other resources such as 

unused high throughput links. The МС-30SF6    also supports 

a sleep mode in which it consumes minimum milliwatts of 

power. 

The ASIC has two DDR2 memory ports (1600 MB/s), 

support DMA transfers between external I/O ports and external 

memory, have four Multifunctional Buffed Serial Ports 

(MFBSP) that can act as SPI, I2S, LPORT, GPIO interfaces, 

Ethernet MAC 10/100, six Space Wire family,  USB port, 

External memory Port (MPORT):  

- Data bus - 64-bit address bus - 26 bits;  

- Integrated controller   of the memory (SRAM, 

FLASH, ROM, SDRAM);  

- Software Configuration for memory blocks and its 

size. 

Input and processed data streams via through eight 

SpaceWire based family links (six up to the 1.25 Gbps and two 

up to 400 Mbps) provide a balance between its throughput and 

SoC performance. 

МС-30SF6    also has a dedicated test and debug interface; 

run the Linux operating system; and have a C /C++ application 

software compiler for the CPU and DSP cores. 

 

III. THE MC-30SF6  SOFTWARE PLATFORM  
 

The MC-30SF6 software platform basic advantages are: 

- The Complete tool set for the fast development and 

integration of the space signal/image processing  applications, 

includes MCStudio IDE (Integrated Development 

Environment);  

- Full software development kit: optimizing C 

compilers, advanced multi-core debugger, simulators, 

application profiler and industry’s proven signal, video and 

image processing Software and Algorithms library;    

- Full-featured simulation model allows to start  

application  software developing early; 

- Unified programmable DSP core allows to avoid 

software migration troubles; 

- Instruction-level support for all C language data 

types, including floating-point and complex types, enables 

effective use of C compiler for different applications, 

improving time-to-market; 

- Standard API – all software components (including 

signal/image processing and algorithms). 

 

IV. THE MC-30SF6 ASIC 

EMBEDDED NETWORKING 

SUBSYSTEM 

 

The MC-30SF6 embedded networking subsystem provides 

multiple ports for high-rate interconnection with combination 

of the SpaceWire/SpaceFibre /GigaSpaceWire (SpaceWire-

RUS standard) links.  

The combination of the SpaceWire based family links 

(SpaceWire, SpaceFibre and GigaSpaceWire with various 

speeds and opportunities) provides unprecedented flexibility 

and scalability for space on-board processing systems with the 

equal efficiency as for the large distributed digital signal/image 

processing applications and as stand-alone multifunctional chip 

based systems for micro and nanosatellites. 

The eight  MC-30SF6 SpaceWire based family serial high-

rate links consist of: 

1) Two multiprotocol ports such as SpaceFibre 

(4 VC, 1250Mbps)/GigaSpaceWire(SpaceWire-

RUS); have rates up to 5,10,15 ... (with 5 Mbps 

increments) ... 125, 312.5, 625, 1250 Mbps); 

2) Four ports GigaSpaceWire (SpaceWire-

RUS); have rates up to 5, 10,15 ... (with 5 Mbps 

increments) ... 125, 312.5, 625, 1250Mbps), this 

ports efficiently combined using six ports internal 

switch with two SpaceWire ports; 

3) Two SpaceWire ports (ECSS-Е-50-12С) 

have rates up to 2-400 Mbps. 

 

It should be noted that MC-30SF6 ASIC SpaceWire links 

implementation supports the extensions towards next 

SpaceWire standard revision such as Distributed interrupts and 

others. 

It is also important to note that the GigaSpaceWire ports 

can provide bandwidth up to the 1250 Mbps,  but can operate 

also in a range of lower data rates, down to 5 Mbit/s. Lower 

data rates could efficient for longer distances or using older 

types of cabling. 

GigaSpaceWire is in fact a high-rate link for SpaceWire 

networks, and has the exactly the same Packet, Network layers 

and the same packet formats that makes the packets routing 

and switching between any combination SpaceWire and 

GigaSpaceWire ports straightforward and resource-efficient. 

The internal switch operates as a SpaceWire routing switch, 

with routing and switching SpaceWire/GigaSpaceWire packets 

between any combinations of its ports, in accordance with 

ports operation modes and the routing table.  

Two SpaceFibre links [3] are provided by the 

multiprotocol network interface controller. The main 

SpaceFibre link rate in the MC-30SF6 ASIC is 1250 Mbit/s. 

In the multiprotocol ports implementation another 

operation mode is to support the GigaSpaceWire protocol. 

Such combination of the different types of ASIC links 

(SpaceWire/SpaceFibre/GigaSpaceWire) and internal switches 

makes the MC-30SF6 very flexible in building ASIC network 

interconnection with external processors, nodes, and 

peripherals with any type of 
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SpaceWire/SpaceFibre/GigaSpaceWire networks, provide 

different types of network services.  

While SpaceFibre links provide advanced QoS features 

(very important for the space onboard control systems), the 

SpaceWire/GigaSpaceWire combination links provide 

effective and cost-efficient networking for other on-board 

applications (for example, for the space signal/image 

processing systems). Such applications may not require 

SpaceFibre QoS features with an extra cost of the SpaceFibre 

implementation silicon area.  The analysis of the complexity 

of SpaceFibre implementation is presented in the next section. 

 Thus MC-30SF6 ASIC is a new generation balanced data 

processing “system on a chip” of that supports a wide class of 

space on-board applications ranging from control systems to 

onboard signal /image processing high-end systems.  

As  the conclusion from the comparative analysis of the  

Stereo  Computer Vision task application example follows that 

if  DSP “Elcore30”  will support clock ~ 140 MHz  and  ARM 

Cortex A9 will provide ~ 1 GHz then this task speedup for the 

ELVEES Single DSP core will be 0.58x and for the Dual DSP 

core - 1.0x. This means that the Radiation Tolerant MC-30SF6 

multicore microprocessor will decide such application task not 

worse than powerful 1 GHz ARM Cortex A9 microprocessor. 

So MC-30SF6 SoC is capable not only to form video 

streams, but also  providing the on-board real-time analysis of 

multi-megapixel image data with video analytics approach 
which will provide autonomous on board situational analysis 

and real time the on-board mission decision-making.  

 

V. THE MC-30SF6 ASIC PROOF ON THE 

SILICON 

 

The space qualifiable (Radiation Tolerant) ASIC 

Microelectronics technologies for the area and timing 

parameters estimations was reviewed [4]. 

The virtual design of the SpaceWire-RT (SpaceFibre) 

ASIC IP-Core (digital controller and CML- transceiver) was 

developed based on the using IP-core Library from the 

ELVEES ASIC platform MULTICORE including “Soft” and 

“Hard” IP-cores (8B/1B CODEC, SERDES, PLLs, 

transceivers). The Netlist and layout of SpaceWire-RT ASIC 

IP - Core were synthesized on the various qualified for space 

microelectronic libraries also were used as an assessment for 

the implementation of the SpaceWire-RT ASIC IP – Core.   

During the project, we analyzed the complexity and 

feasibility of six channels SpaceFiber switch built-in 

microprocessor with four virtual channels each. 

The limitations of implementing (area cost) for the used 

Radiation Tolerant Libraries not allowed to unify and to 

implement the all SpaceFibre six high-speed links  plus 

switch, and, moreover, as multiprotocol variant.  The total 

silicon area cost of the six multiprotocol links is about 60.3 

mm*2 (including 54, 06 mm*2 for the six SpaceFibre digital 

controllers, with the Broadcast controller and the mode/state 

registers block in each). 

And, on the other hand, the size of the topology area of a 

6-channel switch SpaceFiber with controllers SpaceFibre is 

161,46 mm * 2 (excluding space for the block of mode/state 

registers and the Broadcast processing unit), which occupies 

more than half the area of the possible size of a 

microprocessor (306 mm * 2). 

On the one hand the SpaceFibre benefits provided  high 

cost area for virtual channels (VCh) and  thereby to realize  

only a small number of SpaceFibre ports for a real space 

qualifiable  ASIC.  

And, on the other hand, using a little additional ASIC areas 

cost we can provide multiprotocol link and an inexpensive 

opportunity to transmit information through the 

GigaSpaceWire link supporting low cost data transmission 

networks, which do not require such properties as virtual 

channels.  

In this MC-30SF6  ASIC project it was created  a new 

innovative multiprotocol port IP - core  

(SpaceFibre/GigaSpaceWire IP – core) that provide a 

balanced solution between all advantages in QoS, FDIR and 

others  from SpaceFibre and the simplicity and low cost of 

implementation  from GigaSpaceWire. In this MC-30SF6  

ASIC project it was created  a new innovative multiprotocol 

port IP - core  (SpaceFibre/GigaSpaceWire IP – core) that 

provide a balanced solution between all advantages in QoS, 

FDIR and others  from SpaceFibre and the simplicity and low 

cost of implementation  from GigaSpaceWire. 

MC-30SF6 ASIC was developed and synthesized on the 

space qualifiable ASIC technologies base. The chip size is 

17.5 mm x 17.5 mm (Fig.2). During the project, we analyzed 

the complexity and feasibility of 6 - channel SpaceFiber 

switch built-in microprocessor  with four virtual channels 

each. 

GigaSpaceWire (SpaceWire-RUS standard) digital 

controller IP - core is almost in the 19 times more economical 

in terms of the silicon area than the SpaceFibre digital 

controller IP - core (4 virtual channels). For a greater number 

of channels, this ratio is even more dramatic. 

 
Figure 2. MC-30SF6 chip post-layout area. The chip size: 17.5 mm x 17.5 

mm. 
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This is particularly evident in the SpaceFibre switches 

/routers ASIC implementations.  

From the MC-30SF6 ASIC post-layout area analysis  the 

size of the silicon area for some radiation tolerant MC-30SF6 

IP - cores (real layout): 

- TMR CPU: 57.00 mm*2; 

- DSP (total): 126.11 mm*2, including: 

 One DSP-core: 40.96 mm*2; 

 FFT+JPEG - accelerators : 41.55 mm*2; 

- multiprotocol  port  SpaceFibre (4VC) 

/GigaSpaceWire (controller): 10.05 mm*2 

- SpaceFibre (4VC) part -9,01 mm*2; 

- GigaSpaceWire (controller): 0.54 mm*2; 

- SpaceWire (Controller): 0.33 mm*2; 

- Switch (for the four GigaSpaceWire ports plus two 

SpaceWire ports): 8.64 mm*2. 

 

The main parameters of the SpaceFibre/GigaSpaceWire CML 

based transceivers IP-cores, based on the space qualification 

Radiation Tolerant Libraries, are: 

- A wide range of data rates 5, 10, 15… (with discrete 

of 5)...125, 312.5, 625, 1250 Mbps – for the 

GigaSpaceWire mode (including multiprotocol links) 

and - 1250Mbps for the SpaceFibre mode; 

- The transmitter and receiver IP blocks dimensions are 

the same: RX = TX = 0.233 mm*2. 

 

VI. CONCLUSION 

 

Robust, high-performance MC-30SF6 space quality 

SoC provides power signal/image processing based on the 

software/hardware, programmable, intelligent Signal/Image 

processing platform proven on the silicon.  
Open and modular МС-30SF6 innovative 

microprocessors architecture is supported by a set of hardware 

accelerators and special DSP instructions that can be used if 

necessary to obtain high performance and unprecedented 

flexibility in data formation and processing and their 

subsequent analysis.  

MC-30SF6  SoC hardware and software are a unique, 

programmable, heterogeneous multi-core platform dedicated 

to addressing the computational needs of the most 

sophisticated  on-board signal/image processing applications   

as for the single-chip standalone configurations as for the 

multichip parallel systems using balanced integrated 

embedded networking subsystem provides multiple ports for 

high-rate interconnection with combination of the 

SpaceWire/SpaceFibre/GigaSpaceWire (SpaceWire-RUS 

standard) links on the ASIC.  
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Abstract — Prototype connectors have been developed by 

Smiths Connectors (Hypertac) for backplane applications, and 

testing has been performed by TASUK under ESA contract. 

The connector is a modular type with different pin inserts for 

power, signal and high-speed data, making it suitable for 

SpaceWire applications. 

This paper describes TASUK’s experience designing a test setup 

and using the backplane connector.  

Index Terms—SpaceWire, backplane, connector, layout 

I. INTRODUCTION 

The SpaceWire Backplane connector has been designed to 

be modular so that it is suitable for a range of applications of 

differing complexity. Common card sizes in space applications 

are single and double Eurocard (and extended versions) and the 

SpaceWire Backplane Connector has been designed for these 

sizes. 

 

Fig. 1.  Typical backplane card sizes 

The connector used for TASUK’s testing is 97.5mm long. 

It incorporates two types of data interconnect, one 

general-purpose and one high-speed coaxial for differential 

links. It also has two types of power connector, one with 7.5A 

pins and one with 5.75A pins. Fig. 2. shows the connector. The 

tightly-packed general-purpose signal pins have a pitch of 

1.5mm (the "Signal 10.4 modules", ~1 Gbps). The co-axial 

differential pins are shielded ("Quadrax modules", ~3 Gbps) 

[1]. 

 

Fig. 2.  SpaceWire backplane connector pins 

Tests were required in the following areas: 

• Physical - check dimension, mass, solderability, 

mating/de-mating. 

• SpaceWire - check SpaceWire performance over both 

types of data interconnect. 

• Eye diagram - capture some basic eye diagrams on data 

transfers over both types of data interconnect. 

• Power - measure power transfer losses over both types of 

power interconnect.  

TASUK have designed and tested a suitable system. This is 

the first time that such a backplane connector has been used in 

a real-world SpaceWire application.  

This paper focuses on the user experience of the SpaceWire 

Backplane connector, in particular the layout of the backplane 

and daughterboards to achieve an extensible, high-speed 

system. Some rudimentary test measurements were performed 

but these were not rigorous and are provided here to 

demonstrate usability of the connector. Rigorous parametric 

analysis will be performed by Smith Connectors. 

II. TEST SYSTEM 

The test system consists of a small backplane board and 

two small daughterboards. The connections across the 

daughterboards and backplane allow end-to-end testing of the 

different interconnect types in a representative environment.  

All connectors and test pins are easily accessible. 

Fig. 3. shows the test system with one daughterboard 

disconnected. In the figure the two micro-D SpaceWire 
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connectors on the daughterboard have black protective covers. 

One of these SpaceWire connectors is connected to co-axial 

differential Quadrax modules, the other to pins within a Signal 

10.4 module. The SMA connectors are connected to Quadrax 

modules. 

 

Fig. 3.  Test system showing backplane and two daughterboards 

For testing all the boards are mounted in a simple frame 

constructed from extruded aluminium. This provides a robust 

framework and holds the daughterboards perpendicular to the 

backplane to prevent any damage from flexing.  

Fig. 4. shows the test system in the frame and connected to 

a Xilinx Virtex 6 evaluation board which was used to generate 

high-speed signals for eye diagram measurements. Fig. 5. 

shows the system connected to a laptop running Star-Dundee 

SpaceWire link verification software to measure data 

throughput, Fig. 6. shows the same system connected to power 

supplies and load resistors to test the performance of the power 

connectors.  

 

Fig. 4.  Eye diagram testbench 

 

Fig. 5.  SpaceWire throughput testbench 

 

Fig. 6.  Power measurement testbench 

III. PCB LAYOUT 

IIIA. BACKPLANE LAYOUT 

For optimal performance the backplane design must 

facilitate a multi-slot backplane high-signal-integrity 

architecture with flow-through routing.  This can be especially 

challenging in the close pin fields of dense connectors. 

A 6-layer FR4 board is used, providing two power layers, 

two ground layers and two inner signal layers. This stack-up is 

sufficient to achieve an extensible flow-through architecture. 

The layout of the backplane is illustrated in Fig. 7.  Fig. 7. 

also shows how the flow-through architecture allows designs to 

be easily extended to multiple slots. 
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Fig. 7.  Backplane layout showing multiple slots 

Two important factors in routing differential pairs are (a) 

keeping the separation of the pairs constant (and matched to 

100R differential) and (b) minimising skew between the two 

traces in a pair. The skew between the differential traces on a 

backplane adds to the skew on the daughterboards and this 

must be taken into account when designing high-speed systems 

which include a backplane. 

In TASUK’s backplane design all differential signals can 

be routed, even in the dense pin field of the Signal 10.4 

modules (Fig. 8. ). The path difference between the individual 

traces within these differential pairs is approximately 2.2mm. 

The crossover in the traces connecting the Quadrax modules 

keeps the path difference between the individual traces down to 

about 0.2mm. 

 

Fig. 8.  Backplane layout showing detail in Signal 10.4 modules 

IIIB. DAUGHTERBOARD LAYOUT 

The daughterboard layout is shown in Fig. 9. It is also a 6-

layer board, all signals are easily routed. 

 

Fig. 9.  Daughterboard layout 

Fig. 9. also shows the thick traces from the power pins. 

These reduce resistance and hence both voltage drop along the 

trace and heat generated. Power is connected using two 

adjacent 0.1" pins to spread the current across pins. Power is 

measured using a 4-wire connection facilitated by the provision 

of voltage measurement pins adjacent to the pins carrying 

power.  

IV. TEST RESULTS  

The following tests were performed on the SpaceWire 

backplane assembly. 

 Physical tests 

 SpaceWire signal tests 

 Eye diagram tests 

 Power tests 

Further tests will be performed by Smiths Connectors. 

A. Physical tests 

1) Visual inspection 

The connectors were visually inspected and no defects were 

found.  Considering these are prototypes the precision of 

manufacture and the quality of the build was high. 

2) Dimensions 

The PCB layout was performed directly from the drawings 

supplied by Smiths Connectors [1].  The prototype connectors 

fitted the PCBs exactly indicating the correctness of the 

drawings. 

Other basic dimensional checks were performed that 

demonstrated compliance with the drawings. 

3) Mass 

The connector is modular and therefore the mass will vary 

according to the contact types fitted.  The drawing [1] indicates 

a mass of ~53g for the mated pair.  The measured masses of the 

prototype connector are: 

 Daughter connector (socket): 35.97g 

 Backplane (plug): 15.76g 

Thus the mated pair weighs 51.73g. 

It is anticipated that a connector fully populated with all 

Quadrax modules would have the highest mass, though the 

delta is likely to be small. 

4) Solderability 

The pins are gold plated, no soldering issues were found. 

During the manufacture of a spacecraft unit the contact tails 

that enter the PCB would be de-golded to prevent solder 

embrittlement, this process could not be performed by a dip 

into a molten solder pot due the close proximity and shape of 

the connector body, however each pin could be de-golded 

manually. 

Soldering on the prototype board proved straightforward.  

Inspection of the top joint is hampered by the low profile of the 

connector body but is possible.  The pins have a shoulder that 

prevents a full solder fillet forming on the PCB top surface 

under the connector body however confirmation of solder flow 

up the Plated Through Hole (PTH) is possible and the joint 

meets the inspection criteria imposed by ESA [2]. 
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5) Mating 

The connectors have a high mating and de-mating force. 

Smiths Connectors have stated that the prototype may not have 

the same insertion and extraction force as the final design. The 

connector drawing [1] predicts a connector mating force of 

100N (TBC).  TASUK has not measured this force. 

The test system does not have a designed-in method of 

extraction so de-mating is difficult without applying leverage.  

Extraction tools and methods may need to be developed when 

using this connector to avoid damage from non-linear forces. 

TASUK have previously manufactured Spacecraft unit 

modules that use 2 off 144-way Hypertac KMC connectors, 

these connectors have an insertion/extraction force of 100N, so 

the module insertion/extraction force could be 200N.  Insertion 

forces of this magnitude are not considered excessive since 

there are robust surfaces to push against; also the card guides 

and dedicated connector alignment pins align the card.  

Extraction is more difficult since a typical board has no 

features which allow a firm grip. To solve this TASUK 

designed a mechanical extractor which engages with the PCB 

and pushes against the front lip of the unit box, pulling the card 

smoothly from the unit in a controlled manner.  For reference a 

picture of the TASUK designed extraction tool is shown in Fig. 

10. . 

 

Fig. 10.  Extraction tool designed and used by TASUK on Spacecraft units 

B. SpaceWire Signal Tests 

1) Setup 

Fig. 5. shows the backplane, STAR-Dundee SpaceWire 

brick (green LEDs showing traffic) and laptop with the test 

software. The SpaceWire brick was used to investigate the 

SpaceWire data rate capability of the two types of data 

interconnect. The blue SpaceWire cables were connected in 

loopback. 

One of the daughterboard’s two SpaceWire micro-D 

connectors is connected via the “Quadrax module” shielded 

differential co-axial connectors, the other via the “Signal 10.4 

module” unshielded plain connectors. Both were tested, with 

the same results. 

2) Results 

STAR-Dundee provides two software test utilities, the 

“spacewire_usb_test” console application and the “SpaceWire 

Validation Software” Java application.  

“Spacewire_usb_test” showed a slowest link speed of 

131.07 Mbit/s and “SpaceWire Validation Software” 

transferred >187Gbytes with 0 errors at an average data rate of 

100.648 Mbit/s, see Fig. 11.  

These speeds were exactly the same as those measured with 

the SpaceWire brick in loopback i.e. the speeds are limited by 

PC software or SpaceWire brick, not by the SpaceWire 

backplane. 

 

Fig. 11.  SpaceWire backplane SpaceWire Validation Software results 

C. Eye Diagram Tests 

Only rudimentary eye diagram tests were possible owing to 

lack of suitable equipment; more comprehensive tests will be 

performed by Smiths Connectors. The oscilloscope was only 

capable of triggering on a rising edge and not on a recovered 

clock so these are not true eye diagrams; however the results 

are indicative of the low distortion levels. 

1) Setup 

A Xilinx Virtex 6 evaluation board was used to generate 

high-speed signals. The board has differential outputs with the 

Tx+ and Tx– signals available on SMAs. See Fig. 4.  and Fig. 

12. In Fig. 4. the blue cable into Ch1 is connected to the brown 

cable from the Xilinx board Tx+ using an SMA connector to 

keep the total cable lengths the same. The connector cannot be 

seen in the figure. 

Bit-Error Rate test code was downloaded from the Xilinx 

website (UG811 “ChipScope Pro Tutorial - Using an IBERT 
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Core with ChipScope Pro Analyzer”). The code uses the GTX 

transceivers to perform bit-error rate tests, the bit rate can be 

set to 625Mbps, 1.25Gbp, 2.5Gbps or 5Gbps. The oscilloscope 

had a 1Gbps bandwidth so the only data rate which could be 

tested was 625Mbps. 

Eye diagrams were generated for two signals (i) directly 

from the Tx+ SMA output of the evaluation board (i.e. without 

the test backplane in the signal path) and (ii) from Tx- via the 

“Quadrax module” shielded differential co-axial connectors in 

the SpaceWire backplane. 

 

Fig. 12.  SpaceWire backplane eye diagram test setup 

2) Results 

See Fig. 13.  The top trace is the direct connection i.e. 

without the test backplane in the signal path, the bottom trace is 

via the “Quadrax module” shielded differential co-axial 

connectors. As may be expected the eye diagram of the signal 

via the SpaceWire backplane was different from the direct 

connection.  

 

Fig. 13.  SpaceWire backplane eye diagram results 

D. Power  Tests 

1) Setup 

To simulate power transfer across the backplane, power 

was applied at one end of the backplane and a low-resistance 

load connected across connectors on the daughter board. The 

voltage drop across the backplane was measured using a 4-wire 

measurement, Fig. 6. shows the testbench.  

There are two different types of power connector modules 

in the backplane (a) “PWR5.75 module” with pins of 5A 

current-carrying capacity and (b) “PWR3.1 module” with pins 

of 7.5A capacity. Two measurements were made for each 

connector type, across different pairs of pins. 

2) Results 

a) PWR5.75 module pins (5A) 

1. Voltage measured = 31.6mV, current = 4.99A 

=> Resistance = 31.6/4.99 = 6.3 mΩ 

2. Voltage measured  = 27.6mV, current = 4.99A 

=> Resistance = 27.6/4.99 = 5.5 mΩ 

These pins have a specified resistance of 3mΩ [1]. 

b) PWR3.1 module pins (7.5A) 

1. Voltage measured = 32.6mV, current = 7.49A 

=> Resistance = 32.6/7.49 = 4.4 mΩ 

2. Voltage measured = 32.0mV, current = 7.47A 

=> Resistance = 32.0/7.47 = 4.3 mΩ 

These pins have a specified resistance of 2mΩ [1]. 

V. CONCLUSION 

The SpaceWire backplane and daughter board have proved 

the feasibility of the SpaceWire backplane concept, PCB layout 

and the use of the backplane components in a real-world 

application. The application incorporates a representative 

backplane, two daughter boards and the backplane connectors. 

Testing shows that the SpaceWire links routed through two 

pairs of connectors will run at the maximum possible rate of 

the SpaceWire Brick.  

Eye diagrams of the “Quadrax module” shielded 

differential co-axial connectors within the connectors at 

625MHz show some expected attenuation, and that the link is 

not creating any unexpected discontinuity or distortion. 

Power measurements show that the power pins are 

performing at their rated capability with minimal losses. It 

should be noted that the pins used in the connectors are 

prototype rather than production parts. 

The layout of the backplane and daughter boards have 

shown that a multi-slot backplane with a flow-through 

architecture is easily achieved, even within the tight restrictions 

of the closer pin field of the densest connector module types. 

A flexible architecture has been shown to be feasible using 

only 6 layers. 
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Abstract—Conventional protocols have been integrated with 

SpaceWire through service oriented approach with reference to 

SPACECRAFT ONBOARD INTERFACE SERVICES (SOIS).  

The design framework is based on the definition of determinism 

provided by SpaceWire-D draft standard in order to keep 

established services inherited from previous satellite projects.  

The implementation result is under evaluation in order to 

establish the consistency with the draft standard of SpaceWire – 

Plug-and-play protocol.  This paper describes the integration 

approach and the evaluation of implementation experience. 

Index Terms— SpaceWire, Networking, SpaceWire-D, Plug 

and play, SOIS. 

I. INTRODUCTION 

Next generation spacecraft bus architecture has been 

established by JAXA/ISAS (Japan Aerospace Exploration 

Agency/Institute of Space and Astronautical Science) and NEC.  

Scalability with well-defined interface specification is the main 

issue for the architecture in order to apply the architecture on 

wide range of satellites with great flexibility.  Various units are 

to be connected to spacecraft system bus in simple way as 

plugging in power plugs into outlets.  

Service oriented approach was employed for the integration 

with reference to SOIS concept [1].  SpaceWire [2]/RMAP 

(Remote Memory Access Protocol) [3] is adopted in the 

architecture with SpaceWire-D draft standard [4], and 

conventional protocols have been integrated with SpaceWire 

exploiting the “New Concept” research project and scientific 

satellite projects.  Almost all of onboard subsystems of 

ASTRO-H, such as the command/data handling subsystem, the 

attitude and orbit control subsystem, and four types of X-

ray/gamma-ray telescope instruments, are connected to the  

SpaceWire network using a highly redundant topology [5], [6], 

[7], [8].  The number of physical SpaceWire links between 

onboard components exceeds 140 among 40 independent units, 

and there are more links in intra-component (intra-board) 

networks.  A partial redundant SpaceWire networks with the 

electronics units developed in ASTRO-H project has been 

demonstrated in orbit by HISAKI successfully in 2013.  Hybrid 

systems with conventional interfaces and SpaceWire interfaces 

are also under development in HAYABUSA2 [9] project and 

ASNARO project [10], [11]. 

In order to accommodate conventional interfaces, discrete 

command and telemetry interfaces have been integrated into 

SpaceWire network by dedicated attachments, and serial digital 

interfaces as MIL-STD-1553B, UART and dedicated serial 

transmission protocol for Japanese scientific satellites have 

been transformed through protocol bridges. The 

implementation methods for interface specification conversion 

were investigated through the new concept research, which 

encompassed software implementation, device implementation 

and equipment architecture. 

The ground station operation scheme using CCSDS 

framework was also carefully investigated through the 
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preliminary design phase of ASTRO-H space X-ray 

observatory in order to maintain the operation manner of 

previous projects. This development activity had been resulted 

in service oriented approach by categorizing the network 

transmission scheme of prior projects with referenced to 

CCSDS SOIS concept.  The flexibility of remote memory 

access protocol of SpaceWire and the determinism for system 

integration and test provided by SpaceWire-D draft standard 

were exploited to accommodate each service, and specific 

memory space has been assigned as the channel for each 

service. 

The implementation result is under evaluation in order to 

establish the consistency with the draft standard of SpaceWire 

– Plug-and-play protocol [12]. 

II. INTEGRATION APPROACH 

Four types of satellite systems have been developed using 

SpaceWire.  They are single system, partial redundant system, 

fully redundant system, and hybrid system with legacy network 

as shown in Table 1.  In order to encompass these types of 

satellite systems, four approaches have been carried out for 

establishing the scalability through the project.  They are the 

establishment of design criteria, the establishment of the 

standard onboard network architecture based on SpaceWire, 

the development of standard units and devices, and the service 

oriented network definition. 

Most technology development has been achieved in 

ASTRO-H project [13].  Design criteria have been established 

through the development phase of the project, and standard 

electronics units were also developed.  A partial redundant 

system, which is called as “HISAKI”, was developed with the 

design criteria and standard electronics units have already been 

demonstrated in orbit successfully.  A data handling subsystem 

in single configuration and an attitude and orbit control 

subsystem in dual standby redundant configuration are 

employed for HISAKI.  Therefore, single and standby 

redundant operation scheme of common onboard computer 

(Space Cube
®
2) have been demonstrate and validated.  PIM 

(peripheral interface module) is an inherited legacy onboard 

network for JAXA scientific satellites, and it is used in 

HAYABUSA2 project with SpaceWire [14]. The preliminary 

integration test of HAYABUSA2 has been completed and the 

hybrid system has also been established.  In consequence the 

scalability of the design criteria have been validated. 

Standard onboard network architecture based on SpaceWire 

has been established by ISAS [15] in order to realize scalability.  

The architecture is based on the functional model of spacecraft, 

and the functional model of spacecraft is defined with 

functional objects [16]. 

TABLE I.  FOUR TYPES OF SPACEWIRE NETWORKS 

Redundancy Project 

Single system 
ASNARO 

(planned to be launched in 2014) 

Partial standby system 
HISAKI (SPRINT-A) 

(launched on 14th September 2013) 

Full redundant system 
ASTRO-H 

(planned to be launched in 2015) 

Hybrid system 
HAYABUSA2 

(planned to be launched in 2014) 

 

Fig. 1.  ISAS functional model development framework 

The attribute, operation, event, behavior, and diagnose rule 

of the functional model are specified in system information 

base 2 (SIB2).  The architecture consists of three sub-

architectures, which are physical architecture, functional 

architecture and protocol architecture.  The development 

framework of the functional model is shown in Fig. 1. 

The physical architecture specifies how to configure 

onboard network systems physically and defines basic physical 

elements. Any onboard network system will be constructed 

physically by connecting basic physical elements according to 

the characteristics and the complexity of the spacecraft. The 

functional architecture specifies how to configure onboard 

network functionally and defines basic functional elements. 

These functional elements are implemented in physical 

elements. The protocol architecture specifies how to connect 

physical and functional elements with communications 

protocols and defines a set of standard protocols to be used. 

By using this architecture, the basic portion of onboard 

systems will be developed by selecting appropriate standard 

components and connecting them. The difference in the size of 

different spacecraft will be reflected in the number of units 

used in each spacecraft. 
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top: Space Cube2, bottom left: SpaceWire router, bottom right: data recorder 

 

Fig. 2.  Standard components for SpaceWire network 

As for the development of standard components, Space 

Cube2 onboard computer, SpaceWire router and Data Recorder 

(mass storage unit) have been developed with SpaceWire based 

on the architecture.  Figure 2 shows those three standard 

components. 

The service oriented network definition refers to SOIS.  

Communication services are defined in reference to SOIS sub 

network services, and two design criteria are established.  The 

criteria are independent on data link layer and physical layer, 

so both SpaceWire and legacy protocols refer to them.   

TABLE II.  TELEMETRY COLLECTION FORMAT FOR EACH COMMUNICATION 

SERVICE 

Communication service 

Collection format 

Space Packet 
Raw data through 

RMAP 

Essential housekeeping data  X 

Auxiliary housekeeping data  X 

Housekeeping packet data X  

Response value telemetry  X 

Memory dump data X  

Notification X  

Acknowledge X  

User request  X 

Payload correction data  X 

 

Fig. 3.  MIL-STD-1553B interface attachment for Space Cube2 

 

Fig. 4.  Payload interface unit (PIU) 

Prioritization, segmentation and blocking are defined in 

telemetry/command design criteria, and SpaceWire and legacy 

network use the same design criteria.  Retry and redundancy 

are specified in network design criteria, which is dependent on 

each data link layer protocol such as SpaceWire. 

Two types of data collection scheme are provided for 

communication services.  One is to collect Space Packet 

directly from each target, and the other is to collect raw data in 

order to make Space Packet by initiator.  The raw data is 

collected through multiple transaction of RMAP.  Telemetry 

collection format for each communication service is shown in 

Table 2. 

III. PROTOCOL BRIDGE DEVELOPMENT 

In order to incorporate units with legacy communication 

interfaces into SpaceWire networks, two types of protocol 

bridges have been developed. 

One is an attachment for an onboard computer.  The 

attachment is connected to a CPU base module.  Either 

SpaceWire or other protocols as PCIbus
®
 [17] are used to 

connect the attachment to a CPU base module.  SpaceWire 

active backplane is used in case that SpaceWire is used for 

inter-module communication.  Figure 3 shows an attachment 

for Space Cube2, which adopts MIL-STD-1553B. 

The other type of the protocol bridge is an independent unit, 

which is called as a payload interface unit (PIU).  Figure 4 

shows an example of PIU.  The PIU is used for dedicated 
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interface as communication equipment as well as discrete 

interfaces for sensors and actuators. 

IV. DESIGN FRAMEWORK 

The protocol layer of onboard and space link 

communications shown in Fig. 5 [18], [19].  Three upper layers 

are common for both space link communication and onboard 

communication.  As for onboard data bus, inherited network 

design from previous scientific satellites had the access 

protocol whose image is close to memory access image.  A 

linear address space encompasses network-wide access, and 

communication services are tied to reserved address space. 

The upper protocol layers [20], which include RMAP and 

SpaceWire-D, are independent on the data link layer and 

physical layer.  The notion of RMAP is used both for 

SpaceWire network and legacy network.  The characteristics of 

physical layer affects the transmission speed and latency.  

Therefor SpaceWire-D is essential for designing both 

SpaceWire network and legacy network.  The time slot design 

criteria and latency definition scheme of SpaceWire-D are 

incorporated into the definition of our SpaceWire network 

design criteria [21] as well as inherited legacy network design 

criteria.  In consequence, the design flow of all system shown 

in Table 1 is the same.  The maximum transaction numbers in 

one time slot and the latency performance between an initiator 

and a target are essential to system performance, so the 

standardized design criteria for the time slot and latency 

specified in SpaceWire-D draft standard are adopted both for 

SpaceWire networks and legacy networks. 

V. THE EVALUATION OF IMPLEMENTATION EXPERIENCE 

Since our application layer protocol and segmentation/ 

blocking scheme is independent on data link protocol layer and 

physical layer [22], the functions are implemented as the upper 

layer on SpaceWire and RMAP. 

In addition to that, we adopted two draft standards, which 

are SpaceWire-D and SpaceWire Plug and Play.  SpaceWire-D 

had been almost established during the design phase of 

ASTRO-H project, and the draft B version was applied to our 

SpaceWire network design creteria.  SpaceWire Plug and Play 

specification had been in the early stage of its establishment 

during the design phase of the projects shown in Table 1, and 

the notion of the specification has been reflected both on the 

SpaceWire netrwork design criteria and each electronics unit 

interface design specification. 

In accordance with our experiencs, SpaceWire-D is useful 

for system design phase, because the transaction performance 

within a time slot is essential for system perforrnance.  The 

common design flow for the network interface was established 

with the standardisation for transaction and latency definition 

which is quoted from the SpaceWire-D draft specification.  

The latency definition was also useful for assigning time out 

duration on each SpaceWire router. 

The notion of SpaceWire Plug and Play was useful for 

component design phase and system test phase.  Common 

access scheme for the status of each unit is useful for 

diagnosing the status and configuration information of each 

electronics unit during the system test.  The ownership is tied 

to network region or network domain in our design, and 

SpaceWire time code and system time indicator [23] belong to 

the ownership [8]. 
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Abstract—The Sub-mm Wave Instrument (SWI) is one of the 

scientific instruments on board of the JUpiter ICy moons 

Explorer (JUICE) mission. It is a sub-millimeter wave 

spectrometer with a very high spectral resolution. In order to 

calibrate the location of the spectral bands the frequency of the 

instrument’s ultra-stable oscillator (USO) has to be monitored to 

very high accuracy. The instruments on board of JUICE are 

connected through a SpaceWire network which is used for the 

transmission of the scientific data to the on-board memory as 

well as to control the instruments and for the transmission of 

instrument housekeeping data. The objective of this paper is to 

investigate if SpaceWire Time-Codes can be used to calibrate the 

USO frequency of the SWI to the required accuracy. It presents 

an end-to-end budget of the elements contributing to the error of 

the frequency calibration with the reference on ground. 

Index Terms—SpaceWire, Time-Codes, frequency calibration, 

SWI, JUICE 

I. INTRODUCTION 

The JUpiter ICy moons Explorer (JUICE) mission has been 

selected as the first large mission to be implemented in ESA’s 

Cosmic Vision Program. The objective of JUICE is to 

investigate the Jovian system focusing on its ice covered 

moons Ganymede, Europa and Calypso [1].  

Amongst the 11 scientific experiments and instruments on 

board there is the Sub-mm Wave Instrument (SWI). Its 

development is led by the Max Planck Institute for Solar 

System Research in Germany. The SWI is a spectrometer and 

radiometer working in the frequency range of 530 to 601 GHz 

with a spectral resolution of up to ~10
7
. One objective of the 

SWI is to measure a wind speed and temperature profile in the 

Jupiter stratosphere and troposphere.  

The measurement principle used is to sense the Doppler 

shift and shape of specific absorption lines of molecules in the 

Jupiter stratosphere. For this the location of the measured 

spectral bands has to be known with a very high accuracy. An 

Ultra-stable Oscillator (USO) is used as the frequency 

reference in SWI from which all other frequencies in the 

instrument are derived. In order to meet overall accuracy 

requirements the frequency of this USO has to be known with 

an accuracy better than 1.7·10
-8

. 

II. USO FREQUENCY KNOWLEDGE REQUIREMENT 

The measurement of Doppler shifts of the absorption lines 

caused by atmospheric motions relies on a precise absolute 

frequency calibration of the observed spectra. SWI’s frequency 

scale is derived from the USO frequency. 

The required frequency knowledge is derived from the 

Doppler shift accuracy measurement requirement. To allow 

atmospheric wind measurements from observations of Doppler 

shifted spectral lines with a systematic error of less than 5 m/s 

due to a drift in the absolute frequency scale the relative error 

must be less than Δv/v = (5 m/s)/c = 1.7×10
-8

 where c is the 

speed of light. This relative error corresponds to a 10 kHz 

frequency error at 600 GHz. 

The USO used for SWI must provide a frequency signal 

with a very low phase noise as its frequency is multiplied by a 

large factor to mix down the 600 GHz signal received. The 

long term stability of this type of low phase noise oscillators is 

somewhat limited and therefore the frequency drift of the USO 

needs to be monitored on a regular basis of about once a 

month. 

Ultimately this frequency has to be calibrated against an 

absolute atomic clock frequency reference on ground. The 

regular monitoring can be done by comparing the SWI USO 

frequency to a second, more long term (or sufficiently known) 

stable oscillator on board of the spacecraft or to measure the 

SWI USO frequency using on the Mission Elapsed Time 

(MET) which is the time reference held in the On-Board 

Computer (OBC). At the same time this MET must be 

correlated with an highly accurate time reference on the 

ground. 

The accuracy of this second option is investigated in this 

paper. It is further investigated if the SpaceWire links using 

SpaceWire Time-Codes can be used to perform this frequency 

measurement or if a special time signal transferred between the 

OBC and SWI over a dedicated line is needed. 

In paragraph III the accuracy of a frequency counter to 

measure the USO frequency is derived and compared with the 

time jitter introduced by SpaceWire Time-Codes. In paragraph 

IV the process used for time synchronization between 

spacecraft and ground is explained. In paragraph V the 

54



achievable time correlation accuracy is compared with the time 

correlation performance which has been achieved in the Gaia 

mission as example. 

III. ANALYSIS OF THE SWI FREQUENCY MONITORING 

ACCURACY REQUIREMENT 

The frequency of the oscillator has to be measured with an 

accuracy better at least an order of magnitude better than the 

required frequency accuracy of 1.7×10
-8

. One way of 

measuring the frequency of an oscillator is to use a frequency 

counter. This is to count the number of cycles in a fixed and 

well known period of time TG. This period of time TG is called 

the gate time. For a given gate time TG and the counter value N 

the frequency f is calculated by f=N/TG. 

Due to the statistical uncertainty of how the counted events 

are falling relative to the beginning and the end of the gate time 

window, the counter value N will differ by one count in 50% of 

the measurements: 

 2Δf = f2 - f1 =(N+1)/TG - N/TG = 1/TG 

This corresponds to a principle frequency uncertainty of a 

frequency counter relative to the mean frequency (f2+f1)/2 of 

half a clock period: Δf=1/(2TG). On the other side this means 

that by extending the gate time the frequency measurement 

accuracy can be greatly improved to match that accuracy 

requirement. 

The requirement for SWI is on the frequency knowledge 

Δf/f=1/(2TG f) < 1.7·10
-8

.  

With an USO frequency of 10 MHz and if TG is perfectly 

known this would require a time gate of at least 2.94 seconds. 

Any error on the knowledge of the gate time increases the 

principle uncertainty of the frequency counter measurement. 

If the possible error of the gate time TG is ±ΔTG the relative 

frequency error Δf/f can be calculated as follows: 
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The time distribution mechanism using SpaceWire time-

codes introduces a certain mean latency and a jitter. If the 

begin and the end of the gate time is signaled using SpaceWire 

time-codes only the jitter needs to be considered as the mean 

latency stays the same. This jitter which has been investigated 

in [3] is dependent on a number of parameters. As one example 

for a link speed of 60 Mbps the jitter introduced by a single 

link has a standard deviation of 39 ns. Consequently the 

standard deviation of the gate time will be 55 ns which is the 

RSS summation to the standard deviation of the two 

statistically independent time-code arrival events. Just looking 

at this error contribution the necessary gate time to achieve 

relative frequency knowledge Δf/f= ΔTG/TG< 1.7·10
-8

 is at least 

3.24 seconds. In order to get the final figure for the required 

gate time length all contributors to the gate time error have to 

be summed up in the RSS sense. As the frequency counter gate 

time uncertainty of half a period at a USO frequency of 

10 MHz corresponds to 50 ns, the combination of this error 

with the SpaceWire time-code jitter of 55 ns results in a 

standard deviation of 74.3 ns. Consequently a gate time TG of 

at least 4.37 seconds shall be used. 

In order to improve the statistical certainty the 3σ error 

value should be used to calculate the actual gate time. 

IV. TIME SYNCHRONISATION BETWEEN SPACECRAFT AND 

GROUND 

The On-board Computer (OBC) has a counter derived from 

free running clock. This counter represents the Mission 

Elapsed Time (MET). The MET is the basis for the execution 

of the on-board time lines, time tacking of telemetry, 

generation of SpaceWire time-codes and other time based 

functions. In order to guarantee the proper spacecraft operation 

the MET has to be related to the UTC time reference on 

ground. This is done by means of correlation. Commonly the 

correlation between MET and Universal Coordinate Time 

(UTC) is performed as follows: 

The MET counter is read out and sampled every time a 

telemetry frame is sent to the ground. This sampling is 

triggered by the telemetry frame generator whenever the first 

bit of the Attached Synch Marker (ASM) of the TLM frame is 

generated. The sampled time value is then transmitted together 

with other information in the following TLM frame to the 

ground. 

On the ground the digital processor demodulates the signal 

and time stamps every frame received based on the local UTC. 

This time stamp is generated upon the arrival of the leading 

edge of the first data bit after the ASM. The time information is 

memorized and “attached” to the frame for post-processing 

evaluation together with ranging data.  

In order to correlate the MET with UTC the time delay 

between the sampling of the MET on board and time stamping 

of the received frame on the ground needs to be compensated. 

There are a number of contributors which have to be take into 

account. Some are static, others change dynamically. 

V. TIME CORRELATION PROCESS OF THE GAIA MISSION 

In order to illustrate what level of time correlation can be 

achieved in scientific missions the Gaia mission [4] is 

presented as reference. For the highly accurate star position 

measurements performed by Gaia the precise correlation 

between MET which is called Spacecraft Elapsed Time 

(SCET) in the Gaia case and UTC is of outmost importance 

[5]. 

There are actually two time scales which are defined for 

used on-board Gaia: 
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- the On-Board Time (OBT) for the science packets 

time stamping and 

- the Spacecraft Elapsed Time (SCET) for the platform 

generated data time stamping. 

Gaia follows the a one-way time correlation procedure 

which has been described in paragraph IV. In regular time 

intervals a time report is generated on-board and transmitted to 

ground. Once the event is generated on-board, it is used to 

sample both the OBT and SCET (actually sampled exactly on 

the rising edge of the first bit of the related frame Attached 

Synch Marker (ASM)). The arrival date of this event on ground 

is time tagged in UTC. 

When the first leading edge of the transfer frame ASM is 

determined by ground a time stamp (UTC) is applied at the 

ground station. The GPS linked ground station Maser is 

therefore time stamping the frame after the following delays: 

- delays between the ASM event occurrence and the on-

board time taken to record and transmit; 

- the delay between the sending of the event and its 

arrival on ground (in propagation time); 

- delays between the arrival on-ground of the signal and 

the on-ground recorded time; 

- the relationship between the station time reference and 

a known time standard. 

To meet the timing accuracy requirements of the Gaia 

mission the on-board time is generated from a single highly 

accurate Rubidium atomic master clock in the Clock 

Distribution Unit (CDU). The main clock generates the OBT 

which is used directly to time stamp the scientific data 

generated in the Gaia Focal plane. Additionally, the SCET, 

generated within the OBC called Central Data Management 

Unit (CDMU), is kept in synchronisation with the master clock 

by means of a pulse per second reference and a Numerically 

Controlled Oscillator (NCO). 

Before this synchronisation both, the SCET and OBT are 

free running counters. Even after the synchronisation is 

achieved the OBT and the SCET are not aligned, only 

synchronised, so there is still a fixed offset between the two 

time lines. 

The final OBT-SCET-UTC correlation accuracy depends 

on the precise determination of the free space transmission 

delay between the satellite and ground. The residual error in 

this delay calculation depends heavily on the knowledge 

accuracy of the Gaia orbit. 

The mission requirement for the end to end time correlation 

accuracy is 1.7µsec with an on-board contribution of less than 

1µsec. 

For the GAIA mission the end-to-end OBT-UTC time 

correlation budget as shown in TABLE I has been established. 

The expected performance is clearly much better the end-

to-end time correlation requirement of 1.7 µs. In order to 

achieve this time correlation accuracy a number of measures 

and tests had to be put in place calibrate internal delays and to 

control their variation. The effort made in this respect for the 

Gaia mission goes beyond what is normally applied for 

missions with a not so demanding time correlation accuracy 

requirement. 

TABLE I GAIA ERROR CONTRIBUTIONS FOR TIME CORRELATION ACCURACY 

 Description of error contributions  Error size 

1 On-board delays 300 ns 

2 Propagation delays (75m error, restituted orbit) 250 ns 

3 Tropospheric correction 1 ns 

4 Station delay error (daily range calibrated) 1 ns 

5 Demodulator jitter/quantization 57 ns 

6 
Correction to Attached Synch Marker (ASM) bit 0 

(inc. puncture code variations) 
100 ns 

7 
Intermediate Frequency Modem System (IFMS) sync 
to Inter-Range Instrumentation Group (IRIG) B 

100 ns 

8 Station time sync to GPS (corrected maximum) 200 ns 

9 Station GPS to GPS master clock sync 80 ns 

 Total RSS Error 414 ns 

VI. IMPLICATIONS OF THE GAIA RESULTS FOR THE JUICE 

MISSION DESIGN 

It has been demonstrated by GAIA that a very accurate 

level time correlation between the MET used on board and 

UTC on ground can be achieved. This requires a very tight 

control of the absolute time delays on board but also in the 

ground station during the duration of the mission. 

For the calibration of the USO frequency of the SWI 

instrument absolute time delays are not relevant to obtain a 

good performance. It is only the change in time delay between 

the beginning and the end of the calibration measurement, the 

Gate Time, which contributes to the error. Some of the 

important error contributors listed in 
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TABLE I can be assumed to be stable during the calibration 

measurement period. Other more noise like terms may still 

contribute to the calibration error.  

The error contributors in lines, 1, 5, 6 and 7 may still play a 

role for the short term time delay error. A realistic requirement 

could be that this short term time error should be less than 

500 nsec. 

In order to meet the frequency monitoring requirement of 

the SWI instrument the gate time has to be chosen long enough 

relative to the end-to-end time delay variation. In this particular 

case in accordance with equation (3) the gate time should be 

longer than 29.7 sec to achieve a frequency calibration 

accuracy better than 1.7·10
-8

 

The important result here is that the timing jitter in 

measurement of the MET interval trough the space to ground 

link is approximately 10 times higher than the gate time error 

introduced through the frequency counter and the SpaceWire 

time-code jitter. In this case the option to use a dedicated line 

using a dedicated line between the OBC and the SWI for the 

gate time signal distribution will reduce the required calibration 

measurement time by 0.17 sec which is insignificant. The use 

of SpaceWire time codes instead will help to reduce the 

number of interfaces and the required harness mass. 

It should be further noticed that an end to end time 

correlation accuracy of less than 2 µsec like demonstrated by 

the Gaia mission can only be achieved with significant effort 

not only on board but also in the ground system. The 

SpaceWire time code jitter size as reported in [3] has to be set 

in relation time correlation accuracy. In most cases these errors 

will only be minor contributor to the overall error. 

In some cases there may be a benefit to synchronize the 

different on-board times and to measure or remove the offset 

between them as explained in [6]. 

For some special type of instruments the synchronization 

requirement between on board clocks may be much higher than 

the achievable space to ground correlation accuracy. Even if 

this is not the case the synchronization between the clocks may 

be a significant system simplification as the time correlation 

with only the one reference on board clock is needed. In other 

cases the measurement of the clock offset due to the time code 

latency may be one important measurement to perform the time 

correlation.  

VII. CONCLUSIONS 

This paper investigated the possibility to use SpaceWire 

time codes on-board of the JUICE mission to calibrate the 

USO frequency of the SWI instrument. When measuring a 

frequency with a frequency counter any uncertainty in the 

knowledge of the measurement period, which is called gate 

time, is directly contributing to the frequency measurement 

error. It has been shown that the gate time uncertainty 

introduced by the time-code jitter at a link speed of 60 Mbps is 

of the same order of magnitude as the inherent uncertainty of a 

frequency counter measuring the frequency of a 10 MHz USO. 

In comparison the gate time uncertainty introduced by the 

space to ground link is approximately 10 times higher. 

Fortunately all the errors sources contributing to the gate time 

uncertainty can be compensated by increasing the gate time 

length until the required frequency measurement accuracy is 

met. In the investigated case the required gate time length is 

determined by the time jitter in the space to ground link. 

It is concluded that SpaceWire time-codes can be used 

without problem to indicate the start and the stop of the gate 

time. A dedicated line for a time signal between the on-board 

computer and the SWI instrument does not improve the 

measurement accuracy or reduce the required measurement 

time significantly. 

The analysis of the time correlation accuracy achieved in 

the Gaia mission allows further to draw even some wider 

conclusions for the use of SpaceWire time codes for the time 

distribution on board of spacecraft. It has been shown that the 

achievable time correlation accuracy is dominated by the time 

jitter of the space to ground link as well. In comparison the 

jitter introduced by the SpaceWire time codes contributes only 

little to the overall time correlation error budget. This result 

advocates the use of the SpaceWire network and SpaceWire 

time codes for the on-board time distribution which will reduce 

the number of on-board interfaces and required harness. 
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Abstract—Modern space probes such as Solar Orbiter employ 

a SpaceWire network to connect to on-board computer (OBC), 

solid state mass memory (SSMM), and scientific instruments. 

Management of SpaceWire links within scientific instruments is 

typically performed by a data processing module (DPM) 

featuring a space qualified processor that is executing on-board 

software. To adapt to changing mission requirements, account 

for failures and fix possible software bugs, the ability of 

uploading and patching instrument software is mandatory. 

However uploading and over-writing of the software’s boot 

image cannot securely be performed by the software itself. If 

over-writing the boot image fails, the remaining image might be 

corrupted. So the processor may not be able to reboot 

successfully and no further upload would be possible. Therefore 

reception of uploaded patches must be performed by an 

independent entity. Currently, this is accomplished by a 

dedicated boot loader in separate memory area, to be qualified 

according to ECSS criticality category B. This boot loader 

processes uploading of patches and copies them to the second 

boot area, where the actual software including the operating 

system is stored. Due to the opportunity of modern processors to 

handle SpaceWire RMAP accesses (e.g. SpW-RTC, UT699, 

GR712RC [1], or upcoming NGMP [2]), it would be possible to 

perform uploading and patching of the instrument software 

independent of software execution using RMAP. This would 

dramatically simplify the development, eliminate the need for a 

class-B qualified boot loader, and will inherently improve 

reliability, as reception of patches would entirely be performed 

by hardware. This paper presents a possible update and patch 

process for boot images using hardware based RMAP features. 

Furthermore implications of the standard ECSS services 

affecting such patching routines are discussed. 

Index Terms—SpaceWire, RMAP, in-flight update, boot 

loader, CCSDS PUS.  

I. INTRODUCTION 

In modern scientific instruments a data processing module 

(DPM) handles processing of science data, instrument control, 

and telecommand (TC), telemetry (TM) and housekeeping 

(HK) communication. To receive TC and send TM and HK to 

the on-board computer (OBC) and solid state mass memory 

(SSMM) modern space probes such as Solar Orbiter or 

BepiColombo are equipped with a SpaceWire network. The 

DPM typically features a processor running instrument 

software to process TC, generate TM and HK, and perform 

instrument control. The instrument software is stored in a boot 

memory contained in the DPM and is booted automatically on 

power up. Due to changing scientific mission requirements or 

handling of unexpected difficulties with the instrument, this 

software may need to be exchanged or updated. Furthermore, if 

in disregard of instrument changing scientific requirements, the 

instrument was equipped with software that cannot be fixed 

and updated it would be required to completely qualify the 

software to almost highest ECSS criticality category. This 

causes additional effort and limits possibilities like dynamic 

memory allocation. Dynamic memory allocation in turn is 

essential for fast external interfaces using direct memory access 

(DMA). 

II. TELECOMMAND (TC) AND HOUSEKEEPING (HK) 

STANDARDS AND STRUCTURE 

The standard for data structures in TC, TM, and HK packets in 

ESA spacecrafts is ECSS-E-70-41A [3], which is based on 

guidelines agreed on in the Consultative Committee for Space 

Data Systems (CCSDS) such as reference document [4]. The 

standard ECSS-E-70-41A [3] is a packet utilization standard 

(PUS), defining the packet structure and a set of standard 

services. For TC packets arriving at a scientific instrument, the 

defined structure is depicted in Figure 1. Also this PUS [4] 

defines a set of standard services. These services are functions 

of the commanded entity e.g. the instruments DPM consisting 

of a command, an action, and if applicable a reply. The 

standard services are listed in Table I. 

For a particular spacecraft the contractor building the 

spacecraft platform performs a tailoring of this standard and 

selects mandatory and optional services, the payload 

instruments must be able to perform. 
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Table I : Table 1 standard service defined by ECSS-E-70-41A [2] 

Service Type Service Name 

1 Telecommand verification service 

2 Device command distribution service 

3 Housekeeping & diagnostic data reporting service 

4 Parameter statistics reporting service 

5 Event reporting service 

6 Memory management service 

7 Not used 

8 Function management service 

9 Time management service 

10 Not used 

11 On-board operations scheduling service 

12 On-board monitoring service 

13 Large data transfer service 

14 Packet forwarding control service 

15 On-board storage and retrieval service 

16 Not used 

17 Test service 

18 On-board operations procedure service 

19 Event-action service 

Within that standard set of services, the service that can be 

used to update the instrument software is service 6 subtype 2 

“Load Memory using Absolute Addresses service”. After an 

upload and storing of a new software version has finished, the 

DPM would simply have to be rebooted. There is no standard 

service for rebooting a payload instrument; one possibility is 

to use the service 8 subtype 1 “Perform function” or to use a 

set of private services, if they are allocated for the mission, to 

implement the reboot function. It is not sufficient if a boot 

loader supports only these two services, instead the boot 

loader must also implement a set of minimal standard PUS 

services, so that spacecraft requirements for nominal operation 

are fulfilled and the spacecraft allows further operation and 

does not power down the instrument, Table II lists an 

exemplary set of services. 

Table II : Exemplary collection of a set of services 

Minimal services that need to be supported  

Service 1: TC Verification Service 

TM 1 1 TC acceptance success report 

TM 1 2 TC acceptance failure report 

TM 1 7 TC execution success report 

TM 1 8 TC execution failure report 

Service 6: Memory Management Service 

TC 6 2 Load data into memory area using absolute address 

TC 6 5 Dump memory area using absolute address 

TM 6 6 Memory dump using absolute address Report 

TC 6 9 Check memory area using absolute address 

TM 6 10 Memory check using absolute address Report 

Services for which the boot loader may need to generate a reply  

that avoids tripping error detection by the OBC 

Service 3: Housekeeping and Diagnostic Data Reporting Service 

TM  3 25 Housekeeping Parameter Report 

Service 5: Event Reporting Service 

TM 5 1 Normal / Progress Report 

TM 5 2 Error / Anomaly Report - Low Severity –Warning 

TM 5 3 Error / Anomaly Report - Medium Severity - Ground Action 

TM 5 4 Error / Anomaly Report - High Severity - On-board Action 

Service 9: Time Management Service 

Service 17: Test Service 

TM 17 1 Connection Test Response 

TM 17 2 Connection Test Response Report 

Service 19: Event-Action Service 

TC 19 1 Add an Event to the Detection List 

TC 19 4 Enable Actions 

TC 19 5 Disable Actions 

III. CCSDS / PUS SERVICES IN SPACEWIRE PACKETS 

In SpaceWire packets a protocol identifier defines the 

packet type [6]. RMAP is assigned to the protocol identifier 

value 0x01 and the CCSDS packet transfer protocol is assigned 

to the protocol identifier value 0x02. [7] defines how packets 

of the CCSDS packet transfer protocol are transmitted through 

a SpaceWire network by appending addressing, protocol 

identifier, a reserved and user application byte at the start of the 

packet and an EOP marker at the end of the packet, see Figure 

2. 

Target Spw Address Target Spw Address Target Spw Address

Target Logical 
Address

Protocol Identifier Reserved = 0x00 User Application

CCSDS Packet
(First Byte)

CCSDS Packet CCSDS Packet CCSDS Packet

Target Spw Address ... ... CCSDS Packet

CCSDS Packet
CCSDS Packet

(Last Byte)
EOP

 

Figure 2 : SpaceWire packet transporting a CCSDS packet as defined by [6] 
ECSS-E-ST-50-53C 

IV. BOOT MEMORY OPTIONS AND ARCHITECTURE 

In order to avoid the effort of qualifying the entire 

instrument software to highest ECSS criticality level and allow 

for updates during space flight, current DPMs (such as for the 
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Figure 1 : CCSDS packet structure as refined by ECSS-E-70-41A [3] 
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Polarimetric and Helioseismic Imager (PHI) instrument on 

Solar Orbiter) have a two stage boot process, as depicted in the 

system in Figure 3. The default boot memory address range 

(0x0000 0000-0x0FFF FFFC) of the employed LEON 

processor connects to a non-volatile memory containing a 

minimal boot loader plus an additional boot memory which is 

larger in storage and the content of which can be exchanged. In 

the case of Solar Orbiter PHI DPM a minimal PROM memory 

could be implemented within the Microsemi RTAX2000 

system FPGA and a redundant NOR-flash is used to store the 

second boot image, which includes an RTEMS operating 

system and the complete instrument software. The basic boot 

loader will need to initialize processor registers and the 

SpaceWire interface and implement a basic driver for the 

SpaceWire interface. As the SpaceWire interface in processors 

such as the GR712 RC [1] uses direct memory access a 

substantial amount of software complexity and therefore boot 

loader size is required. Subsequently the boot loader needs to 

perform basic TC and TM handling and check if an update of 

the boot software needs to be performed. As NOR-flash cannot 

be written directly like a simple SRAM device, a driver 

performing defined program sequences also needs to be 

integrated in the boot loader. 

 

LEON3-FT
Processor

e.g. GR712RC 

SpaceWire
LVDS driver

Driver

Processor’s memory bus

Spacecraft

1st Bootloader

orBoot
PROM

Mian
Boot

Memory
e.g.

NOR-Flash

FPGA
logic

Driver

 

Figure 3 : Instrument data processing module boot memory set-up 

V. REMOTE MEMORY ACCES PROTOCOL (RMAP) 

The SpaceWire Remote Memory Access Protocol (RMAP) 

is a protocol that works over SpaceWire. This Protocol allows 

reading and writing memory remotely in a SpaceWire node. 

RMAP is defined in ECSS-E-ST-50-52C [5]. A memory write 

transaction is depicted in Figure 4 and it consists of SpaceWire 

addressing, protocol identifier, instruction, key, reply address, 

initiator logical, transaction identifier, address, data length, data 

and CRC-byte. In many radiation hard processors, such as e.g. 

the Aeroflex Gasiler GR712RC [1] the Aeroflex UT700 etc. 

the RMAP protocol is supported directly in hardware. In these 

devices even the complete address space from the processor 

bus can be read and written by RMAP. Therefore all the cores 

on the processor’s AMBA bus including the debug support unit 

(DSU) can be reached. On ground the software debugger 

(GRMON) can connect to the processor through the SpaceWire 

interface without requiring an additional debug connector. Also 

on ground the second boot memory in the NOR-flash is written 

by uploading the boot image and a small program to the 

processor’s working memory and then starting the small 

program that copies the boot image from working memory to 

the NOR-flash. 

Target Spw Address Target Spw Address Target Spw Address

Target Logical 
Address

Protocol Identifier Instruction Key

Reply Address Reply Address Reply Address Reply Address

Reply Address Reply Address Reply Address Reply Address

Data EOP

Reply Address Reply Address Reply Address Reply Address

Initiator Logical 
Addess

Transaction Identifier 
(MS)

Transaction Identifier 
(LS)

Extended Address

Address (MS) Address Address Address (LS)

Data Length (MS) Data Length Data Length (LS) Header CRC

Data Data Data Data

Data ... ... Data

Data CRC
 

Figure 4 : SpaceWire packet containing an RMAP write command (as given 

by ECSS-E-ST-50-52C [4]) 

VI. USING RMAP FOR UPDATE OF INSTRUMENT SOFTWARE 

As the boot memory update procedure on ground only uses 

the SpaceWire interface, which is also available via the space 

craft’s OBC in flight, it seems logical to also use this procedure 

to update the boot software during flight operation. The only 

changes that would be necessary are, to create a separate 

RMAP command for the processor initialization that GRMON 

performs in the update process on ground and use RMAP’s 

safety and error checking capabilities. However as RMAP 

provides access to all registers including debug support unit 

(DSU) this is not a problem. Thus a possible update procedure 

via RMAP for e.g. the GR712RC could consist of: 

1) Stopping the software execution of the processor, by 

simply writing to the DSU register “break now” 

2) Initializing processor register via DSU including program 

counter and Ancillary State Registers (ASRs) 

3) Initializing the interrupt controller, memory configuration 

registers, and the GPIO controller 

4) Disabling breakpoints and the debug mode by writing to 

the DSU control register and disabling the DSU Debug Mode 

Mask register 

5) Uploading a program that writes boot memory content 

(see step 6) from working memory into the NOR-flash 

memory; alternatively this program could already be stored in 

another memory area and just copied to the working memory 

to minimize upload data volume, but still being replaceable by 

a newer version if needed  

6) Uploading the new boot image via RMAP to the working 

memory. This could also be optimized by only uploading 

addresses and chunks of data where a difference to the current 

boot image occurs (patch) 
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7) Finally starting the copy to NOR-flash process by writing 

to the DSU break and single step register, when copying the 

data has finished the program can cause the processor to boot 

from the new boot image or cause a processor reset via a 

register in the supervisor FPGA. 

As RMAP features a key byte and can be used with target 

logical address and RMAP cores are able to check these two 

bytes, they can be used as a security check to prevent any 

accidental triggering of the steps mentioned above, like e.g. 

stopping software execution. 

VII. RMAP ACCESS PROBLEMS 

Despite appearing pretty straight forward an RMAP based 

software update procedure has some problems. Firstly in the 

many cases such as the GR712 processor the hardware RMAP 

support can be disabled by software, whereby a corrupted 

software image could potentially block any further accesses 

and disable software updates. Also software can set the 

SpaceWire logical address in the SpaceWire core of the 

GR712, which results in the SpaceWire core discarding any 

data that does not start with this logical address. Both of these 

problems could be somewhat alleviated by ensuring correct 

core settings through the first boot loader and halting the 

processor execution or including a wait before the second boot 

loader is started for a sufficient amount of time. As this is only 

a register access it will not increase the size of the first boot 

loader by a lot. 

VIII. CONCLUSION 

In the case of Solar Orbiter the ground operation team and 

particularly the OBC only offers CCSDS PUS services for 

payload instruments. Reasoning this with safety checks 

performed on the OBC and SSMM, which require a match 

between a SpaceWire packet’s logical address and the 

application ID (APID) inside the CCSDS data packet, see 

Figure 1. However an RMAP write packet, which is depicted 

in Figure 4, starts with instruction, key and, reply address bytes 

and therefore cannot contain a CCSDS type header including 

APID which could be used for this safety check. Furthermore 

the Spacecraft would need to allow sending a packet with the 

protocol ID of RMAP (0x01). As the reply address in RMAP 

has 12 Bytes and logical addressing of a single byte is used it 

would be feasible to use the remaining 11 bytes for such header 

information. However this only applies to a reply, as in a 

request  the position of an APID is the first byte of the reply 

address which is used for routing the reply packet. 

Despite these difficulties an RMAP based update procedure 

would have several advantages. Such an update procedure 

would completely eliminate the need of any instrument 

software in the update process and thereby be inherently more 

reliable. Furthermore, if no software is required, this software 

does not need to be stored, which frees valuable FPGA 

resources or eliminates the need of an additional PROM, which 

would simplify system architecture and processor bus load as 

depicted in Figure 3. Additionally it would reduce development 

effort and costs, because no boot loader would need to be 

developed and qualified. 

In conclusion RMAP would be an elegant, effective and more 

reliable mean of updating the instrument software, but there is 

a lack of harmonization between the two standard protocols of 

SpaceWire RMAP and the CCSDS PUS services and missing 

support by the OBC platform at least in the exemplary case of 

Solar Orbiter. 
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Abstract1—SpaceWire is leveraged as one of three main fabrics 

in SpaceVPX, a new system physical interconnect and form 

factor standard nearing completion at VITA.  RapidIO and I2C 

along with heritage CompactPCI enable space systems to be built 

with full single point fault tolerance yet leverage the existing 

OpenVPX infrastructure for prototyping and test.  SpaceVPX is 

described along with new network components under 

development that together may be applied across a large range of 

spaceborne electronics mission needs yet providing 

interoperability, scalability and future upgrade savings. 

Index Terms— Relevant indexing terms: SpaceWire, 

Networking, Spacecraft Electronics, SpaceVPX, OpenVPX, 

RapidIO, I2C, CompactPCI, NGSIS, Processor, Endpoint, 

Packet Switch, Crosspoint Switch, fault tolerance, DSP, RCC. 

I. INTRODUCTION 

SpaceWire continues to see extensive usage throughout the 

space community.  As a medium speed serial fabric, 

SpaceWire provides a low cost alternative to bussed systems 

and is easily scaled to meet performance requirements from 

less than 1 Mbps up to a couple of Gbps, after which a 

SERDES-based interface becomes appropriate.  Supported by a 

large body of users, SpaceWire continues to evolve.  This 

support and flexibility has caused SpaceWire to be written in as 

the control plane of VITA 78 (SpaceVPX) document, one of 

the Next Generation Spacecraft Interconnect Standards 

(NGSIS).  The document specifies an interoperable form factor 

for space electronics boards within a backplane-based system 

needing multiple levels of fabric based interconnects for future 

space systems under AIAA, Serial RapidIO and VITA 

standards umbrellas.  

This paper describes the history and development of the 

SpaceVPX standard and how the standard grew out of an 

industry consensus for a high performance internal form factor 

to support future high performance space payloads.  The 

capabilities and extensions of the standard that are built on top 

of the extensive infrastructure developed for OpenVPX® – 

VITA 65 are highlighted.  SpaceWire is leveraged in 

SpaceVPX as the control plane across defined slots and 
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backplanes and as an intricate part of the fabric families 

supported (RapidIO, SpaceWire and I2C).  The paper will 

describe how SpaceWire and SpaceVPX may be applied to 

space systems, both large and small.  The application of  BAE 

Systems’ family of processing and network products with 

SpaceWire capabilities to SpaceVPX illustrates how systems 

may be built from a small set of network building blocks.  Such 

building blocks may be utilized to create various interoperable 

SpaceVPX modules and networks, which range from remote 

endpoints to high performance processing payloads.  The paper 

concludes with a view of future efforts in the NGSIS and 

SpaceVPX realms. 

II. SPACEVPX DEVELOPMENT 

A. NGSIS Formation and Goals 

In 2011, a group was formed at the GOMACTech 

conference to look at the future in interconnect standards.  Both 

government and industry people realized that they were on the 

verge of moving spaceborne onboard processing solutions from 

bussed based systems to fabric based systems.  SpaceWire was 

the first successful foray into these new topologies though it 

did not offer enough scalability for upcoming mission data 

movement needs.  With high speed SERDES elements 

supporting multiple commercial / protocol standards beginning 

to appear in advanced space technologies, there was a risk of 

multiple development options fracturing the space market.  

Rather than everyone invent their own way to do this, the 

group was formed to develop or adopt common standards.  The 

Next Generation Spacecraft Interconnect Standards group was 

formed under the leadership of AFRL and JPL. [1] 

The NGSIS group spent the first year capturing 

requirements and defining scope according to standard system 

engineering practices.  With this in hand, the group determined 

the best interfaces to focus on.  Four levels of interfaces were 

explored – a high speed SERDES fabric for data, a medium 

speed LVDS fabric for control and data, some form of lower 

speed interface such as 1553 for telemetry and a bussed 

interface such as PCI or VME.  Comparing different trade 

studies for the best SERDES interface showed most 

organizations had selected Serial RapidIO as the most 
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promising because of its efficient data and error handling and 

power needs [2].  RapidIO also had sufficient commercial 

industry usage to provide an infrastructure to build on.  

SpaceWire was selected as the best choice for the medium 

speed control and data handling interface due to widespread 

usage, scalable performance, ease of implementation, existing 

standards and, though unique to spacecraft applications - 

sufficient existing test equipment infrastructure.  1553 and PCI 

were both identified as heritage interfaces to consider though 

1553 was more oriented to box to box than internal boxes.   

This led to two major focuses of the NGSIS effort.  One 

group focused on creating a space version of RapidIO with 

extensions to that standard that are beneficial for using 

RapidIO in future spaceborne applications.[3]  Originally 

named Part S, this has since been moved to the mainstream of 

the standard and will be incorporated in upcoming releases.  

The other group focused on a common form factor for NGSIS 

applications as otherwise there would be little interoperability.  

Once again, the consensus of the members was that OpenVPX 

or VITA 65 was the best match to the types of systems and 

modules that would be created in the future.  This led to the 

formation of the SpaceVPX study group assigned to VITA 78 

by the VITA Standards Organization.[4] 

B. SpaceVPX  History 

The study group set a number of goals for their standard.  

SpaceVPX was to be as close to OpenVPX as reasonable to 

make sure users could leverage the OpenVPX infrastructure of 

modules, chasses and backplane for their systems.  The 

standard would extend OpenVPX so that fully single point 

fault tolerant systems could be built by following the standard.  

RapidIO and SpaceWire would form the major interfaces in   

slot and backplane profiles defined to support interoperable 

modules that could support both mesh and star topologies.  

Heritage modules from previous systems would be 

accommodated. 

One of the major early trades was how to extend the fault 

tolerance of modules beyond that of OpenVPX.  Analysis 

showed that there were several single points of failure in the 

power and utility signal areas.  SpaceVPX decided not to 

extend modules or place active circuitry on the backplane.  

Instead one new type of module, a Space Utility Management 

(SpaceUM) module was added. The SpaceUM module 

contains switching circuits and logic necessary to present one 

set of power and utility signals to each module selected from at 

least two sets of power and utility signal feeds from redundant 

elements.  With proper fault containment, this provides single 

fault tolerance yet allows reuse of OpenVPX modules and 

backplanes for prototyping. 

III. SPACEVPX CAPABILITIES 

SpaceVPX is mainly defined as overlapping profiles as 

shown in Fig 1. Chassis profiles define the structures that 

SpaceVPX backplanes and modules plug into.  Power-keying 

profiles define the mix of voltages and currents that may feed 

the SpaceUM modules for selection to the logic modules.  

Backplanes describe the combinations of slot profiles that are 

used to build a system.  Slot profiles defined the module 

pinouts and Module profiles define the protocols that are 

mapped onto the slots.  The slot and module profiles provide 

the maximum opportunities for interoperability between 

vendors as flight backplanes will likely use SpaceVPX 

backplanes as guides – final flight backplanes will exactly 

match their needs to minimize size, weight and power. 
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Module 
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Backplane 
Profile

Power-
Keying 
Profile

Module 
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Module 
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Slot 
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Figure 1 – SpaceVPX Profile Map 

A. Interconnections and Planes 

SpaceVPX, like OpenVPX, is all about connections 

between circuit card assemblies or modules.  SpaceVPX 

provides a defined set of interconnection planes to span a large 

set of applications. These start with the System Management 

Interface (SMI) which is defined as I2C supplemented with a 

reset and a status line.  This may operate up to 400 KHz.  The 

SMI is designed to enable the system controller to handle 

chassis management, low speed commands, configuration, 

telemetry and status limited by the speed of the interface.  The 

SMI is supplemented with a system reset and up to four 

broadcast clock or strobe signals to make up the signal portion 

of the utility plane in SpaceVPX.   

SpaceWire is defined as the control plane for SpaceVPX.  

This provides a medium speed (up to 400 MHz) interface for 

both higher speed control, status, testing and telemetry as well 

as data rates that can make use of the speed of one or more 

SpaceWire links.  SpaceVPX only defines the control plane in 

backplanes as a switch/router topology.  However, SpaceWire 

switch/routers with embedded payload functions could be used 

in a mesh topology especially if no data plane was required. 

The highest speed data needs are met by SpaceVPX’s Data 

Plane.  This is defined as RapidIO in configurations of one to 

four lanes each running up to 6.25 GHz per lane.  SpaceVPX 
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defines both switch and mesh topologies to enable system 

integrators to build exactly what is needed. 

SpaceVPX also defines an expansion plane that may be 

used to route high speed interfaces in a slot to slot fashion, 

forming rings or subnets independent of the main data plane.  

RapidIO is one of the interfaces that may use this additional 

plane, but the expansion plane may also be used for user 

defined interfaces between modules such as additional 

SpaceWire, XAUI, PCI Express or a unique protocol. 

All these planes are connected in point to point networks, 

even the SMI.  This is one the enablers for the advanced fault 

tolerance possible in SpaceVPX systems as compared to 

OpenVPX.  Figure 2 shows a maximum slot profile with all the 

various planes and user defined pins identified. 
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Figure 2 – Slot Profile Planes 

B. Form Factors 

SpaceVPX builds upon the metric form factors of 

OpenVPX, VITA 48.2[5], defining 3U and 6U form factors in 

lengths of 160, 220, 280 and 340 mm.  Module pitch may be 

0.8”, 1.0” or 1.2”.  Larger slots may be created by ganging any 

of these.  6U Slot connector and pin definitions are identical for 

any length or pitch form factor.  This is also true for 3U slot 

definitions within the standard. 

The form factor uses the front edge of the top printed 

wiring board as the datum for all measures with standardized 

envelopes defined for each size.  The 1.2” module pitch was 

added to OpenVPX’s so larger components could be placed on 

both the front and the back of the modules.  All SpaceVPX 

modules are assumed to be conduction cooled and wedgelocks 

are allowed on either side as long as the overall dimensions and 

connector placement are maintained.  Module dimensions were 

chosen to allow OpenVPX modules to fit in SpaceVPX 

backplanes and chassis.  Daughter cards are allowed within the 

envelope. 

OpenVPX has defined three connectors which each may be 

used on OpenVPX modules.  These connectors fit in the same 

space on a printed wiring board and thus are interchangeable to 

the design.  The three require different backplane connectors 

and are thus not inter-matable.  A system designer must pick a 

backplane connector for each slot and then that will determine 

which connector needs to be on the pluggable module.  The 

working group could not differentiate sufficiently between the 

three connector types and thus also passed along this choice in 

SpaceVPX.  The working group expects initial users will 

choose one connector and that may become the defacto 

standard for SpaceVPX modules.  Or the ease of changing 

connectors on a module without other changes may encourage 

the use of two or all three.  

Large 6U OpenVPX modules with multiple graphic 

engines can use up to 500 W per module.  In the conduction 

cooled space environment, this is way beyond today’s practical 

space cooling limits.  SpaceVPX limits any 6U module to 

100W and expects most initial modules to be under 50W.  

OpenVPX allows modules to take most of their power from 

12V (>40A) and remaining amounts on 5V (>20A).  3U 

OpenVPX modules allow 20A on 12V, 5V and 3.3V.  Since all 

power goes through the SpaceUM module with pin and 

isolation imposed limits on inputs and distribution, SpaceVPX 

defined several power profiles with varying amounts from 

either one to all three of these voltages.  Keying is used to 

allow either 6U or 3U power schemes to be used on any 

module.  This allows 6U heritage module designs that are 3.3V 

powered to be easily mapped to a SpaceVPX form factor 

without major redesign.  Like the connector, power profiles are 

expected to consolidate around a few popular choices and 

others may be eliminated in a future version of the standard. 

C. Fault Tolerance 

The largest enhancement in SpaceVPX is the extension for 

fault tolerance.  SpaceVPX defines the requirements to 

construct a single point fault tolerant system.  This led to the 

following improvements: 

At least two of every key element in the system is required.  

There are two power supplies, two system controllers and at 

least two of each payload, switch or peripheral module.  For 

items like specific payloads or peripherals, M of N sparing may 

be employed to produce a more efficient sparing than multiple 

pairs of devices.  All interfaces are cross-strapped between 

primary and redundant elements.  Each redundant element 

must be designed for error containment to make sure an error is 

not able to propagate primary and redundant copies. 

All utility and power signals in OpenVPX were analyzed.  

Any that have usage in SpaceVPX are duplicated by each 

system controller (e.g. CLOCKS, SMI) or contain a parity bit 

(e.g. the SYS_CON and SYS_CONP signals) to guard against 

single bit errors. 
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The newly defined SpaceUM module is a logical extension 

of the power supplies, the system controller and each logic slot 

in the system.  It receives power from two power supplies and 

then uses selection logic to provide power to its logic and 

switches and to one or two of the system controller modules 

based on discretes received from external sources.  The system 

controllers (or external commands to the controllers) direct the 

chassis powering, testing, status and operation of all other logic 

modules in a SpaceVPX system using the SMI.  This includes 

isolating problems and powering up spare modules to replace 

failed ones.  The SpaceUM module is the vessel for the power 

and signal switches from two power supplies and two system 

controllers to the single power feed and control signals that are 

radially routed to each logic module.   

Each logic module contains a module manager that 

responds to the SMI and is able to provide basic module status 

and diagnostics.  A minimum mandatory set is specified in 

SpaceVPX and additional access capability is defined for both 

generically specified elements and user defined extensions.  In 

systems with control requirements that can operate within the 

bounds of the slow SMI, additional operational configuration, 

status and commands may also use the SMI from the System 

Controller. 

The SMI managers must use and respond to either the 

complex publish –- subscribe protocol defined in VITA 

46.11[6] or the simpler direct access protocol (DAP) defined in 

SpaceVPX.  The latter was created to support simpler hardware 

implementations then possible with VITA 46.11.  A simple 

state machine driven SMI is possible using the DAP that may 

be easily implemented as part of an ASIC or FPGA on the 

logic module. 

Figure 3 shows the System Controller’s central position of 

managing the internals of a SpaceVPX system.  Note that 

compared to SMI, SpaceWire presents significant scalability 

and flexibility for increasing amounts of command and data 

handling throughout the system.  

Taken together, the fault tolerant extensions introduced in 

SpaceVPX enable systems to be built that are single point fault 

tolerant.  Of course for small applications, single string 

SpaceVPX systems may be built without the need for the 

duplicate elements, power and signal source switching or 

cross-strapping. 

D. Heritage 

In the past decade many space backplane systems relied on 

a PCI Bus using the CompactPCI® form factor and 

standard.[7]  Thus, moving to the pure fabric approach in 

SpaceVPX could require all new modules.  OpenVPX 

attempted to create a PCI backplane definition (VITA 46.2), 

but most military and commercial applications had already 

moved to fabrics on backplanes.  Thus only PMC (IEEE 

1386.1[8]) was defined as an on board daughter card standard 

for OpenVPX.  SpaceVPX updated the OpenVPX work for the 

typical space usage (32-bit) of CompactPCI.  The layouts and 

orientations of CompactPCI (cPCI) and VPX modules are 

opposite [9].  Thus in order to enable backplanes to route the 

cPCI bus from VPX modules to cPCI modules, the connector 

section P5/J5 was defined for the 32 bit mapping of PCI.  This 

routed directly across to the P1/J1 connector on a cPCI module.  

Surveys of space users found limited interest in a 64 bit bus so 

only the 32 bit version was standardized.  SpaceVPX did 

publish a suggested pinout for the additional pins on user 

defined pins in P4/J4, but the committee did not expect anyone 

to use that since the higher speed fabrics would be much more 

scalable than a 64 bit cPCI bus. 
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With the 32 bit PCI definition on P5, any payload, system 

controller or peripheral may serve as a PCI Bridge or 

participate on the PCI Bus.  This will encourage heritage cPCI 

modules to first be inserted as a heritage module and then in 

subsequent systems be re-released in the SpaceVPX form 

factor with changes required only to add the utility and control 

plane signals.  CompactPCI® is a bus and fully compliant 

modules do not support cold sparing.  Thus any group of 

modules with a PCI Bus needs to be treated as a group for 

sparing.  Redundancy requires that a separate set of modules 

have a second PCI Bus to be single point fault tolerant.  The 

working group believes this will eventually phase out the use 

of cPCI in SpaceVPX; however the longevity of MIL-STD-

1553 illustrates how long this may take in space systems. 

E. OpenVPX Infrastructure 

OpenVPX enjoys multiple suppliers and many applications.  

Modules, backplanes and chassis are available from multiple 

vendors that may be used for prototyping, debugging, 

stimulating and/or testing SpaceVPX modules and systems.  

The working group went to great lengths to make sure that 

SpaceVPX developers could leverage OpenVPX infrastructure 

[10] to reduce non-recurring costs in the development of 

systems.  For example, the SYS_CON and SYS_CONP signals 

of SpaceVPX were carefully defined to work with the 

OpenVPX standard definitions and any known usage of these 

OpenVPX signal positions. 

Mappings between SpaceVPX and OpenVPX profiles have 

been created and studied throughout the effort to develop 

SpaceVPX modules with the maximum cross-use between 

modules and backplanes between the two standards. 

IV. SPACEWIRE IN SPACEVPX 

As described above, SpaceWire is the medium speed 

performance fabric in SpaceVPX systems.  Using an extension 

such as RMAP, SpaceWire is well-suited for control plane 

operations as well as basic data handling and data streams. 

VPX connectors are rated commercially for up to 10 GHz and 

should support up to 6.25 GHz depending on backplane length.  

This should envelope the needs of the SpaceWire running up to 

600 MHz on these connectors as well as the standard external 9 

pin connectors off the top of a module. 

A. System Controller 

Refer back to Figure 3.  Only slots with SYS_CON and 

SYS_CONP set to the proper states may be a system controller.  

The slot definitions are defined so that a single card design can 

function as a System Controller, Payload or Peripheral slot 

depending on what is active.  A Payload or Peripheral function 

may use and route additional Control Plane ports for 

transferring data through the Control Plane to supplement the 

data plane connections. 

The System Controller will depend on SpaceWire for 

connections to all modules after they are powered and active 

(via the Utility plane) without interfering with data transfers on 

the data plane.  This can be used to configure modules by 

moving large blocks of code or tables of parameters or gather 

larger amounts of telemetry in real time than is possible on the 

400 KHz SMI or to transfer medium amounts of data between 

the System Controller and specific modules.  The control plane 

router/switch is defined on the System Controller in SpaceVPX 

but this can be split into two modules if needed as long as 

appropriate control plane cross-strapping between controller 

and control plane switch modules is employed. 

B. Control Plane 

The System Controller will have a control plane 

(SpaceWire link) to each SpaceVPX module in the box.  Two 

links are provided between the SpaceVPX controllers and two 

external connections are included for extending the control 

functions between SpaceVPX boxes.  Each System Controller 

slot has defined sufficient SpaceWire ports to meet the above 

in a typical system.  User Defined signals may be used to add 

additional ports.  Unused control plane ports are typically 

reserved on a module for maximum interoperability. 

V. SPACEVPX SYSTEMS 

SpaceVPX has been designed to apply across a large group 

of spacecraft applications.  Anywhere a backplane is useful, 

SpaceVPX should be able to provide the interconnecting form 

factor for a spaceborne box, using the needed fabric subset for 

processing performance. 

A. Large Payloads/Systems 

The focus of the working group has been on boxes with 6U 

modules.  These naturally may result in larger payload systems 

than the limited connectivity a 3U module can provide.  Figure 

4 shows a typical large system. 
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Figure 4 – Large System Module Block Diagram 

 

Data (indicated by blue arrows) arrives from the analog 

world through input modules, may be stored in and retrieved 

from memory modules, processed on board in various types of 

processing modules and then exits the system on output 

modules.  Each of these is typically a payload or a peripheral 

module.  Each module type typically has at least one spare for 

fault tolerance as determined by reliability calculations.  Two 

of the processing modules will be designated System 
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Controllers in a SpaceVPX system and one of these at a time is 

in control of the system as explained earlier.  Data connections 

between modules are typically through a pair of redundant 

Data Plane Switches or a peer to peer mesh or some 

combination of the two.  (Switches are shown).  Dual power 

supplies and one to four SpaceUM modules (each supporting 

up to 8 logic modules) round out the makeup of a typical 

SpaceVPX system. 

B. Small Payloads/Systems 

Smaller payloads and systems typically combine some of 

the payload functions onto a smaller set of cards.  For instance 

a reconfigurable computer (RCC) module may also have input 

RF or optical data functions or a storage module may also have 

a communications link to an external sync.  Data Planes are 

typically greatly reduced which lowers the ports needed on 

switches or even eliminates data plane switches in favor of 

meshes.  At the extreme, or to handle some of the input or 

output data, the SpaceWire links in the control plane may be 

used.  Figure 5 shows a typical smaller system.  The small 

system may be created out of either 6U or 3U modules 

depending on the function density on each module.  Depending 

on data needs, either RapidIO or SpaceWire will be used for 

data movement. 
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Figure 5 – Small System Module Block Diagram 

 

VI. SPACEVPX BUILDING BLOCKS 

BAE Systems created one of the first radiation-hardened 

SpaceWire ASICs in 2004 [11].  This ASIC provided a bridge 

between two PCI busses and a SpaceWire router with four 

SpaceWire ports.  This ASIC was used in multiple locations 

within the NASA Lunar Reconnaissance Orbiter (LRO) [12].  

Based on this part, BAE Systems created a dual PHY single 

port SpaceWire Endpoint (now named the RADNETSPW-

EP™)  in 2011 [13] and the Golden Gate ASIC (now 

designated the RADNETSPW-BR4™) in 2012 [14].  This 

latter device combined into a single 150nm ASIC the original 

SpaceWire ASIC with the RAD750 bridge ASIC and the PCI 

Peripheral Interface ASIC containing 1553 and FIFO 

interfaces.  Each of these two newer devices contain RMAP 

support in their connections from SpaceWire to the rest of each 

ASIC and an embedded microcontroller making remote load 

and remote access possible without initialization. 

A. Latest Network ASICs 

NGSIS standards were started because multiple 

organizations were on the cusp of moving to new fabric 

networks and wanted to standardize.  BAE Systems is currently 

one of those and in the process of designing several new 

network ASICs.   

The RAD55xx™ family of processors[15] feature from one 

to four 1.3 GOP CPU cores supported by four RapidIO ports of 

four 5 Gbaud lanes, sixteen SpaceWire links with a router, four 

I2C interfaces, two DDR3 ports and a host of other System on 

a chip (SOC) functions and interfaces.   

The RADNETSRIO-EP™ bridges a dual PHY single port 5 

Gbaud 4 lane RapidIO port to four SpaceWire links with a 

router, four I2C interfaces, a redundant MIL-STD-1553 

interface, two dual PHY XAUI ports, two DDR3 memory ports 

and other SOC functions and interfaces.  Five embedded 

microcontrollers supported by 256 KB of embedded memory 

are available to move the data between interfaces. 

The RADNET1848-PS™ implements a 12 to 18 port 

RapidIO non-blocking crossbar switch across 48 lanes of 5 

Gbaud RapidIO and significant network diagnostic registers.   

The RADNET1616-XP™ provides a SERDES cross point 

switch that may be used for port sniffing, redundant ports or a 

small switch using its independent 16 input and 16 output 

SERDES lanes.   

All of these ASICs are being implemented in RH45™, 

BAE Systems’ 45 nm radiation hardened by design SOI 

technology. 

B. Example Systems 

Figures 6 and 7 show the systems in Fig 4 and Fig 5 

annotated for where these components may be used to create 

SpaceVPX modules.  This is representative of how new 

network ASICs or high performance FPGAs may be applied to 

creating SpaceVPX modules and systems. 
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RapidIO endpoints (A) provide the SpaceVPX fabric 

connections to any of the typical payload functions – 

processing, input, output and storage.  Packet switches (B) 

make up the data switch modules.  RAD55xx (C) processors 

provide a scalable high performance processing module and 

system controller as well as SpaceWire control plane switch.  

Crosspoint switches (D) enable redundant ports to be added.  

Existing bridge ASICs (E) connect heritage cards to the 

SpaceVPX system. 
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Figure 7 – Example Small Payload utilizing BAE Systems 

ASICs as building blocks. 

 

The small payload is illustrated with SpaceWire interfaces 

being used for both control and data planes.  Existing endpoints 

(F) and bridges (E) are used to provide the SpaceWire 

interfaces for the payload functions.  If additional performance 

or interfaces are needed, the RapidIO Endpoint (A) can also be 

used. 

VII. FUTURE DIRECTION 

A. SpaceVPX 

SpaceVPX or VITA 78 just completed a second working 

group ballot with only one no vote out of 17 and that was 

mainly to make sure the many broken links in that version were 

closed.  The next step will be either a trial use standard or 

move toward full ANSI standard status.  Several organizations 

are known to be developing modules that follow the current 

standard which will help validate many capabilities.  Future 

focus of the group will be towards the 3U scenarios, power 

converters, optical in conjunction with VITA 79 and 

integrating some features back into VITA65 for OpenVPX 

users interested in more fault tolerant systems. 

B. NGSIS 

In 2014, NGSIS will be wrapping up initial SpaceVPX and 

RapidIO extensions with potential follow-ons.  During the past 

year, there have been several other complementary standards 

efforts (e.g. SUMO, ESA)[16] that are attempting to define 

other areas of spacecraft to standardize.  NGSIS members are 

active in defining the proper roles for NGSIS standards in 

conjunction with these efforts.  The upcoming standards 

changes for SpaceWire will need to be evaluated for possible 

compatibility changes needed in NGSIS standards to maximize 

common solutions and interoperable networks. 

C. Payoff 

As SpaceVPX modules begin to appear in 2015 that utilize 

the new network ASICs being developed, scalable solutions 

will be possible across the three interconnect fabrics defined in 

SpaceVPX along with heritage interfaces such as PCI.  

Interoperability will be important both between different 

module types (switches and payloads) and the same modules 

(different payloads).  As these products become available from 

multiple space vendors, best of breed systems can be 

constructed.  Prototypes, test cards and generic backplanes and 

chassis may be purchased or adapted from OpenVPX modules, 

backplanes and chassis, cutting the NRE needed and leveraging 

the larger infrastructure of the OpenVPX marketplace.   

The real payoff will come when systems that use the 

SpaceVPX modules are ready for an upgrade and modules that 

meet the SpaceVPX standards for existing modules or spare 

module slots may be inserted to create more powerful systems 

without having to go through a full interface definition effort 

again.  This is attractive to both integrators who define the 

system needs and suppliers who will be able to apply their 

solutions developed for one system to other systems without 

the typical NRE required for insertion.  BAE Systems is and 

will leverage its varied experience in spaceborne electronics 

standards along with its new and existing network ASICs to be 

part of this new paradigm for spacecraft systems. 
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Abstract — Over the past years several test tools have been 

developed for verification and validation activities for on-board 

components and networks. Up until now there is no tool that can 

be used for all on-board networks and EGSE providers have to 

combine from different COTS providers and custom 

developments for the fulfillment of the testing requirements. 

TELETEL under ESA’s and ASTRIUM Toulouse’s 

consultancy developed the iSAFT-PVS which is an integrated 

powerful HW/SW environment for the simulation, validation & 

monitoring of satellite/spacecraft on-board data networks 

supporting simultaneously a wide range of protocols (RMAP, 

CPTP, TM/TC, CANopen, etc.) and network interfaces 

(SpaceWire, ECSS-1553, ECSS-CAN) offering the reliability 

features required for space test benches and IRIG throughout all 

interfaces for common and accurate time-stamping. 

The paper presents the SpaceWire instances of PVS, Recording 

and Simulation, its reliability features and performances. The 

paper presents an overview of the iSAFT system, the iSAFT 

Recorder which provides the user with the capability to record 

traffic on multiple networks/links, set triggers and filters etc., 

and the iSAFT Simulator, with Traffic Generation capabilities, 

which allows triggered transmission and programmable link 

saturation under local or CCS remote control. The performances 

of the two instances, which are presented herein, have been taken 

during long-run stress tests (full link traffic over several 

SpaceWire links) and reveal that iSAFT can be used at full link 

utilization for either Recording or Simulation. From the 

measurements it is evident that iSAFT can not only be used for 

Recording and Simulation of C&C flaws which present 

infrequent data bursts, but also for payload flaws with rates 

which are significantly higher and also for scenarios in which 

time-accurate transmissions are required in order to accurately 

simulate the instruments’ behaviours. 

Index Terms— Relevant indexing terms: SpaceWire, 1553, 

CAN, IRIG, FMECA, Recorder, Simulation, Traffic Generation 

I. INTRODUCTION 

iSAFT is an integrated powerful HW/SW environment for 

the simulation, validation & monitoring of satellite/spacecraft 

on-board data networks supporting simultaneously a wide 

range of protocols (RMAP, CPTP, ECSS-1553, CANopen, 

etc.) and network interfaces (SpaceWire, MIL-STD-1553, 

CAN). It is based on over 20 years of TELETEL’s experience 

in the area of protocol validation in the telecommunications 

and aeronautical sectors, and it has been fully re-engineered in 

cooperation of TELETEL with ESA & ASTRIUM Toulouse, 

to comply with space on-board validation requirements (ECSS, 

EGSE, AIT, AIV, etc.). iSAFT has already been used in 

several ESA studies to validate devices (e.g. SCoC3) or 

prototype, validate and assess new developments (ECSS-1553, 

SpW-T, SpW-D, SpW Interrupts Distribution, N-MaSS). 

iSAFT is highly modular and expandable to support new 

network interfaces & protocols and it is based on the powerful 

iSAFT graphical tool chain (Protocol Analyser / Recorder, 

TestRunner, Device Simulator,  Traffic Generator, etc.).  

iSAFT can be used for the validation of units used in 

specific scientific missions which generate large volumes of 

data, like the GAIA Video Processing Unit, and for which 

validation can become very demanding. For such missions the 

requirements for both recording and the simulation may exceed 

the performances of many systems and it may be required to 

parallelize test equipment thus creating complex EGSE 

architectures and generating SW synchronization issues. This 

paper presents the functional and performance characteristics 

of two instances of the iSAFT system, the iSAFT Recorder and 

iSAFT Simulator including its Traffic Generation engine. The 

main objective of the work presented in this paper was carried 

out in the frame of ESTEC Contract no. 

4000105444/12/NL/CBI [titled “Protocol Validation System 

(PVS) activity”] and the results prove that, for both recording 

and simulation, iSAFT can be trusted even in missions with 

very high performance requirements. 

II. ISAFT OVERVIEW 

iSAFT is an advanced, integrated, high performing, modern 

platform for the simulation, validation & monitoring of a wide 

range of satellite/spacecraft  on-board communication 

protocols and data networks. Its plethora of features makes it 

suitable for use in many different areas such as: 
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• Rapid Prototyping/Evaluation: Implementation of new 

protocols, experimentation with various protocol 

features (parameterization of protocol variables, 

exclusion/inclusion of protocol optional functions, 

combination of multiple protocols, etc.) 

• Device Simulation: Economic & portable replacement 

of a device in the testbed (SSMM, RTU, RMAP 

responder, etc.) 

• Functional/Conformance Testing: Execution of 

nominal tests to ensure that a device (System Under 

Test) is operating in compliance with the applicable 

ECSS standards. Error injection at various protocol 

layers to validate the response of the devices/networks 

in erroneous conditions 

• Traffic Generation: Periodic and Bulk traffic injection 

at higher & lower protocol layers for performance 

evaluation and network dimensioning 

• Protocol Analysis/Recording: Message decoding & 

recording, filters, start-stop triggers, intelligent error 

detection, export of results, real-time statistics 

 

Fig. 1.  The iSAFT Server based platform (2U) 

iSAFT comes in different configurations which cover 

different performance/reliability/cost requirements. An 

example configuration is the one shown in Fig. 1. , which is a 

2U rack mount system with Xeon E5-2403 processors. The 

system can be configured with single or dual processors, SSD 

of at least 256 GBytes expandable to 2 TB, archive disk of at 

least 2 TB, 4 GbE ports for connection to EGSE CCS, SCOE 

LANs and 6 PCIe slots in which the network interfaces are 

installed. Several configurations are possible, customized to the 

requirements of the system under test i.e. it can be configured 

with SpaceWire, 1553, CAN interfaces (shown in Fig. 2. ) or 

pure SpaceWire with support for up to 20 SpaceWire ports etc. 

The system integrates CCSDS remote interface for remote 

commanding by the Central Checkout System (CCS), whereas 

support of the EDEN protocol is under development. 

Each of the SpaceWire boards has eight SpW ports, each of 

the 1553 boards support up to four 1553 channels and each of 

the CAN boards supports up to four CAN channels. Internal 

failures are blocked and are not propagated to the flight 

equipment, thus constituting iSAFT safe for connection to 

flight equipment. The SpaceWire and 1553 have already 

passed through FMEA analysis and installed in primes 

testbeds, whereas for the CAN interface FMEA is under 

progress. 

Common time-stamping across all interfaces/boards is 

supported through the iSAFT IRIG-B port. iSAFT uses a single 

IRIG connector for connection to external IRIG sources and 

propagates the IRIG signal in all installed cards internally with 

nanoseconds delay/skew. In addition, it can also be configured 

as an IRIG source for cases in which an external source is not 

available. When an external IRIG source is used, the system 

regenerates the IRIG stream with a few nanoseconds delay and 

provides it to the IRIG connector allowing cascaded iSAFT 

systems, or third-party external equipment to be connected to 

the IRIG chain in daisy-chain thus eliminating the need for 

IRIG splitters/distributors. 

     

 

Fig. 2.  The iSAFT SpaceWire, 1553 and CAN interfaces 

The SpaceWire board supports up to eight SpaceWire ports, 

with independently programmable Link Speeds up to 400 

Mbps (200 Mbps for recording in the current version) with a 

resolution of 30 Kbps and has Monitoring, Simulation, Traffic 

Generation and error injection capabilities. An option for 

RMAP Target Simulation is available, with programmable 

memory map and programmable response time down to less 

than one microsecond, used for emulation of devices 

implementing RMAP in Hardware. The board integrates an 

IRIG generator and an IRIG receiver with resolution and 

accuracy down to 8 nanoseconds. 

The 1553 board supports up to four 1553 channels, with 

transformer bus coupling, and offers Monitoring, Simulation, 

Traffic generation and error injection capabilities. Different 

versions of the board exist supporting dual functionality (BC or 

RT with simultaneous BM functionality), full functionality 

(BC, RT and BM simultaneously), options for variable bus 

voltage and an extension supporting SAE tests is also available. 

The board integrates an IRIG receiver with down to 20 

nanoseconds accuracy. 

The CAN board supports up to four electrically isolated 

CAN channels with independently programmable baud rates 

from 10 Kbps to 1 Mbps and has Monitoring, Simulation and 

Traffic Generation capabilities. The board has a hardware 

scheduled transmission queue used for transmission of 

messages requiring minimized jitter (e.g. ECSS-CAN SYNC 

object), supports auto-queued answers in hardware and 

supports error injection at CAN level. It integrates an IRIG 

receiver with down to 63 nanoseconds accuracy. 

A. iSAFT Recorder 

iSAFT Protocol Analyser/Recorder is based on the iSAFT 

graphical tool chain (Runtime engine, iSAFT Console, offline 

analysis with the Wireshark Protocol Analyzer, recordings 

management). It captures and records large volumes of traffic 
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from multiple SpaceWire links, MIL-STD-1553 and/or CAN 

buses and offers off-line analysis of multi-gigabyte traffic logs. 

iSAFT supports chronological merging of recorded traffic (e.g. 

from both SpaceWire and 1553), event-trace trigger & 

selective tracing (filtering) support and offers plug-ins and real-

time statistics for various protocols. It integrates a set of 

graphical tools for local/remote control, data recording, 

managing, searching and filtering the recordings and also 

interfaces with EGSE Central Checkout Systems. Export of 

traffic recordings to XML, PostScript®, CSV, or plain text and 

user selected protocol fields per packet are supported. In 

addition, an open APIs is available for 3rd-party applications to 

support customizations/adaptations to user needs.  

For the case of SpaceWire the iSAFT recorder supports 

either packet level or character level monitoring per port 

allowing troubleshooting at system or at protocol level. 

 

 

Fig. 3.  iSAFT recorder MILBUS and SpaceWire statistics views 

In order to support advanced recording functionalities, 

recording for each interface can either begin on the press of the 

start button by the user or, per port independent, start and stop 

trigger conditions can be set-up. Specifically, the following 

start/stop trigger conditions are supported: 

• SpaceWire:  

ο Packet Level monitoring: absolute/relative IRIG 

time, any/programmable Signaling Codes (Time-

Codes, Interrupt Requests, Interrupt 

Acknowledgments, etc.), programmable NCHAR, 

programmable packet pattern, parity error 

ο Character Level Monitoring: absolute/relative 

IRIG time, NULL, FCT, any/programmable 

NCHAR, EoP/EEP, any/programmable Signaling 

Code, parity error 

• MIL-BUS: specific word (with mask), parity, bit 

encoding, SYNC, word count, gap between data 

words, no response, wrong status, spurious data errors 

and external trigger 

• CAN: Date/Remote/Error frames, COB-ID (with 

mask) 

 

Fig. 4.  The iSAFT protocol analyzer GUI 

Similarly, the system allows filtering of traffic to be 

captured in order to decrease the amount of captured data and 

extend the recording time. The following filters are supported: 

•  SpaceWire:  

ο Packet Level monitoring: traffic between 

Signaling-Codes, programmable packet pattern 

(normal or inverted) with the capability to ignore 

path address bytes in order to support traffic 

capture on links between switches, valid/error 

packets, programmable logical address/Protocol 

ID (extended PID also supported) 

ο Character Level Monitoring: Traffic between 

Signaling Codes, NULL, FCT, NCHAR, 

Signaling Codes, valid/error characters 

• MIL-BUS: Remote terminals, Sub-addresses 
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• CAN: Date/Remote/Error frames, COB-ID (with 

mask) 

Captured traffic from multiple interfaces can be merged 

and displayed in a single protocol analyzer chronologically 

ordered, as shown in Figure 3, allowing common view of 

multiple interfaces thus enabling analysis of device 

performances. Standard or custom protocol decoders can be 

installed in the system allowing decoding of protocol fields 

such as RMAP, CCSDS, ECSS-1553, ECSS CAN etc. 

B. iSAFT Simulator 

iSAFT provides the ability for prototyping on-board data 

network devices allowing simulation of a network element thus 

enabling S/C integration tests before the availability of Flight 

models.  

The iSAFT simulator allows for rapid prototyping of new 

functionalities allowing for experimentation with various 

device features and variations including parameterization of 

variables, exclusion/inclusion of device optional functions,   

combination of multiple protocols, etc. It enables simulation of 

specific satellite/spacecraft platform interfaces (as power, 

command, telemetry and communication) to different Payload 

Instruments. It provides a local interface as well as an open 

API for easy integration with 3rd party simulation software and 

a TCP/IP based remote control interface for integration to 

LAN-based environments. 

Regarding SpaceWire, transmissions can either be 

asynchronous or on user-programmable trigger conditions per 

packet. The supported trigger conditions in the current version 

are full or partial IRIG time, programmable Signaling Code 

with programmable offset, simultaneous over selectable ports, 

external trigger signal with programmable offset (e.g. PPS), 

programmable delay from previous packet and disconnect on 

another port. Exploitation of these capabilities allows the user 

to reproduce previously captured traffic in time-accurate 

fashion with sub-microsecond accuracy, thus reproducing 

scenarios that lead to the appearance of failures. 

In addition, iSAFT simulator provides a Traffic Generation 

engine supporting multiple periodic channels or bulk traffic 

injection for link saturation allowing performance evaluation at 

device or network levels.  
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Fig. 5.  The iSAFT Traffic Generation Engine operation 

 

The bulk Traffic Generation engine, is based on 

transmission of linked lists of packets or packet sequences, 

allows the creation of single or repetitive sequences as shown 

in Fig. 5. The SW downloads the packets to be transmitted in 

the on-board SDRAM, having already programmed the packet 

headers accordingly to point to the next packet in the sequence 

and the number of repetitions for each packet/packet sequence. 

In the example shown in Fig. 5. the SW downloads a 

transmission descriptor used to fetch the first packet of the 

linked list sequence in the transmission queue (step 1), which 

in this case is Packet P1. As soon as the packet is fetched, the 

pointer to the next packet is examined (if any) and the next 

packet is automatically fetched for transmission, which in this 

example is packet P2 (step 2), at the same time at which Packet 

P1 is being transmitted (step 3). Packet P2 shall be transmitted 

N times, so it is fetched from the memory N times in the 

transmission queue. If no other packets exist in the link list 

transmission stops if there is no transmission descriptor in the 

SW commands queue. Each packet descriptor has additional 

control information such as the transmission trigger condition, 

error to be injected etc. For example, the user can select to start 

the transmission of a packet sequence upon the detection of a 

PPS and configure the subsequent packets to be transmitted on 

specific time-codes or have specific and different time-gaps 

among them. The combination of per packet independent 

triggers with Traffic Generation provides time-accurate device 

simulation capability.  

III. ISAFT PERFORMANCES 

All results presented herein were performed on a iSAFT 2U 

platform (shown in Fig. 1. ) with a single Xeon E5-2403 

processor, 256 GB SSD and 2TB archive disk. As the 1553 and 

CAN interfaces are low speed interfaces, their impact on the 

performance of the system is minimal and therefore it is only 

the SpaceWire performance which determines the overall 

system performance for both monitoring and simulation. To 

this respect in order to discover the performance limits of the 

system, tests with the SpaceWire interface were performed. In 

all the tests a single eight ports SpaceWire board was used and 

thus the system was capable of capturing traffic on four 

SpaceWire links or simulating up to eight SpaceWire devices. 

A. iSAFT Recorder Performances 

The first test was performed on the iSAFT Recorder. An 

external SpaceWire Traffic Generator was configured in traffic 

generation mode, continuously transmitting SpaceWire packets 

at 100 and 200 Mbps, without NULLs between the packets. As 

each captured packet is appended control information (packet 

length, start/end IRIG time-stamps etc.), for presentation to the 

user through the WireShark analyser, this constitutes the packet 

overhead which becomes more significant as the packet size 

decreases. It is therefore expected that with decreasing packet 

size, the required throughput to store the captured packets 

along with the control information on the platform memory 

will exceed systems performance. At this point the capture 

memory becomes full and recording stops in order not to 

overwrite already captured traffic. This is the rationale of the 
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tests presented here in, in which the packets starting from 1 

Kbytes were continuously decreased until a “Buffer Full” 

condition appeared on the iSAFT GUI. The test results are 

shown in Fig. 6.  from which we see a minimum packet size of 

78 Bytes at 100 Mbps and 184 for 200 Mbps. This corresponds 

to 971463 and 830737 packets per second at 100 and 200 Mbps 

respectively. 

 

 

Fig. 6.  iSAFT recorder performance. Packets per second vs. packet size on 8 

SpW ports 

The slight difference in packets per second between the two 

measurements can be explained by taking into account the 

payload of each measurement. Although the overhead for the 

iSAFT SW is same for both link speeds, since only the packet 

headers are processed by the SW, the performance difference 

can be explained by the fact that at 200 Mbps the throughput 

required to transfer the packet payload doubles, thus doubling 

the system bandwidth requirements. 

The system limits, correspond to non-realistic scenarios, 

since small packets are used for C&C and are never transmitted 

in bulk mode. Bulk data corresponding to mission payload (e.g. 

images) are transmitted in large SpaceWire packets for which 

the overall iSAFT performance is more than adequate and 

therefore the reader can safely assume that iSAFT recorder is 

capable of capturing any mixture of realistic traffic over eight 

SpaceWire ports. 

Ongoing tests that are being performed on a 16-ports 

Recorder have shown that up to 15 fully utilized ports can be 

captured at 200 Mbps with the current iSAFT version, resulting 

in an overall data throughput of more than 2,2 Gbps, whereas 

for 100 Mbps link speeds traffic from 16 fully utilized ports 

can be captured. 

B. iSAFT Simulator Performance 

The second set of tests was performed on the iSAFT 

Simulator. The purpose of the tests was to assess the 

performance of asynchronous transmission and reception. 

Specifically, the following measurements were made: 

• Transmission Latency: The time from the point the 

transmitting application on iSAFT calls the transmit 

function to the time, the first packet NCHAR appears 

on the SpW link 

• Reception Latency: The time from the point the entire 

packet reaches the destination port to the point this is 

available at the receiving user buffer 

Long run tests were performed with test applications 

transmitting millions of packets in order to assess system 

stability. The scenario involved synchronization of all 

equipment through IRIG in order to provide common time-

stamping and ensure the measurements accuracy. An IRIG 

source was connected to the PCs hosting the transmitting and 

receiving applications. 

 

 

Fig. 7.  Remote control measurements test set-up 

The transmitting application was retrieving the IRIG time 

right before packet transmission. Upon arrival of the first 

packet byte at the receiving system the packet was assigned a 

“start time-stamp” by the HW. The difference between the two 

time-stamps constituted the Tx transmission latency.  

Similarly, in order to measure the Rx latency the receiving 

application was invoking the receive call and upon the call 

return it was reading the IRIG time from its local IRIG 

receiver. Subtracting the packet’s “end time-stamp” from this 

time corresponded to the Rx latency. 

TABLE I.  THE ISAFT SIMULATOR LOCAL OPERATION PERFORMANCE 

Packet Size Tx Latency (us) Rx Latency (us) 

1K 10.73 9.15 

2K 12.79 9.15 

4K 14.77 9.27 

64K 73.65 9.88 

The results shown in TABLE I. show that the latencies are 

reasonable with a transmission latency of less than 100 

microseconds for 64Kbytes packet. For the receive path, the 

latency is minimal and independent of the packet’s size due to 

iSAFT’s architecture. 

C. iSAFT Traffic Generation Performances 

The last test run was performed in order to assess the 

performance of the Traffic Generation engine of the iSAFT 

Simulator. Two different test-sets were performed: 
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• In the first one, the same packet was being transmitted 

continuously in repetitive mode  

• In the second, the traffic generation engine of the 

iSAFT Simulator was configured to transmit linked-list 

packet sequences 

In both test-sets the receiver was configured in two 

different modes: 

• HW sinking, in which packets are not uploaded to the 

platform memory but are immediately discarded by the 

HW 

• Normal operation in which packets are uploaded to the 

system memory through a simple test application. 

The first mode reveals the performance of the Traffic 

Generation engine, whereas the second mode reveals the 

overall iSAFT Simulator performance under stress. Stand-

alone tests of the receiver are to follow.  

All tests were performed at three different link speeds, 100, 

200 and 300 Mbps and the purpose was to find the engine’s 

maximum performance by decreasing the packet size down to 

the point at which NULLs are inserted in the link. The links 

were captured by the iSAFT Recorder in order to observe the 

presence of NULLs through the Recorder’s real time statistics. 

The results of all tests are shown in TABLE II.  Fig. 8. 

shows only the results of the HW sinking mode tests of the 

receiver, i.e. the performance of the traffic generation engine. 

TABLE II.  THE ISAFT SIMULATOR TRAFFIC GENERATION PERFORMANCE 
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Three observations can be made on the graph of  Fig. 8. 

The first observation is that for repetitive transmissions of a 

single packet the performance is significantly lower than the 

respective performance of a two packets sequence. The second 

observation is that for a given SpW link speed, the packets per 

second does not have strong dependence on the number of 

SpW ports. The third observation is that as the number of ports 

are increased the total number of packets drops.  

The first observation can easily be explained by taking into 

account that each DMA transaction has an overhead for bus 

arbitration and fetch of control information. As a two packets 

sequence is fetched in a single DMA transaction this overhead 

becomes less significant as it consumes a smaller amount of 

time per packet and therefore the performance of the system is 

increased. 

 

Fig. 8.  Packets per Second vs. number of ports 

As the link rate is increased the time to serve successive 

requests of the same SpW port decreases accordingly. Given 

that the DMA was programmed for round-robin operation, less 

time was left for successive requests of the same SpW port as 

the link rate increased almost linearly. This resulted in a packet 

size per port which increased almost linearly as the number of 

active ports increased (as shown in TABLE II. , thus resulting 

in an almost constant “packets per second” for all active ports 

thus explaining the second observation.  

Nevertheless we observe a deviation from a straight line of 

constant overall performance. This happens because the DMA 

is serving more channels and time is lost in arbitration and 

serving other channels before fetching the next packet from the 

memory for the same port which explains the last observation. 

From the diagram it becomes obvious that the Traffic 

Generation engine covers the requirements of all known 

systems since it is capable of obtaining a maximum throughput 

of more than 2 million packets per second. Saturation occurs at 

points which do not correspond to realistic scenarios, since 

high data rates are associated with science data which use large 

packets only. 

IV. CONCLUSIONS 

Both recording and simulation of flight devices can be very 

demanding for specific cases, like for example performance 

validation of Mass Memory Units or validation of mission 

equipment related to sky images acquisition and SAR. From 

the results presented herein it becomes obvious that the iSAFT 

is capable of simulating multiple flight devices that transmit 

data at very high throughputs and can also support time-

accurate traffic shaping thus enabling microsecond-accurate 

simulation of a device’s behaviour. The system also supports 

full-throughput 24/7 recording over multiple SpaceWire ports 

fulfilling the performance requirements for demanding 

scientific missions like the GAIA Video Processing Unit or the 

EUCLID Fine Guidance Sensor in which the throughput 

becomes challenging for many existing systems. 
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Abstract— SpaceWire-R is a protocol that provides onboard 

applications with reliable high-speed data transfer services over 

SpaceWire links especially for mission data transmission between 

sensors and data recorders.  Independent implementations on 

different hardware with reference to the draft specification have 

been succeeded in interoperability test, which resulted in   

consolidating the protocol.  The final specification document has 

been under preparation by JAXA.  The present paper describes a 

result of interoperability test and evaluation of SpaceWire-R 

performed from 2013 to 2014. 

Index Terms— SpaceWire, Networking, Point-to-point link, 

SpaceWire-R. 

I. INTRODUCTION 

Japan Aerospace Exploration Agency/Institute of Space 

and Astronautical Science (JAXA/ISAS) is consolidating the 

final specification of SpaceWire-R, which is intended to be 

used in mission data transmission between sensors and data 

recorders that require high-speed and reliable data transfer over 

SpaceWire links, where the transmission is carried out 

independently with SpaceWire network in the satellite bus. The 

protocol is also expected to be used between high speed optical 

sensors and solid state data recorders on upcoming scientific 

satellite projects. 

The present paper describes a result of interoperability test 

and evaluation of SpaceWire-R performed from 2013 to 2014. 

SpaceWire-R is a protocol that provides onboard applications 

with reliable data transfer services over SpaceWire networks. 

The primary objective of SpaceWire-R is to transfer data 

reliably from a sending node to a receiving node over a 

SpaceWire network. To ahieve this, SpaceWire-R provides 

specifications on multiplexing of multiple communication 

channels, segmentation of packets, retransmission in case of 

packet loss, flow control, heartbeat, and redundancy control. 

The protocol specification has been available among the 

SpaceWire Working Group members since 2012, and 

discussion of protocol ID assignment has been talked over in 

21st Working Group meeting. 

Through the interoperability test, basic functions of 

SpaceWire-R has been confirmed to work expectedly, and the 

two implementations succeeded to continue transferring data 

even with error injection owing to the retry mechanism in the 

protocol. Flow control and heart beat mechanisms were also 

confirmed to work. Based on the test result, some 

modifications have been incorporated to the protocol 

specification, and the final specification document has been 

under preparation by JAXA. 

II. THE PURPOSE OF INTEROPERABILITY TEST 

The test was the second interoperability test between JAXA 

and NEC/NTSpace, and it was supposed to be the last 

evaluation step in order to consolidate the SpaceWire-R 

specification.  The purpose of the test is to evaluate new 

functions added to the draft specification as a result of the 
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previous evaluation, and to confirm SpaceWire-R draft 

specification through the implementation on real hardware 

with SpaceWire interface 

The new functions added to the previous draft specification 

are heart beat and flow control. They are categorized as 

optional mechanisms on SpaceWire-R. 

Heart beat is a confirmation mechanism for a sending node 

and a receiving node when there is no data to send or receive 

whether the link between two nodes is kept and the both nodes 

are still alive. A timer is to be provided on a node in order to 

specify how long the node will be able to wait after sending a 

heart beat packet until it receives the heart beat 

acknowledgment packet from the other node. When the sender 

of the heart beat packet doesn't receive the acknowledgment 

corresponds to the heart beat within the specified limitation 

for the counter, the sender detects time out and cease the 

transaction cycle. 

Flow control is a mechanism for a receiving node to tell a 

sending node how much the buffer capacity remains for 

receiving data units in order to suppress the sending node to 

send excessive data unit beyond the capacity of the buffer in 

the receiving node. The number of data units that receiving 

node can receive is shown as Maximum Acceptable Sequence 

Number (MASN), which is contained in a data 

acknowledgment packet or a flow control packet.  

We evaluated the specification through three steps. The first 

step is to confirm the basic function described in the 

specification. The second step is to confirm continuous 

transmission between the sending node and the receiving node 

with error injection. And thirdly, the new functions have been 

confirmed, which are heart beat and flow control mechanism 

as described above. 

III. TEST CONFIGURATION AND CONTENTS 

Configuration of the test is shown in Fig.1. In order to 

perform the interoperability test, JAXA/ISAS and NEC/NEC 

Toshiba Space Systems (NTSpace) implemented the 

SpaceWire-R protocol as two independent software stacks on 

different hardware based on the draft specification. One was 

software for an ordinary Personal Computer (PC) with UNIX-

based OS and Intel CPU. For convenience, we call this 

SpaceWire-GigabitEther(SpW-GbE) which is a conversion 

interface used between SpaceWire and GigabitEther. The 

other one was a SpaceCube2 (SpC2) on which a TRON based 

real-time OS is running.  Its central processing unit (CPU) was 

commercial level with devices which was the same type as a 

flight qualified one. SpC2 has one 64bit microprocessor and 

one SpaceWire router in itself. The processing cycle of the 

microprocessor is 33MHz. The router has 6 external 

SpaceWire ports and the link rate of each port is 50MHz. The 

software stack for SpC2 is shown in Fig2.  

SpW-GbE and SpC2 are connected each other with a 

SpaceWire cable. 

Three test procedures were performed in other to consolidate 

the final draft version of SpaceWire-R specification. 

A. Test case 1: Sending/Receiving data 

Test case 1 was to confirm the basic functions. A sending 

node sends the data packet and then checks whether a 

receiving node receives the packet and responds with an 

acknowledgment packet. If the receiving node sends the 

acknowledgment packet properly, a sending node is to be 

checked if it receives the acknowledgment packet properly. 

The test was performed for both directions between the two 

nodes in order to check two types of data transfer A and B as 

follows, 

A. a sending node is the SpW-GbE, and a receiving node is 

the SpC2.  

B. a sending node is the SpC2, and a receiving node is the 

SpW-GbE. These two data transfer tests are shown in Fig.3 

and Fig.4, respectively. 

The result of test case 1 is shown in Table.1 No.1 and No.2. 

The test was successfully done. Each packet which was 

expected to be received on each node was received properly. 

B. Test case 2 :Error injection 

Test case 2 was error injection. We made a receiving node 

stops to send an acknowledgment packet one time out of ten 

during data packet transactions intentionally. The purpose of 

this test was to confirm continuous transmission with correct 

responses between the sending node and the receiving node 

even in this situation.  

In order to simulate the error case, the receiving node was 

programmed to suppress acknowledge response sometimes 

intentionally. The receiving node was programmed to suppress 

sending acknowledge response once per ten transactions in 

this case. And then it is checked whether a sending node 

resends the data packet. When a sending node resends the data 

packet, a receiving node is checked whether it receives the 

data packet and sends the data acknowledgment packet 

properly. When a receiving node sends a data 

acknowledgment packet properly, it is checked whether a 

sending node receives the data acknowledgment packet. The 

test was performed in both directions between the two nodes 

in order to check two types of data transfer A and B as 

follows. 

A. a sending node is the SpW-GbE, and a receiving node is 

the SpC2.  

B. a sending node is the SpC2, and a receiving node is the 

SpW-GbE. 

Test configuration for case A and case B of test case 2 are 

shown in Fig.5 and Fig.6, respectively. 

The result of test case 2 is shown in Tab.1 No.3 and No.4. 

The test was successfully done, and it was confirmed that the 

transmission between two nodes returned to normal sequence 

through the retry mechanism after the error injection. And 

both nodes acted how we expected and each packet was 

received as expected on each node.  
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C. Test case 3 : Two new functions 

Test case 3 was to confirm heart beat mechanism and flow 

control mechanism.  

1) Test case 3-1 : Heart beat mechanism 

Two patterns of tests were performed in order to evaluate the 

heart beat mechanism. They were the normal pattern and the 

off nominal pattern. 

As for the normal pattern, a sending node sends heart beat 

packets normally. The sending node sends a heart beat packet 

to a receiving node, receiving node is checked whether it 

receives the heart beat packet and sends a heart beat 

acknowledgment packet. If the receiving node sends the heart 

beat acknowledgment packet properly, the sending node is 

checked whether it receives the heart beat acknowledgment 

packet properly. We used a SpW-GbE as a sending node, and 

a SpC2 as a receiving node, for the test of normal pattern as 

shown in Fig.7 .  

The result of the normal heart beat test is shown in Table.1 

No.5. It was successfully done with each packet received as 

expected on each node, and it was confirmed to be received 

properly. 

Off nominal pattern is that a receiving node  is not set to send 

a heart beat acknowledgment packet. The sending node sends 

a heart beat packet and the receiving node receives the heart 

beat packet, whereas the receiving node does not send a heart 

beat acknowledgment packet this time. In consequence the 

sending node is checked whether it moves into terminate 

transmission state after the sending node sends several heart 

beat packets. We used a SpC2 as a sending node, and a SpW-

GbE as a receiving node, for the test of off nominal pattern as 

shown in Fig.8. 

The result of off nominal heart beat test is shown in Table.1 

No.6. It was successfully done with each node acted as we 

expected. We set the timer to 5seconds at that time, and the 

heart beat packet time interval was set to 1second. After the 

sending node sent four heart beat packets, it judged timeout 

and terminated the transmission transaciton. 

2) Flow control mechanism 

The final test was to confirm flow control mechanism. A 

sending node sends a data packet with a smaller sequence 

number than the MASN held by a receiving node. Then 

sequence number of a next sending data becomes equal to the 

MASN of a receiving node, the sending node stops to send a 

data packet. After the sending node stops sending a data 

packet, the receiving node sends a flow control packet which 

contains larger MASN number. A sending node is checked 

whether it receives the flow control packet and sends a flow 

control acknowledgment packet. If the sending node sends the 

flow control acknowledgment packet properly, then the 

receiving node is checked whether it receives the flow control 

acknowledgment packet properly. The sending node is also 

checked whether it restarts sending data packets. If the 

sending node restarts to send data packet successfully, then  

the receiving node is checked whether it receives the data 

packet and sends the data acknowledgment packet. In the end 

the sending node is checked whether it receives the data 

acknowledgment packet or not. We used a SpW-GbE as a 

sending node and a SpC2 as a receiving node, for the test of 

flow control as shown in Fig.9. 

The result of the flow control test is shown in Table.1 No.7. 

It was successfully done with each node acted as we expected, 

and each packet which expected to be received at each node 

was confirmed to be received properly. 

 

 
Figure1. The configuration of  the evaluation test 

 

 
Figure2. Implementation of SpC2 for SpaceWire-R 

 

 
Figure3. Test case 1 – Case A  

 

 
Figure4. Test case 1 – Case B 

 

 
Figure5. Test case 2 – Case A 
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Figure6.Test case 2 – Case B 

 

 
Figure7. Test case 3-1 – Heart beat normal case 

 

 
Figure8. Test case 3-1 – Heart beat off nominal case 

 

 
Figure9. Test case 3-2 – Flow control 

 

Table1. Result of interoperability test 
 Test items 

result No. Packet 

direction 
Expected action 

1 

A)SpC2→Sp

W-GbE 

SpC2: Data packet send 

SpW-GbE: Data packet receive 

SpW-GbE: Data Ack packet send 
SpC2: Data Ack packet receive 

Pass 

Pass 

Pass 
Pass 

2 

B)SpW-
GbE→SpC2 

SpW-GbE: Data packet send 

SpC2: Data packet receive 
SpC2: Data Ack packet send 

SpW-GbE: Data Ack packet receive 

Pass 

Pass 
Pass 

Pass 

3 

A)SpC2→Sp

W-GbE 

SpC2: Data packet send 

SpW-GbE: Data packet receive 

SpW-GbE: don’t send Data Ack packet 
SpC2: Data  packet resend 

SpW-GbE: Data packet receive 

SpW-GbE: Data Ack packet send 
SpC2: Data Ack packet receive 

Pass 

Pass 

Pass 
Pass 

Pass 

Pass 
Pass 

4 

B)SpW-
GbE→SpC2 

SpW-GbE: Data packet send 

SpC2: Data packet receive 
SpC2: don’t send Data Ack packet 

SpW-GbE: Data  packet resend 

SpC2: Data packet receive 
SpC2: Data Ack packet send 

SpW-GbE: Data Ack packet receive  

Pass 

Pass 
Pass 

Pass 

Pass 
Pass 

Pass 

5 
normal) 
SpW-GbE 

→SpC2 

SpW-GbE: Heart beat packet send 

SpC2: Heart beat packet receive 

SpC2: Heart beat Ack packet send 
SpW-GbE: Heart beat Ack packet receive 

Pass 

Pass 

Pass 
Pass 

6 

unusual) 
SpC2→ 

SpW-GbE 

SpC2: Heart beat packet send 
SpW-GbE: don’t send Heart beat Ack packet 

SpC2: Heart beat packet send 

SpW-GbE: don’t send Heart beat Ack packet 
SpC2: Heart beat packet send 

SpW-GbE: don’t send Heart beat Ack packet 

SpC2: Heart beat packet send 
SpW-GbE: don’t send Heart beat Ack packet 

SpC2: Close 

Pass 
Pass 

Pass 

Pass 
Pass 

Pass 

Pass 
Pass 

Pass 

7  
Data packet: 

SpW-GbE 

→SpC2 
 

Flow control 

SpW-GbE: Data packet send 
SpC2: Data packet receive 

SpC2: Data Ack packet send 

SpW-GbE: don’t send data packet 
SpC2: Flow control  packet send 

SpW-GbE: Flow control packet receive 

Pass 
Pass 

Pass 

Pass 
Pass 

Pass 

 Test items 

result No. Packet 

direction 
Expected action 

packet: 

SpC2→ 
SpW-GbE 

SpW-GbE: Flow control Ack packet send 

SpC2: Flow control Ack packet receive 
SpW-GbE: Data packet send 

SpC2:Data packet receive 

SpC2: Data Ack packet send 
SpW-GbE: Data Ack packet receive 

Pass 

Pass 
Pass 

Pass 

Pass 
Pass 

 

IV. TEST RESULT 

All test cases have been completed successfully. The 

transmission rate for test case 1 was 400kbps at 50MHz link 

rate. At test case 2, the test was held in 10MHz link rate and 

the transmission rate was 8kbps, where it was 80kbps at same 

link rate with no error injection. Error rate injected in the test 

case 2 was 10%, and the transmission rate decreased in 90%. 

The result was corresponds to the analysis performed in 

advance.  

We confirmed all of the test procedures and results as 

expected.  No modification was identified with the draft 

version of SpaceWire-R specification. In consequence we 

confirmed that the specification of SpaceWire-R had been 

consolidated. 

 

V. CONCLUSION 

We evaluated the SpaceWire-R draft specification through 

the test using real hardware on which SpaceWire-R protocol is 

implemented. The evaluation tests of SpaceWire-R draft 

specification using a SpW-GbE and a SpC2 were completed 

successfully, and the specification has been confirmed through 

the three test procedures as follows. First, the basic function 

has been confirmed. Second, continuous data transmission 

against error injection has been confirmed. Third, the new 

functions, which are heart beat mechanism and flow control 

mechanism, have been confirmed. 

In accordance with the result of the evaluation,  no more 

modification was identified as required. As a result, 

SpaceWire-R specification has been establised. 
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Abstract— Creation and launching a spacecraft are very 

expensive measure; it needs a great accuracy and attention to 

details. A spacecraft board network includes: system of the 

navigation, orientation and stabilization, special target devices 

giving a different payload. Success of work whole spacecraft and 

the realization its tasks and functions is depending on speed, 

quality and correctness. It is necessary not only to initialize the 

huge number of devices during the its interaction. The generation 

the output log-files and reconfiguration the each device also are 

the very important tasks. The adjustment of every network 

device is necessary and very significant because the correctness of 

all network functioning depends on that. In addition, the error 

situations can occur in network, then we need to have the 

opportunity to process them, recover the system efficiency with 

minimal loss of information. 

The special software created for the configuration, 

administration and monitoring the device status is the essential 

component of a creation every network. This software provides 

for proper setting and supporting of each network device an 

ability to work, decreases the error appearance and falling out an 

network element or part of the network and, of course, essentially 

reduces time of  tuning of all network. 
At this paper the software adjusting SpaceWire network by 

required type without human participation and granting results 

as output files is described. 

Index Terms — SpaceWire network, Plug-and-Play, 

administration, configuration. 

I. INTRODUCTION 

Generally the actual networks consist of  a huge number of 

devices (nodes and switches) located on different distance of 

each other. For organization its interaction it is necessary to 

execute the primary configuration in compliance with a 

structure of physical links and logical channels between 

applications, which owe exist in the system. 

During the time of network functioning it is necessary to 

have the capability to monitor the state of network 

components and system work modes, support the network 

work correctness and accuracy its settings. 

Even if the network consists of a little number of devices, 

the manual executing primary configuration also is not 

recommended, because human-operator mistakes can lead to 

unpredictable results. For huge networks, to which the modern 

networks belong, the manual configuration is impossible 

because it will be executed unacceptably long. 

During the system functioning some devices or links 

between them can fail, as a result of that failures the network 

settings can be distorted. The monitoring of network states and 

correctness of network settings is necessary for detection the 

failures and correction of consequences of failures throughout 

all time of functioning. These actions have to execute 

automatically. 

Based on the explained ideas the software allowing to 

execute discovering and network setup was created. The 

responsibility for correct adjustment the main registers of 

switch and node is settled on this software. Also the 

notification the network operator about a network setup 

results. 

This technique is intended for administration of distributed 

SpaceWire network [1]. For execution of process of 

administration and setup network system components the 

RMAP protocol is used [2]. This protocol represents one of 

transport layer protocols which can function on the SpaceWire 

network. This protocol is intended for access to address space 

of nodes of a network and here is used for remote configuring 

of devices with SpaceWire interfaces. 

II. THE GENERALIZED ALGORITHM 

First of all it is necessary to select network connection 

point for the manager of a network.  

In order that time of configuring and status inquiry of a 

network was minimum, and also there was minimum the 

volume of traffic generated in case of status inquiry of a 

network, expediently that a node - the network administrator 

was located at some "center" of a network. Node-

Administrator in a network is connected to communications 

system through special official port, it doesn't require use the 

main ports on the basis of which the network is built. 

The choice of network connection point of a node of a 

network on which functions of administration of a network 

will be executed, shall be carried out by the engineer 

performing tuning of a network, taking into account structure 

of a network and taking into account types of network points 

(a node – the network administrator can be connected only to 

nodes of those types for which in library possibility of such 

connection is set). After the network connection point the 

engineer performing tuning of a network is selected, shall 

connect to it a node on which beforehand it shall be set by an 

administration software. 
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It is supposed that on all switches in network a software is 

functioning, which execute the following functions: 

 connection establishment an all required ports; 

 setup the registers of the adaptive routing group; 

 support of path addressing; 

 processing the RMAP request packets and formation 

a responses on them. 

The process of configuring includes two stages: 

 check that all communication links required in 

system are connected, set a transmission rate on them, 

check after setup rates, that connection on all required 

links is still set; 

 if the first stage was executed successfully (on all 

required links connection is set, transmission rate 

corresponds required), filling the adaptive routing 

registers an routing table of all switches. 

Configuration is carried out by RMAP commands packets 

which the network manager delivers to switches and terminal 

nodes. Distribution command packets is realized in ascending 

order of length of the path address. At first the configuring of 

the switches/nodes directly connected to the network manager 

is executed, further – configuring of the switches/nodes 

connected to them, and so until the configuring of all available 

devices of the network are executed.  

The administration process following it includes two 

stages: 

 check that on all required communication links in 

system the connection is established and required 

transmission rate is set; 

 check the contents of registers of the adaptive routing 

registers and routing tables. 

In the course of network administration during its state 

processing the check of a status of devices is executed in the 

same order as in train of initial setup of system configuration. 

III. THE DESCRIPTION OF ORIGINAL SETUP OF A NETWORK 

The primary network  setup provides installation all 

parameters of configuring of terminal nodes and switches in 

SpaceWire network according to a required network 

configuration. 

The process performing the original setup consists of the 

following stages: 

 check that all communication links required in 

system are connected, set a transmission rate on them, 

check after setup rates, that connection on all required 

links is still set; 

 if the first stage was executed successfully (on all 

required links connection was set, transmission rate 

corresponds required), filling the adaptive routing 

registers an routing table of all switches; 

 if the first stage is not executed successfully, these is 

a rearrangement of settings and scheme of a network 

structure. 

All process of administration is carried out by RMAP 

packets.  Distribution command packets is realized in 

ascending order of length of the path address. 

After completion of operation of setup process the log file 

will be created which will give to the human operator 

opportunity to look at results of primary network setup. If 

errors were revealed, the operator should take necessary 

measures, for example, check communication links on which 

connection was not set, or test devices. 

IV. THE DESCRIPTION OF SOFTWARE OPERATION IN CASE OF 

STANDARD NETWORK FUNCTIONING 

After execution of network configuring at our disposal are 

list of paths to devices and list of found devices. 

The program creates a packet for reading the register of 

connections. In the course of administration the device status 

checking  is executes in the same order as in the course of 

configuring. If data accepted from device correspond required, 

the program creates a packet for reading transiting speed value 

on the specified ports. The derived data also are compared to 

what are specified in the input file. If any connection is gone, 

the software makes attempt to recover it and to set required 

speed, the number of attempts is restricted. If it works well, in 

case of switch administration there is a transition on second 

administration step,  otherwise the device is admitted as 

inoperable and deleted from both lists by software of network 

administration. 

The described step is necessary only for switches. On this 

step the program executes check a correctness of setup a 

routing table and adaptive group registers. At first the packet 

for reading a routing table is created. From an answer packet 

we accept data and we compare to what shall be written. If data 

don't match, a defined number of attempts to recover data, 

which were written by a software on the configuration stage, is 

executed. Further the software creates a packet for reading the 

adaptive group registers and process check retrieved data. If 

data don't match again, a defined number of attempts to recover 

data, which were written by a software on the configuration 

stage, is executed. Results are written to the output file. 

V. BASIC DATA FOR NETWORK SETUP 

Because the network structure is known in advance,  but is 

not considerate that some devices or communication links can 

be invalid, so input data for setup  is concerning to each 

network element. 

All ports within each terminal node and switch have unique 

number (these numbers match physical numbers of ports on 

devices). These numbers are used for identification of 

communications links in the table of communications and for 

formation the path addresses. 

Owing to that in the initial status nodes of a network have 

not logical/regional addresses, during configuring and 

administration path addressing in the SpaceWire network is 

used. In case of path addressing the destination  address 

represents sequence of numbers of output ports of switches 

through which shall pass this packet. When using path 

addressing the main part of formation of a way of a packet in a 

network lays down on administration node, switches need to 

direct only a packet with input on the output port, thus any 
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registers of setup of modes of routing, a routing table in the 

switch aren't used. 

In an absence situation in the routing switch of incorrect 

setup of a routing table the exchange of packets between 

devices when using logical addressing will be erratic. Such 

situation often takes place in nodes switches in start state, after 

switching on. Errors in the table can result and power failures. 

In order to avoid erratic situations during Administration of a 

network traveling addressing as it represents a set of output 

ports of switches through which shall pass a packet to reach an 

assignment node is used. The routing table thus isn't involved. 

The network structure specification is set on the basis of the 

table in which unique numbers of connected nodes and ports 

connected by communication links between this node are 

specified. 

For each terminal node: 

 the list of ports, where shall be set connection, is set; 

 for each port the required transmission rate is set; 

For each switch: 

 the list of ports, where shall be set connection, is set; 

 for each port the required transmission rate is set; 

 values for adaptive group routing registers are 

specified; 

 the contents for routing table are set. 

All basic data are provided in the form of one file having a 

XML format. 

The output data represent: 

 the list of communication links on which there is 

connection, speeds at which it was succeeded to set 

connection; 

 if on all required communication links there is 

connection, for all switches fields for adaptive group 

routing registers and routing table are created. 

An output data represent one file in xml format. This file 

includes information on what setup is implemented according 

to input data and what is not implemented. The output file can 

be analyzed by the network administrator. If in network there  

are some failures, administrator can concentrate on them. 

A. Format of an input file 

This file is partitioned into the following main sections: 

 network_structure has the following structure. To 

every line of this table specifying structure of a 

network, there corresponds network_connection 

subsection (the number of subsections corresponds to 

number of lines in the table). Each such subsection 

has the unique identifier corresponding to a unique 

identifier of a specific communication line, is set in 

the form of parameter. Further all communication 

lines are described. As the communication lines 

bidirectional, for it can't be defined a concept of the 

beginning and end. Therefore designation of network 

connection points  is used. Network connection points 

describe number of the device and port number on 

which the communication links is connected; 

 master_node defines the characteristic of the device 

which executes configuration functions and network 

administrations. This device has the unique number, 

for setup he needs a number of attempts to set a value 

for any parameter for any device of a network, the 

COM port name which will be used for interaction 

with a network and its speed.; 

 switch_parameters consists of subsections of switch in 

which the specification of parameters of each switch 

which is a part of system is executed. The quantity of 

subsections of switch is equal to number of switches 

in system. In switch subsection in the form of 

parameters the identifier of a node and number of 

ports are set. For the separate switch parameters for 

setup is: 

- unique device number; 

- the list of port numbers specifying on existence 

connection or absence connection on each of them 

and in case of connection existence, speed for 

transmitting speed; 

- the description of adaptive group routing 

registers, separately for each register; 

- the routing table description, row number 

specifying  and value which needs to be written; 

 terminal_nodes_parameters consists of subsections of 

terminal_node in which the specification of 

parameters of each terminal node which is a part of 

system is executed. The quantity of subsections of 

terminal_node is equal to quantity of terminal nodes 

in system. In terminal_node subsection in the form of 

parameters the identifier of a node and number of 

ports are set. For each terminal node input parameters 

is: 

-  unique device number;  

- the port list specifying on existence or 

absence of connection on each of them,  in case of 

existence, a speed value. 

In addition to an XML input file it is necessary to correctly 

specify temporal settings for network administration: 

 parameter specifying a period after which it is 

necessary to realize administration; 

 parameter specifying total quantity of cycles of 

administration. 

B. Format of an output XML file 

Output data are: 

 the list of communication lines on which there is a 

connection, speeds at which it was succeeded to set 

connection; 

 if on all required communication links there is 

connection, for all switches fields for adaptive group 

routing registers and routing table are created. 

 file includes information on what setup is implemented 

according to input data and what is not implemented; 

 the output file includes two sections: 

- switch_parameters – section in which are 

specified parameters of switches; 

- terminal_nodes_parameters – section in which 

are specified parameters of terminal nodes. 
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VI.  CONCLUSION 

Administration of devices of a distributed network is made 

both in a standalone mode, and as a part of an exploited 

complex. This algorithm provides automatic detection of the 

current configuration of a network. The developed software 

allows to trace attaching and detaching (an output from 

structure and a failure) network devices. Allows to set up 

quickly operation modes and to trace statuses of devices, 

provides collection, information display about network 

condition. 

The operator of a network can look at results of operation 

in the output file. If it contains devices for which it wasn't 

succeeded to set required parameters, the operator can make 

the relevant decisions for deleting the arisen problem. 
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Abstract—SpaceWire is a standard for a communication 

interface in a satellite. It reduces a wiring cost for building a 

network. However, it becomes the complicated topology when we 

design the network architecture that considered Peer to Peer, a 

redundancy, etc. Furthermore, a component can share a line with 

the other components. Therefore, traffics generated by a 

component will effect to the other traffics. It is difficult to 

estimate traffics on a network. Additionally, estimating impacts 

on SpaceWire network by errors related to internal registers and 

buffers are difficult because SpaceWire has more complex 

protocol than that of the other communication interfaces such as 

MIL-STD-1553b. We developed a simulator based on NS-3 to 

simulate VHDL models with virtual network. We divide a 

SpaceWire network into function blocks (internal registers, 

buffers, communication lines etc), and evaluate impacts on each 

function block by faults. In this paper, we describe simulation 

results and propose necessary quality of each function block for 

fault tolerance system with SpaceWire. 

Index Terms— SpaceWire, Network, Simulator, VHDL, Faults 

Detection 

I. INTRODUCTION 

SpaceWire has been used for internal communication 

interfaces in satellites [1-3] because it achieves high-speed data 

communication and flexible network topology. The main target 

satellite system is an unmanned and once the satellite is orbited, 

it is extremely difficult to maintain it manually. These systems 

have FDIR (Fault Detection, Isolation and Recovery) 

mechanism that detects faults and recoveries the systems 

automatically. 

It is important to understand detail effects of faults and 

evaluate effectiveness of fault detection and countermeasures 

for faults in advance. Depending on this background, effects of 

faults on a SpaceWire network and countermeasures against 

faults are presented [4-9]. 

Generally, implementation bugs, Single Event Upsets 

(SEU) and Single Event Transients (SET) cause faults on 

SpaceWire nodes and routers. In [4,5], effects of SEU/SET on 

SpaceWire IP (Intellectual Property) is analysed using HDL 

simulator. However, estimating consequence from failure parts 

to the effects for network is difficult, because they inject faults 

TABLE I.  CHARACTERRISTICS OF THE SIMULATORS 

Parameter OPNET[10] HDL Simulator[11] Proposal[12] 

Simulation 

Time 
Fast Slow Middle 

Accuracy 
Character 

Level 

Logic 

Level 
Mixed 

Open 

Source 
No 

depends on the 

simulator 
Yes 

 

at random. 

Regarding countermeasures against faults in SpaceWire, it 

is proposed methods to construct redundant network with 

various constraint conditions automatically [4] and switch to 

the alternative route by fault detection with exchanging keep-

alive messages [5]. 

Therefore, we developed a simulator that is able to handle 

HDL models with virtualized networks in order to evaluate 

effects of faults on a SpaceWire network and effectiveness of 

FDIR accurately [12]. Furthermore, we simulate behaviors of 

existing SpaceWire IPs with a redundant network using the 

simulator. The results of evaluation show relations (between 

failure parts and effects on a network) and a delay of a 

redundant operation. We also found that there are some cases 

which cause delays to switch route in redundant network due to 

undetected faults for a long time and it depends on 

implementations and traffic conditions. In addition, we propose 

requirements for SpaceWire implementations based on the 

results. 

II. OVERVIEW OF THE SIMULATOR 

Simulators for SpaceWire have been reported in [10-11]. 

To evaluate for the effect on SpaceWire networks, simulation 

models should be close as possible to actual environment. The 

simulator [10] based on the network simulator (OPNET) has 

problems for the point of accuracy. Simulating whole system 

with HDL simulator achieves high simulation accuracy [11]. 

However, the simulator requres large amount of calculation. In 

this paper, we report our simulator which works as a mixed- 

mode simulator composed with the network simulator (NS-3) 
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Fig. 1.  Evaluation Network 

TABLE II.  NODE MODELS FOR EVALUATIONS 

Models HDL Model A HDL Model B Default Model 

Description Free 

Spacewire IP 

Open-source 

SpaceWire IP 

Core 

Ideal Model 

Language VHDL VHDL C++ 

FIFO 128 bytes 64 bytes 1024 bytes 

Clock 10 MHz Rx:166 MHz 

Tx:100 MHz 
－ 

Max Credit 7 7 4 

 

and the VHDL simulator (FreeHDL) [12]. 

The simulator is able to simulate large scale systems 

efficiently. Table I shows a comparison characteristics among 

simulators. 

III. EVALUATION MODELS 

Figure 1 shows the target network model to evaluate that is 

configured with 3 nodes and 2 routers. Various HDL models 

are applied to Node 33. We inject a bit-error into internal 

registers and evaluate effects to the network. For evaluate the 

switching redundant routes time, we implemented redundant 

functionalities described in Section C in each node and router. 

A. Simulation Senario and Analyze the Simulation 

We executed simulation 200 times per combinations of 

model (Model A and B) in Table II, register to inject an error in 

Table III and condition in Table V according to the scenario as 

bellow; After termination (Step 3), we compared transmitted 

packets with received packets and evaluated number of 

incorrect packets. 

1) Reset Nodes and Make Traffics 

Reset all nodes and routers after 20 µs from the timing to 

start simulation and each node starts to transmit packets. 

2) Inject a Bit-Error to Node33 

Injects a bit-error into an internal register of Node33 after 

10ms from the timing to start simulation. 

3) Terminate and Analyse the Simulation 

Terminate the simulation after 100 ms from the timing to 

start simulation. 

TABLE III.  FUNCTION BLOCKS IN SPACEWIRE NODE MODELS 

No. Block Function 

1 State Machine State Machine (FSM) 

2 Transmitter Read Pointer of FIFO 

3 Write Pointer of FIFO 

4 Transmit Credit Counter 

5 Receiver Read Pointer of FIFO 

6 Write Pointer of FIFO 

7 Receive Credit Counter 

TABLE IV.  ALTERNATIVE INTERFACE MAP 

Node IF 0 IF 1 IF 2 IF 3 

Node32 IF 1    

Node33 IF 1    

Node34 IF 1    

Router128 IF 3 IF 3 IF 3  

Router129     

 

 

Fig. 2.  Alternative Route after Fault Detection on Link1 

B. Node Models 

Table II shows simulation models. We use 2 types of HDL 

models for evaluation. The first model (HDL Model A) is 

released by CESR. The second model (HDL Model B) is 

developed in the open-source SpaceWire project. Each model 

is developed as an open-source model. The target bit-errors are 

injected into registers shown in Table III. 

C. Fault Tolerant Methods 

The method of fault detection and switching routes 

redundant network consists of following steps (1-3). We shows 

an example using transmit timeout on Interface0 of Node33 

with Figure 2. 

 

1) Packet Transmit Timeout 

Each node resets a link, if the node does not detect 

transmission of EOP or EEP after a given time from the first 

data character transmission. 

2) Packet Receive Timeout 

Each node resets a link, if the node does not detect 

reception of EOP or EEP after a given time from the first data 

character reception.  
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TABLE V.  EVALUATION CONDITION 

Parameter Condition A Condition B 

Number of Trials 200 (each HDL model and 

traffic condition) 

Transmit Timeout 1 ms 

Receive Timeout 1 ms 

Transmission Data 25 bytes + EOP 

Traffic 

Condition 

Node33 to 32 

(Constant Period) 

800 pkt/s 1200 pkt/s 

Node32 to 33 

(Poisson Arrival) 

400 pkt/s  

(Average) 

600 pkt/s 

(Average) 

Node34 to 32 

(Poisson Arrival) 

800 pkt/s  

(Average) 

1200 pkt/s 

(Average) 

Node32 to 34 

(Poisson Arrival) 

400 pkt/s  

(Average) 

600 pkt/s 

(Average) 
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Fig. 3.  Classify Incorrect Packets according to Source and Destination 

Address 

3) Redundant Routing 

Each node and router switches the routes to the alternatives 

according to Table IV if it detects link reset. This process runs 

only once. 

 

When a transmit timeout occurs on Interface0 of Node33, 

each link with Interface0 of Node33 and Interface1 of 

Router128 is reset according to the Step1. Then, Node33 and 

Router128 update routing tables according to Step3 with Table 

IV. Alternative interfaces of Interface0 of Node33 and 

Interface1 of Router128 are defined as Interface1 and 

Interface3 respectively in Table IV. Node33 rewrites fields 

related to Interface0 as Interface1. And, Router128 rewrites 

fields related to Interface1 as Interface3. Finally, the route 

between Node33 and Router128 updates as Figure 2. 

 

Fig. 4.  Function Block Diagrams of FIFOs in HDL Model A and B 

 

Fig. 5.  Effects of an Error for Enqueued Packets in Model A and B 

IV. EVALUATION RESULTS 

We simulated the models according to Section III and 

evaluated number of incorrect packets and distributions of 

transmission times of incorrect packets. Table V shows 

simulation conditions. We ran the simulation with each HDL 

model (HDL Model A and B in Table II) and each traffic 

condition (Condition A and B in Table V). Each node 

generates packets with Poisson distribution except Node33. 

Node33 generates packets with constant period. 

A. Effect of a Traffic Condition 

Figure 3 shows the average number of incorrect packets 

when errors occur on internal registers No.2, 3, 4, or 7. Figure 

11 shows all of the results. We found from Figure 3 that Model 

A caused more incorrect packets than Model B. In Condition B 

(1200 pkt/s), faults on Node33 had a major effect on packets 

transmitted from Node34. 

We analyzed Model A and B in order to find the cause of 

the difference of number of incorrect packets. As a result of the 
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Fig. 6.  Character Traces with HDL Model A (1200 pkt/s) and Injected Fault Type No.4 
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Fig. 7.  Distributions and Number of Incorrect Packets with HDL Model A 

and 800 pkt/s on Node33 
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Fig. 8.  Distributions and Number of Incorrect Packets with HDL Model B 

and 800 pkt/s on Node33 

analysis, the structure of a FIFO in a transmitter and a 

configuration of transmit/receive timeouts caused the 

difference. The diagrams of FIFO in each model are shown in 

Figure 4. And effects of an error on enqueued packets in the 

FIFO are shown in Figure 5. 

In Model B, as shown in Figure 5(b), all characters located 

between read address and write address are transmitted even if 

an error occurs because the number of characters stored in 

FIFO is calculated by subtracting read address from write 

address. On the other hand, in Model A, a part of characters 

located between read address and write address may not be 

transmited because the number of characters stored in FIFO 

does not change if an error occurs on read/write address 

registers, as shown in Figure 5(a). 

If an EOP is not transmitted due to the error on read/write 

address registers, this can cause link occupation on SpaceWire 

network. Figure 6 shows character traces when a miss of a 

transmission of EOPs was occurred. We found from Figure 6 

 

Fig. 9.  An Operation of The Improvement of a Fault Detection 

that Node 33 transmitted PacketA without EOP and continued 

to transmit NULLs for a long time. In addition, Node 33 could 

not detect the fault because the following PacketB was 

transmitted from Node 33 in 1ms. Finally, it caused occupation 

of the link between Router 128 and Node 32. 

B. Delay of Fault Detection 

Figure 7-8 shows distributions of transmission times of 

incorrect packets. We found that it takes 0-40ms to detect an 

error of register No.4 (Transmit Credit Counter). The delay of a 

fault detection is understood as follows. The register in Node 

33 records the amount of receiver space in Router 128. Router 

128 can detect the fault only when transmitted characters 

exceed receiver space in Router 128 due to the error. Therefore, 

the fault detection delayed for a long time. 

C. Improvement of Fault Detection 

According to Section III-A, when a packet transmission 

interval is shorter than a transmission timeout time, there is a 

possibility that Model A affects traffics of surrounding nodes 

because a fault detection does not work in some cases. In order 

to improve a fault detection capability of Model A, we 

implement the following method in the FIFO of the model. 

Figure 9(a)(b) show an operation of the improved FIFO. When 

a character is read, the FIFO writes an ESC character to the 

same address. The written ESC characters are transmitted when 

an error occurs in read/write address registers. This enables to 
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Fig. 10.  A Comparison of Incorrect Packets between Model A without the 

Improvement and Model A with the Improvement 

detect an error. (SpaceWire treat continued ESCs as an error.) 

We run the simulation using the improved model with the 

same conditions as Section III. Figure 10 shows the average 

number of incorrect packets in 200 times simulations per each 

condition. Model A* shows the improved model. Incorrect 

packets decreased when an error occurred in the internal 

register No.3 (a read address register in the transmitter). When 

an error occurred in the internal register No.4, incorrect packets 

decreased by one quater, but we found misses of a fault 

detection. The misses are understood that the fault detection 

functionality detected only errors of read address register, as 

shown in Figure 9(c). 

V. CONCLUSION 

In this paper, we evaluated impacts of faults on a 

SpaceWire network and capabilities of redundant operations 

using existing HDL models. For the evaluation, we reported 

the simulator composed of the network simulator and VHDL 

simulator in order to simulate the models accurately and 

efficientry. The evaluation results indicate that an error in 

read/write address registers causes missing EOPs. Missing 

EOPs causes blocking traffics transmited by surrounding nodes. 

Futuremore, we found that detecting errors in Trasmit Credit 

Counter is delayed for a long time. 

According to these analysis, we think FIFOs in SpaceWire 

IPs should be implemented avoiding mismatch between a 

address registers and a data counter. Also, a transmission 

timeout should be configured shorter than a packet 

transmission period. 

APPENDIX 

Figure 11 shows all of the evaluation results (internal 

registers No.1-7) in Section III. 
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Fig. 11.  All of the Evaluation Results (internal registers No.1-7) in Section III 
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Abstract—This paper gives an application of SpaceWire 

Network on transferring spaceborne data & information. The on-

board data is classified as payload data and platform 

management data. Accordingly, the on-board network is divided 

into payload data subnet and platform data subnet that are used 

to deliver payload data and platform management data 

respectively. Two different high-level protocol stacks are selected 

for the two subnets to satisfy the different transmission demands 

of payload data and platform management data. 

Key Words—SpaceWire, RVTP, time-triggered, retransmission. 

I. INTRODUCTION  

As an advanced high-speed network, SpaceWire is aimed at 

being used as the sole on-board network in satellites[2], 

carrying different types of on-board data, which mainly include 

payload data, control data, status information of on-board 

equipments, clock synchronization information and so on. This 

paper analyzes their characteristics and transmission demands. 

Then it classifies on-board data as payload data and platform 

management data. Payload data have a high throughput and 

require the availability of a sustained, high bandwidth to be 

operational. Platform management data have a low throughput 

but require high reliability and have very strict time constraints. 

In order to satisfy the demands of payload data and platform 

management data, the on-board SpaceWire network is divided 

into two subnets in structure and function, that is high-speed 

payload data subnet and high reliable platform data subnet, and 

two different high-level protocol stacks are selected for them. 

Payload data are delivered by RVTP (Remote Virtual-channel 

Transfer Protocol)[1] in payload data subnet, while platform 

management data are delivered by RMAP protocol[5] in 

platform data subnet. Moreover, retransmission and time-

triggered transmission strategy are used to provide QoS for 

platform management data. 

 

II. ON-BOARD DATA CLASSIFICATION 

The aim of building spaceborne unified data network using 

SpaceWire is to transfer the on-board data efficiently. The on-

board data are all kinds of digital information exchanged 

between on-board devices, including payload data, control data, 

housekeeping data, time synchronization data and so on. 

According to their characteristics, these data are classified as 

two types: platform management data and payload data. 

Platform management data mainly consists of control data, 

housekeeping data and time synchronization data, which have a 

low throughput, require high reliability and have very strict 

time constraints. Payload data have a high throughput and 

require the availability of a sustained, high bandwidth to be 

operational. 

In order to satisfy the transmission demands of payload data 

and platform management data, the on-board SpaceWire 

network is divided into two subnets in structure and function, 

that is high-speed payload data subnet and high reliable 

platform data subnet. Accordingly two different high-level 

protocol stacks are selected for the two different subnets. 

III. THE DESIGN OF SPACE-BORNE UNIFIED DATA NETWORK 

The design of spaceborne unified data network includes two 

parts: the network structure design and the network 

communication protocol design. The network structure 

provides hardware platform for the data transmission, while the 

network communication protocol defines the data 

encapsulation format and regulates the data transmission 

scheme to ensure the on-board data can be transmitted 

efficiently and reliably. 

A. The design of  network structure  

The schematic diagram of the spaceborne unified data 

network constructed using SpaceWire is illustrated in Fig.1. 

The network structure consists of the SpaceWire router 

network and a number of SpaceWire nodes. SpaceWire nodes 

are the sources and destinations of data, which are all kinds of 

on-board devices or subsystems that are connected to the 

SpaceWire router network by SpaceWire interfaces. The 

SpaceWire router network provides a communication bridge 

for on-board devices or subsystems. The management unit 

controls the operation of the whole network, configures the 

network parameters and monitors the operation status of the 

network. 
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Fig. 1.  The schematic diagram of the space-borne unified 

data network 

A detailed network structure is illustrated in Fig.2. The 

SpaceWire router network comprises three SpaceWire routers 

which are interconnected by SpaceWire links. In order to 

increase the fault tolerance of the network, each router is dual 

redundant, i.e. prime and redundant. A number of SpaceWire 

nodes including the data management computer, processor, 

attitude and orbit control computer (AOCC) and the power 

supply controllers are connected to the SpaceWire router 

network by SpaceWire interfaces and SpaceWire links. The 

data management computer acts as the network management 

unit, which controls the operation of the platform management 

subnet, configures the network parameters and monitors the 

operation status of the network. The SpaceWire nodes are dual 

redundant as well as the routers so as to improve the reliability. 

The network can be extended according to practical application 

requirements. 

 

Fig. 2.  The diagrammatic sketch of the space-borne unified 

data network 

The spaceborne unified data network shown in Fig.2 is 

divided into payload data subnet and platform data subnet. The 

processor is the functional core of the payload data subnet, 

which is responsible for collecting all the payload data and 

transferring to ground through downlink after data processing. 

The data management computer is the functional core of the 

platform data subnet, which controls the transmission of status 

data, housekeeping data, time synchronization data and so on, 

and distributes the control information to the node-devices.  

B. The design of  network communication protocols 

The on-board data transmitted in the space-borne unified 

data network are classified as payload data and platform 

management data. The former has a low throughput, very strict 

time constraints, and requires high reliability, while the latter 

has a high throughput and requires the availability of a 

sustained, high bandwidth to be operational. Two different 

high-level protocol stacks are selected for the two types of data 

so as to satisfy their different characteristic. 

1) Payload data subnet protocol design 

The payload data have a high throughput, high speed and 

high requirement of bandwidth. SpaceWire is a high-speed on-

board network with data transmission speed ranging from 2 

Mbps to 400 Mbps and the network bandwidth can be 

improved with the increase of the numbers of SpaceWire links 

and routers. The payload data subnet protocol stack is shown in 

Fig.3. 

User Application

SpaceWire

RVTP

 

Fig. 3.  Payload data subnet protocol stack 

Combined SpaceWire PID and AOS data link layer, the 

RVTP (Remote Virtual-channel Transfer Protocol) 

encapsulates a CCSDS AOS Virtual Channel Frame into a 

SpaceWire packet[3] [4]. 

There are three main innovations of RVTP shown as 

follows: 

 The RVTP is based on Virtual Channel which is firstly 

proposed. 

 The RVTP packets are with fixed length which  makes 

the data transfer delay predicable in a SpaceWire 

network. 

 The RVTP provides FDIR function at the target node to 

facilitate fault location and recovery autonomously. 

The complete format of the RVTP packet is shown in Fig.4. 

 

Target Logical Adress

……

Protocol Identifier Channel ID (MS)

VC Frame Count (MS) VC Frame Count (LS) Signaling Field

B_PDU Bitstream Data 

(First byte)
B_PDU Bitstream Data B_PDU Bitstream Data 

B_PDU Bitstream Data …… …… B_PDU Bitstream Data 

EOP

VC Frame Count

Target SpW Adress

Channel ID (LS)

B_PDU Header (MS) B_PDU Header (LS)Frame Insert Zone (MS) Frame Insert Zone (LS)

B_PDU Bitstream Data

Target SpW Adress

First byte transmitted

B_PDU Bitstream Data
B_PDU Bitstream Data

(Last byte)

Last byte transmitted  

Fig. 4.  RVTP packet format 

a) Target SpaceWire Address field: The Target 

SpaceWire Address field shall comprise zero or more data 

96



characters forming the SpaceWire address which is used to 

route the RVTP packet to the target. 

b) Target Logical Address field: The Target Logical 

Address field shall be an 8-bit field that contains a logical 

address of the target. 

c) Protocol Identifier field: The Protocol Identifier field 

shall be an 8-bit field that contains the Protocol Identifier 

complied with the provisions of the related ECSS standards 

[4]. 

d) Channel ID field: The Channel ID shall be a 16-bit 

field that contains Frame Version Number, Spacecraft 

ID(SCID), Virtual Channel ID(VCID). 

e) VC Transfer Frame Count field: The Virtual Channel 

Transfer Frame Count shall be a 24-bit field which contains a 

sequential binary count (modulo-16,777,216) of each Transfer 

Frame transmitted within a specific Virtual Channel. 

f) Signaling field: The Signaling shall be an 8-bit field 

that contains Replay Flag, Virtual Channel Frame Count 

Cycle Use Flag, Reserved Spares, Virtual Channel Frame 

Count Cycle. 

g) Frame Insert Zone field: The Frame Insert Zone shall 

be a 16-bit field that can be used to insert some special 

information according to user application, such as time, secret 

key. 

h) B_PDU Header Field: The B_PDU Header shall be a 

16-bit field that contains Reserved Spare and Bitsream Data 

Pointer. 

i) B_PDU Bitstream Data Field: The B_PDU Bitstream 

Data Field shall be a fixed-length that follows, without gap, 

the B_PDU Header. 

j) EOP character: The end of the RVTP packet shall be 

indicated by an EOP character. 

2) Platform data subnet protocol design 

Platform data subnet protocol stack is shown in Fig.5. Since 

platform data require high reliability and have very strict time 

constraints, some necessary classes of QoS are provided in the 

protocol stack.  

 

User Application

Source Data Packet 

format

Retransmission Scheme

RMAP

Time-triggered 

transmission

SpaceWire
 

Fig. 5.  Platform data subnet protocol stack 

a) Retransmission Scheme 

Although SpaceWire defines error detection, reporting and 

recovery techniques, it defines no means of recovering any data 

that are lost or that arrived at its destination in error. Since 

payload data have a high reliability requirements, 

retransmission scheme is necessary which provides recovery 

mechanisms when error occurs. If the data packet is missing, it 

should be retransmitted either through the same path or through 

a redundant path.  

b) RMAP 

To implement the retransmission scheme, there shall be a 

mechanism to let the source node know whether or not the 

destination node has received the data sent by the source node. 

RMAP is selected in the protocol stack, which has the 

capability for reception acknowledgement. 

c) Time-triggered transmission scheme 

Constructed by interconnection routers, SpaceWire network 

has asynchronous, multi-source characteristics. When data is 

transmitted in SpaceWire network, transmission delay may be 

uncertain due to the network obstruction. In order to make the 

data between network nodes interact with a reasonable and 

orderly manner, and to ensure the certainty of transmission 

delay, the spaceborne unified data&information network 

requires an unified transmission timing scheduling for various 

types of data. This time scheduling can be achieved by time 

triggered transport mechanism whose basic work principle is: 

the communication cycle of the network is divided into series 

of time slices, and each node transmits its data within a 

specified time slice to avoid or minimize data transmission 

conflicts. 

d) The flow of the platform data subnet 

 the platform data generated in the source node are firstly 

encapsulated in the Source Packet format as defined by the user 

and then are encapsulated into the RMAP packet. Before 

transferring, the source node shall keep a copy of the RMAP 

packet. When the RMAP packet arrives at the destination node 

an acknowledgement is sent back to the source node. When the 

source node receives the acknowledgement which shows that 

the data have been transmitted correctly, it can free the buffer 

containing the copy. If the acknowledgement shows that some 

error has occurred in the received data, or no acknowledgement 

is received within a time-out period due to either the RMAP 

packet or the acknowledgement being lost, the RMAP packet 

can be retransmitted to recover from the error. Platform data 

flows from different source nodes are scheduled according to 

the time-triggered transmission scheme. 

IV. CONCLUSION 

This paper has analyzed the characteristics of on-board data 

and classified them as payload data and platform management 

data. They are delivered in different subnets by two different 

high-level protocol stacks so that both of their requirements 

can be satisfied. 
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Abstract—The recently developed SpaceWire Plug-and-Play 

protocol offers a number of possibilities in network management, 

including standard methods of discovery and verification. This 

paper presents a network management prototype tool which uses 

the Plug-and-Play mechanisms to produce a topology and 

configuration database with an XML representation of a 

SpaceWire network, using an XML profile that is currently 

under definition by ESA. That repository can then be used to 

produce a graphical visualization of the network. The 

mechanisms which make network discovery possible can also be 

used to perform active network management, where the network 

engineer modifies the network topology and node configuration 

beginning with the graphical network view. The tool is currently 

being developed in the SPACEMAN project. The architecture 

and implementation details are presented, as well as validation 

and demonstration setup. 

Index Terms—SpaceWire, network management, Plug-and-

Play. 

I. INTRODUCTION 

The increasing complexity and functionality of 

SpaceWire [1] networks results in the growing burden of 

managing them. On the other hand, there is demand for 

shortening development times, with a vision of missions being 

launched in days or weeks. This calls for a common 

framework, in the sense of protocols and tools, which could 

streamline integrating equipment from diverse vendors. 

The Plug-and-Play protocol, which has been developed for 

several years, offers facilities useful for network management, 

including standard methods of network discovery and 

verification. Recently it has entered the draft standard 

phase [2]. The standardization efforts are paralleled by 

breadboarding, testing, and validating the protocol [3], 

activities indispensable for final adoption of the standard, 

which in turn is necessary for market to offer Plug-and-Play 

compliant systems. 

The SPACEMAN project, launched this year with funding 

from ESA and involvement of ITTI and TELETEL, aims at 

developing a prototype network management tool based on the 

Plug-and-Play mechanisms, the observations and conclusions 

from practical implementation of the protocol being as 

important as the functionality of the prototype. 

This paper presents the SPACEMAN network management 

tool as seen at an early stage of the project. The objectives and 

basic requirements are outlined, followed by a view of the 

architecture of the tool and preliminary implementation 

information. Finally, a setup planned for validation of the tool 

is discussed. 

II. OBJECTIVES 

With the general objective of enhancing and facilitating the 

process of administration of SpaceWire networks, the basic 

capabilities required of the tool are automatic discovery of 

network topology including identification of nodes, routers, 

and links through implementation of the network discovery 

protocol based on the Plug-and-Play protocol specification, as 

well as representation of the topology and configuration data as 

XML SpaceWire network profiles. Essential user interface 

facilities include visualization of the network topology in real 

time with Plug-and-Play devices connecting/disconnecting 

to/from the network dynamically, and graphical SpaceWire 

network modelling. 

In particular, a number of specific functional and non-

functional requirements have been identified. The functional 

requirements can generally be grouped according to the main 

tasks the tool is going to support: 

 Device and network discovery. The tool, when 

connected to a SpaceWire network, has to find 
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information (configuration parameter values) on all the 

SpaceWire devices it can reach, as well as on the 

topology of their interconnections, whether or not there 

are any loops in the topology of the network. Since the 

Plug-and-Play protocol is of primary interest in the 

project, the range of information sought is determined 

by what can be delivered by the network management 

service as specified in section 5.3 of the draft protocol 

specification [2]. 

 Device configuration. It will be possible for the tool to 

set all configuration parameters specified in the draft 

specification as writeable. This does not mean that 

there cannot occur an adverse effect of such a write, 

e.g. if wrong routing table content is been written. It 

should be noted that the process of device discovery 

involves assignment of the device ID parameter to the 

device discovered, so these two categories are strongly 

related. 

 Monitoring. As much as possible, the state of the 

network – the devices and the links – should be 

monitored and any changes reported. As there is no 

mechanism in Plug-and-Play that would automate that, 

this will require employing some form of polling. 

However, devices directly connected to the 

SPACEMAN tool can also be monitored by capturing 

their traffic entering the tool. 

 Device commanding. The tool has to provide a 

possibility to send specific command packets on user 

request to any device it can reach. 

Regarding the nonfunctional requirements, it could be 

noted that the tool is expected to be capable of repeating the 

discovery process and acquiring the values of the fields 

specified in the draft specification at least once per second. 

III. ARCHITECTURE 

The current state of the network is the key object of interest 

in management activity, thus the central entity of the tool is the 

model of the network.  The network is mapped on a graph, 

with elements of the following types: 

 Router. This represents a device called router or 

routing switch or switch (the terminology expected to 

be subject to changes due to standardization 

efforts [4]). It is a vertex of the graph, with a limited 

number of edges (generally up to 31, following the 

SpaceWire standard [1]). A router can forward packets. 

 Node. This corresponds to a device that cannot forward 

packets, even if it has more than one edge. It is the 

node rather than the end-point (a component of node, 

cf. [4]) that has been adopted as the real world 

corresponding device, since it can have a higher layer 

of protocols, including the Plug-and-Play network 

management service, and also it collects all its end-

points under a single vertex. Note, however, that this is 

not the only possibility (cf. [4]), and that the resulting 

vertex of the graph is forbidden from participating in 

any path (unless it is the source or destination). 

 Link. This represents a cable connection between two 

devices (whether routers or nodes). This is an edge in 

the graph. Putting aside the area of simplex SpaceWire, 

a connection requires signals travelling in both 

directions, so undirected graph has been adopted. This 

does not preclude assigning non-symmetrical attribute 

values at the level of vertices on both sides of the edge. 

A directed graph could alternatively be adopted, with 

each link represented as two edges in the graph. 

The graph (whether directed or undirected) needs to permit 

multiple edges between vertices (e.g. if there are multiple 

connections between routers) as well as cycles. 

Discovering the network involves searching the graph. 

Although this is a well-established area, observing how the 

discovery proceeds is of particular interest, especially if more 

than one network management tool is allowed to perform 

discovery on the same network at the same time. Therefore the 

view of the network model (including a slowed down 

animation of its being created) is the second major architectural 

entity. 

The third one is an XML importer and exporter. Since the 

work on standardizing an XML network profile is ongoing, the 

tool will adopt a profile temporarily, which will be changed if 

necessary. The importer will include a validator against an 

XSD schema. 

Finally, the most important condition for the tool to do any 

practical work is communication with the SpaceWire network. 

This requires a physical connection – SpaceWire interfaces – 

as well as a logical communication on the appropriate level, i.e. 

the level of the Plug-and-Play protocol. The two components 

are being provided by TELETEL in the form of the iSAFT 

Protocol Validation System [5,6] and Plug-and-Play API 

(Application Programming Interface), which provide the 

SPACEMAN software with physical access to the network and 

with Plug-and-Play protocol interface to it, respectively. The 

iSAFT platform is equipped with four SpaceWire ports, 

making it possible to access the network at four different ports 

or to try management by more than one instance of the tool. 

The iSAFT SpaceWire ports can also be used to monitor 

selected points in the network continuously, with packets 

captured and shown in real time or off-line. 

IV. IMPLEMENTATION 

The functional blocks to implement the main functions of 

the tool are shown in Fig. 1. The core software of SPACEMAN 

is being developed primarily in C++ with the intent to be 

portable in the sense of possible to recompile and run both on 

Windows and Linux platforms, and also in the sense of running 

either on the iSAFT platform itself, or on a separate computer, 

connecting to the iSAFT over the (Ethernet) network. The PnP 

API will run on the iSAFT platform in any case. 

The iSAFT will be connected to the SpaceWire network via 

a 10X SpaceWire router [7]. 

The development work is in progress. Figure 2 shows 

output from the graphical renderer block – views of several 

models produced by the network model generator block. The 

model generator is dedicated to produce graph-based network 
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Fig. 2. Example network models generated by SPACEMAN. 

models based on either interactive design by the user or – as 

in this case – on parameterized predefined generic models. 

Squares denote routers, circles – nodes, and it can be seen 

from the last model that a node can have more than one link. 

V. VALIDATION 

Proper validation of the tool and the implementation of 

the Plug-and-Play protocol require connecting to a Plug-and-

Play compliant network. However, at the time of writing 

there are no compliant routers or nodes available in the 

project. As a remedy, additional software elements are being 

developed. 

Though the 10X router is not Plug-and-Play compliant, it 

does provide a range of configuration information sufficient 

to facilitate device identification and network discovery. It 

also does permit setting configuration, including e.g. the 

routing table. This functionality can be accessed via the 

RMAP protocol [8]. An implementation of the RMAP API 

for the iSAFT does exist, and the SPACEMAN tool will 

implement access to the router via a driver, as a device-

specific layer mentioned in the Plug-and-Play draft 

specification. 

In the absence of Plug-and-Play nodes, a node emulator 

will be developed, which will respond to Plug-and-Play 

messages as specified by the protocol. The emulator will 

connect via the iSAFT PnP API to one of the SpaceWire 

hardware ports of the iSAFT. With four physical ports, up to 

three instances of the emulator can be run simultaneously, 

emulating a network of three nodes and one eight-port 

router, the router being physical. 

VI. CONCLUSION 

The SPACEMAN network management tool is a 

prototype implementation aiming at showing the possibilities 

of the Plug-and-Play protocol in SpaceWire network 

management. This paper described the objectives, 

requirements, and architecture of the tool from an early stage 

perspective. Full demonstration of the tool is expected in the 

first half of 2015. 
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Abstract — The available standards of protocols for embedded 

networks, e.g., SpaceWire have been designed with the 

consideration of wired link connections. But in practice there are 

many use cases and applications that would be better to address 

by a wireless connection. For example, it might be useful to 

install temperature or some other sensor at the edge of satellite’s 

solar panel, so that the core nodes of the embedded network can 

regularly receive information from them. But providing access to 

such sensors by means of traditional wired links is a complex 

technological task. Moreover use of wired link in this scenario 

would be very expensive and not reliable. 

In this paper we make an overview of use cases that drive 

demand for wireless extension of the embedded networks. The 

paper summarizes studies on general requirements and key 

challenges related to deployment of the wireless extension to the 

embedded networks. The main focus of the study is on collecting 

and analyzing requirements and restrictions that affecting design 

of the datalink and network layers of the embedded networks’ 

protocols. As a reference technology for this study we selected 

SpaceWire standard. The paper defines a scope of the 

corresponding problem domain and proposes ways to address the 

identified problems. The paper is a product of a technology 

exploration project, which is target to result in a list of 

recommendation for the wireless extension of the SpaceWire 

protocol and propose a set of questions plus the general scope 

definition of the initial tasks for a working subgroup on designing 

wireless protocol extension of SpaceWire.  

Index Terms — Wireless, SpaceWire, Embedded Networks, 

Networking, Spacecraft Electronics. 

I. INTRODUCTION 

Development of the wireless telecommunication in the 

beginning of the 20th century transformed the corresponding 

technologies into the preferable mean of communications that 

replaced traditional wired channels in many areas. Wireless 

links enable mobility and usually have lower maintenance cost, 

plus the damaged risks, due to nature forces and human factor 

are much smaller. Of course wireless connection can be also 

damaged by natural or artificial noise and interference, but 

wireless networks are more dynamic, so they could be more 

easily reconfigured and repaired and especially important that 

such management could be done also distantly by use of 

management wireless connection. 

The new boost of the wireless technologies started with 

exploration of space and launch of first satellites. The only 

possible way of communication between earth and satellites is 

by means of wireless technologies. There are a lot of wireless 

technologies that can be used and combined for wireless 

channels in spacecrafts. For example NASA project “Optical 

Communications and Sensor Demonstration (OCSD)” is 

focusing on the spacecraft-to-earth/earth-to-spacecraft 

communications and represents a usage of asymmetric 

communications: optical beam for transmission of large 

amounts of data to the Earth and radio-frequency system to 

receive some commands from the Earth [1]. 

But even though wireless communications are most natural 

for external communications of the satellites, we still do not 

see ready solutions of wireless standard for onboard systems. 

In our project we are targeting for a solution for small-satellite 

missions when it is crucial to collect and send all relevant 

information, while using minimum of internal resources, 

especially energy.  

Recently we have seen rise of interest to idea of using 

wireless links for onboard networks on the spacecrafts. There 

are many forces that fuel this trend, e.g., as spacecraft onboard 

systems are large and very complex. Often need of installing 

new cable connections makes it very difficult to change end-

system location and impose restrictions on the weight. This 

means that limited amount of space onboard and great number 

of cables made it impossible to reconfigure some constructions 

and put to alternative place some of it elements [2]. Benefits of 

using wireless networks in space help to overcome these 

imperfections but there is also number of challenges that they 

are going to face with. So in this paper we summarize research 

papers on modern trends in design of the spacecraft onboard 

networks.  

The selected research area is rather new and there are only 

a few teams doing research, development and prototyping of 

wireless communication systems for spacecrafts. For example, 

already in 2009 Delft University of Technology (Netherlands) 

has tested fully autonomous sun sensor consisted of a sun 

sensor, solar battery and wireless data link [3]. 

There are also studies in the field of inter-satellite 

communications. Missions of small spacecrafts face with 
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challenges like power scarcity, attitude stability, limitations of 

total mass and volume. Question that researcher are trying to 

solve is selection of such communication technology that is 

ready to face with all limitations of the hardware and can 

function in the space environment and meet the requirements 

of both inter satellite and space-to-ground data links. As it is 

finalized in [4] the need is in the reduction of the 

communication costs through adopting common infrastructure 

for these purposes. 

The rest of paper is organized as follows. In second section 

we summarize the target benefits foreseen from use of 

developing wireless technologies for onboard systems of the 

unmanned spacecrafts. The third section summarizes 

environmental characteristics that define the requirements that 

shall be met by the sensor nodes in order to have them part of 

wireless sensor network. The fourth section gives and overview 

and introduction to Integrated Modular Avionics standard. The 

fifth section describes currently used example of wireless 

sensor network for health monitoring of astronauts. After that 

we summarize suggestions of the consultative committee for 

space data systems (CCSDS). In the end of paper we provide 

the main conclusions and the list of used literature. 

II. BENEFITS FOR ONBOARD SYSTEM OF THE SPACECRAFTS 

THAT WILL BE BROUGHT BY USE OF WIRELESS TECHNOLOGIES  

As was mentioned before, availability of wireless links will 

bring a lot of benefits to the onboard informational systems of 

the spacecraft. For example, decreasing amount of wires and 

reducing launch mass of the spacecraft that will lead to the 

following benefits: 

 Decreasing cost of the spacecrafts design as according 

to current data the mass-to-cost ratio is more than 

€100,000 per kilo including launch cost. At the same 

time mass of cables is accounted for 20 to 35% of the 

total spacecraft mass [5]. 

 High design flexibility of wireless connections over 

wired and the cost of design of end-to-end wireless 

paths is double or triple cheaper than similar design 

costs for wired path [6]. 

 Links sustainability, which is ensured by redundancy 

of wired connections requires to in average double 

number and triple distance of cables, while for wireless 

network the required redundancy is for transmitters 

and receivers, which results in much smaller increase 

of weight. 

Also adaptability in the sense that most of the resources that 

can be reused on different stages of the mission shall be 

designed to allow repurpose them. One more case is that 

wireless technologies make possible to use the multipath 

redundant spacecraft system because of almost free cross-

strapping. As a result development of wireless network 

segments for onboard information system opens new horizons 

for development of new types of applications for spacecrafts 

and satellites. 

III. ENVIRONMENTAL CHARACTERISTICS THAT DEFINE 

REQUIREMENTS FOR THE WIRELESS SENSOR NODES 

Tatiana Vladimirova and et al. describe environmental 

problems with which motes will face while working in the 

open space or onboard the spacecraft [7]. A number of 

environmental risks determine the operability and survivability 

of fragile wireless nodes:  

 Mechanical (shock, vibration, acceleration): Brittle 

electronic elements are not suitable for applications 

where extreme shock, vibration, and/or acceleration 

exist. 

 Atmospheric (corrosion, debris, vacuum): Corrosion is 

a big challenge for low-Earth orbit (LEO), 

industrial/chemical and biomedical applications. 

 Thermal (extremes, limited heat transfer): Thermal 

extremes and cycling are sharpen in a vacuum, as 

thermal radiation is the only possible method for heat 

transfer between space and a mote. 

 Energetic (radiation, including charged particles): 

Intensive radiation conditions are experienced in space. 

High-energy charged particles are the reason of single-

event effects (SEEs). A total dose hardness of 5-10 

Krad (SiO2) is preferable for organization of a multi-

year mission in LEO. Single-event hardness is also 

preferable, though to define hardness levels through 

testing is very expensive and is usually expected and 

mitigated through software and hardware design 

redundancy. 

 Dynamic (free-fall orbit, high velocity mobility, 

attitude disturbance torques): Orbital velocity in LEO 

is approximately 7.5 km/s. Natural, but undesirable 

perturbations change the orbit over time. This factor 

must be completely realized, and key parameters for 

example communication range can be selected 

properly. The freefall environment also presents 

unique challenges. The dominant effect is when 

objects in orbit “float” and change orientation or 

“attitude” influenced by perturbations from solar 

pressure, gravity gradients, magnetic fields, and 

aerodynamic drag. This is not a problem if the sensor 

technology does not have pointing requirements. 

However, if attitude control is required, solutions are 

quite difficult at this scale. 

IV. INTEGRATED MODULAR AVIONICS STANDARD 

Wireless communications enhancement for data exchange 

between modules of onboard system of spacecraft is quite 

prominent, especially as extension proposals for Ancillary 

Sensor Network (ASN) and Integrated Modular Avionics 

(IMA). IMA is real-time computer network airborne systems. 

These networks consist of a number of computing modules 

capable of supporting numerous applications of differing 

criticality levels. IMA concept relies on functional isolation 

between operating system partitions to limit propagation of 

failures within avionics software. Plus it is needed to simplify 

software validation and verification (V&V). IMA replaces 

point-to-point cabling with a “virtual backplane” data 
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communications network. The network connects software-

configurable computing modules that can adapt to changes in 

operating modes or respond to an avionics system fault. There 

is a potential path between any of these modules, with the 

software and network defining the active Virtual Links to 

support effective partitioning. In the event of failures, the 

system can quickly reconfigure its software functions (in pre-

determined ways), resulting in a very robust system.  

In continuation, Airbus Avionics Full-Duplex Ethernet 

(AFDX) [8] and ARINC 664 Aircraft Data Network Part 7 

were defined as time-deterministic network standards. Their 

main goal is to maturate technology for use in commercial 

products to increase acceptance and adoption by the aerospace 

industry. Aeronautical Radio Incorporated (ARINC) [9] is a 

standard Real Time Operating System (RTOS) interface for 

partitioning computer resources in the time and space domains. 

ARINC 653 standard also specifies Application Program 

Interfaces (APIs) for abstraction of the application layer from 

the underlying hardware and software service. It allows to the 

host to have several applications of different software levels on 

the same hardware in the context of Integrated Modular 

Avionics architecture. One of the services provided by ARNIC 

is Satellite Navigation and Air Traffic Control and Landing 

Systems (SATNAV and ATCALS). There is a formal mapping 

of ARINC 429 to AFDX and a similar mapping can be done 

for MIL-STD 1553B and similar protocols [10]. This makes it 

easier to port legacy software code to AFDX environments and 

help to benefit flight-certification efforts. Any AFDX end-

station port interface can source several virtual links (VLs) and 

can at the same time receive other VLs, if it is required by the 

application. A lot of physical cables needed for ARINC 429 are 

replaced by a single network cable plant containing the same 

circuits and implemented in time-division multiplexed VLs. 

This helps to save weight, volume, and wiring complexity. In 

real-time control systems freshness of information much more 

important than integrity that is why errors are rejected rather 

than corrected. 

V. EXAMPLES OF USE CASES: WIRELESS SENSOR NETWORK 

FOR HEALTH MONITORING ON PILOTED SPACECRAFTS 

The Intelligent Systems Division at NASA Ames Research 

Center has been developing WSN technology for useing 

aboard spacecraft for Integrated System Health (ISHM) 

monitoring of structures funded by the NASA Engineering and 

Safety Center and Exploration Technology Development and 

Demonstration Program. Mesh-enabled WSNs provide 

appropriate failure tolerance and SPA provides dynamic fault 

management responsible for low-power, low-cost ancillary 

sensing solutions for spacecraft. Proposed in [11] architecture 

and technical opportunity of creating wireless failure-tolerant 

sensor networks is based on integration of Zigbee and SPA 

technology together into SPA-Z architecture. Zigbee provides 

effective management of WSNs using its own proprietary 

internal methods. 

Monitoring health parameters and support of life systems is 

discussed in [12, 7] as one example of usage of small devices 

with resource limitations and wirelessly connected. Authors of 

[7] called them mote which is an abbreviation for ‘remote’ 

node and refers to the individual units of sensing in a wireless 

sensor network. Three types of commercial sensors were 

tested: TelosB motes from Crossbow [13], BTNode from Art 

of Technology [14] and High Powered Modules (HPM) from 

Jennic [15]. Each maintenance or out of work device or data 

channel can lead to the unchangeable consequences and ending 

of the mission. But as space industry is very expansive it is 

quite crucial to avoid such situations. That is why in the next 

paper we will focus particularly on restrictions that are 

important to take into account while adopting wireless 

technologies to the spacecraft environment: power level of 

transmission, jamming of wireless signal, and physical 

location. These factors are even more important assuming 

system work in the exploding environment, RF exposure levels 

in excess of governmental limits, and electromagnetic 

compatibility [16].  

Also authors of [7] are concerned with the application of 

standard wireless protocols for communication inside the 

satellite (intra-satellite communication and data gathering) and 

communication between satellites (inter-satellite 

communication). Despite the fact that standard wireless 

commercial off-the-shelf (COTS) protocols are widely used 

terrestrially they are not so popular in the space application 

domain. Also authors of [7] stated that there is the possibility 

of using ZigBee-Pro systems for maximum 1.6 Km range at 

250 Kbps for sensor networking in inter-satellite applications 

could also be considered. There are several sources of radiation 

onboard the spacecraft: natural sources and radiation from 

electronic devices of the spacecraft. Internal frequencies and 

bandwidths of on-board equipment vary from a few hundred 

Hz to several GHz. Electromagnetic interference can lead to 

failures of the electronic devices on board spacecraft or even 

permanent damage that have to be maintained. If sensor nodes 

don’t have shielding it makes them very sensitive to EMI. 

Two communication standards—ARINC 429 and MIL-

STD 1553B—have dominated in commercial and military 

aviation [9]. The MIL-STD 1553B is used mostly in military 

aircraft for flight-critical control and control of various mission 

systems. Both are half-duplex communication standards. 

ARINC 429 connects LRUs via a point-to-point cabling 

scheme; MIL-STD 1553B connects multiple devices via a 

common bus. These standards are currently used in production 

aircraft and spacecraft. There are some deficiencies in 

performance of these standards which has led to development 

and adoption of extended and modified versions suitable for 

modern aircrafts [9]. 

VI. SUGGESTIONS OF THE CONSULTATIVE COMMITTEE FOR 

SPACE DATA SYSTEMS (CCSDS) 

The Consultative Committee for Space Data Systems 

(CCSDS) is an international platform for development of 

communication standards for spaceflights. Currently CCSDS 

unites scientists from 26 countries whose goal is to combine 

interoperability enhancement, development costs and risks 

reduction. CCSDS has several different types of regular 

publications which are categorized into several groups 
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according to the following colors: Blue - Recommended 

Standards; Magenta - Recommended Practices; Green - 

Informational Reports; Orange – Experimental; Yellow – 

Record; Silver - Historical. 

Recently the committee issued the Magenta book [16] with 

recommendations on design of the low-level protocols for 

wireless networks in the monitoring and control systems 

onboard of the spacecrafts. The main goal is to make possible 

for various sensors (produced by different vendors and with 

different high level application on top of it) to enter the star 

topology network and connect to the gateway. This book 

describes two approaches: single-hop contention-based access 

and single-hop scheduled access. Both approaches can be 

applied to the star-topology network. However, peer-to-peer 

exchange of data scenario in mesh networks is not in the scope 

of this article. One more consideration is that in the book it is 

assumed that the gateway of the PAN is able to communicate 

with the backbone network. The book doesn’t describe this 

functionality as it is usually implemented on the network layer 

of the OSI which is out of the scope of the document. For the 

same reason acknowledgement and retransmission 

functionality are not mentioned in the book. Authors describe 

CSMA-CA and TDMA as two possible medium access 

schemes both have prons and cons but accent is made on 

TDMA usage as interference avoidance schemes such as 

frequency hopping are much more easily implemented in a 

TDMA. Maintaining connectivity in a mesh network topology 

is also easily implemented in TDMA (as it supports multi-hop 

relay traffic with battery powered nodes on a low duty cycle 

(long sleep period, short active period). Standards which it is 

recommended to follow are IEEE 802.15.4-2011 for single-hop 

contention-based communications and ISA100.11a-2011 for 

single-hop scheduled medium access communications. 

Recommendations that are listed in the book include 

restrictions on wireless technology which include risks 

associated with the selected radio frequency band, transmission 

power level, and physical location. There are some factors that 

should be taken into account: 

1) Operation in explosive environments;  

2) RF exposure levels in excess of governmental limits;  

3) Electromagnetic Compatibility (EMC). 

CONCLUSION 

The main goal of current pre-phase of our project was to 

study and prepare an overview of research and development 

activities on wireless sensor networks for spacecrafts. As a 

result we identified the key players in the field and mayor 

projects and standards that have been developed and are under 

development. In particular we collected and analyzed 

requirements and restrictions that affect design of the datalink 

and network layers of the embedded networks’ protocols for 

the SpaceWire protocol stack. Also we prepared own list of 

recommendations for further development and identified 

partners for cooperation on further project development. The 

work will be continued and progress reported in the next paper. 
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Abstract— GR718 is a radiation tolerant 18 port standalone 

SpaceWire router component that has been developed by 

Aeroflex Gaisler together with IMEC (BE), in an activity 

initiated by the European Space Agency under ESTEC 

contract 4000105402/12/NL/Cbi.No. Out of the 18 SpaceWire 

ports, 16 use on-chip LVDS transceivers, and two use LVTTL 

signaling. Included also is the mandatory configuration port, 

as well as an internal port for system level testing. All ports are 

capable of operating in 200 Mbit/s. UART and JTAG 

interfaces, that gives access to the on-chip AMBA AHB bus, 

are provided for configuration and debugging. SPI and GPIO 

interfaces are accessible through the configuration port, which 

allows SPI devices to be accessed and general purpose 

signaling to be performed through RMAP commands. In 

addition to the mandatory features in the current ECSS 

SpaceWire standard, GR718 supports group adaptive routing 

for path addresses, and packet distribution. It also includes 

support for the incoming SpaceWire standard revision 1 

(ECSS-E-ST-50-12C Rev.1), the SpaceWire-D protocol, and 

the SpaceWire Plug-and-Play protocol currently being 

developed for ECSS. The technology used is UMC 180 nm, 

using the DARE library from IMEC, and the package is a 256 

pin CQFP. A development board for evaluation and software 

development has been manufactured as well.  

Index Terms—SpaceWire, Networking, Spacecraft 

Electronics 

I. INTRODUCTION 

Both ESA and several companies in the space industry 

have indicated 16 as the most viable number of SpaceWire 

ports for routers in the near future. Aeroflex Gaisler's 

intentions with the GR718 development was to provide this 

key component with a new 18 port SpaceWire router ASIC. 

The design is based on the GRSPWROUTER 

configurable SpaceWire router IP core. The IP core supports 

from 2 to 31 ports of three different types: SpaceWire, 

AMBA and FIFO. The SpaceWire ports 

 implements an encoder-decoder compliant to ECSS-E-ST-

50-12C [1] and provides an external SpaceWire interface. 

FIFO ports provide 9-bit parallel interfaces with control 

signals in each direction (read/write), which can be used to 

interface external units or to cascade two or more routers 

without any glue logic. The AMBA ports interface to an 

AMBA AHB bus using DMA on the bus. All three port 

types connect to the switch matrix of the IP core using 

identical FIFO based interfaces. There is no way to 

distinguish the three ports on the SpaceWire packet level and 

upwards. The configurability provided by the IP core makes 

it usable in many different applications. It has already been 

used in several standard rad-hard components on Actel 

RTAX2000SL and RTProASIC3 FPGAs, and is also used in 

the Next Generation Micro Processor (NGMP) system-on-

chip activity funded by the European Space Agency. 

During the development phase, two configurations of the 

IP core were identified as potential candidates for the final 

ASIC: one with 16 SpaceWire ports with on-chip LVDS 

transceivers, and two additional ports, either SpaceWire 

LVTTL ports or FIFO ports; and the other with 16 

SpaceWire ports and two internal AMBA ports connected to 

a PCI interface. Both configurations were evaluated in detail 

to determine which one would eventually be used for 

manufacturing. 
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The final choice fell on the configuration with 16 LVDS 

SpaceWire ports and two LVTTL SpaceWire ports, where 

the only difference between the two different SpaceWire port 

types is the I/O type of the pads. 

Fig. 1.  GRSPWROUTER IP core overview 

The choice to include two additional SpaceWire ports 

instead of two FIFO ports was motivated by the pin count of 

the selected package, as well as the fact that more and more 

processor devices have built-in SpaceWire ports (with 

LVTTL signaling), and therefore parallel FIFO ports would 

not be readily used without the need for an FPGA device 

between the router and the processor. It is also not that 

difficult to include SpaceWire links in FPGAs, considering 

the large variety of SpaceWire IP cores available.  

One of the applications of the GRSPWROUTER IP 

core's FIFO ports is to cascade one or more routers without 

any glue logic. However, the SpaceWire ports will work 

equally good for this purpose. In most cases cascading would 

be done on a printed circuit board, and it is well understood 

how to route SpaceWire signals on such a board. The FIFO 

interfaces are  most useful when connecting directly to 

external processors and memories. To use a SpaceWire link 

instead will require the insertion of glue-logic providing a 

complete SpaceWire codec, which would typically be done 

using a FPGA, which increases design complexity 

considerably. It is however anticipated that the need to 

interface to external processors using parallel interfaces will 

decrease in the future since most processors will be equipped 

with SpaceWire interfaces. 

Other considerations that were taken into account during 

the design phase were such as whether or not to include 

support for the incoming revision 1 of the SpaceWire 

standard (ECSS-E-ST-50-12C Rev. 1), and the new 

SpaceWire-D and SpaceWire Plug-and-Play protocols. The 

problem has been the lack of a firm schedule for finalization 

of these standards. In fact, none of the standards were 

completed at the time of tape-out. However, Aeroflex 

Gaisler is actively involved in the work of finalizing the 

revision 1 of the SpaceWire standard, and has also been 

reviewing and discussing the two other protocols with the 

developers. In this way the risk of implementing something 

that will later change in the protocols have been mitigated. 

II. GR718 FUNCTIONAL OVERVIEW 

The full GR718 architecture includes the following 

modules: SpaceWire Router, SPI Controller, UART 

Interface, JTAG Interface, General Purpose I/O Interface, 

SpaceWire In-System Test (SIST), System Level Test 

Configuration, AMBA AHB controller and AMBA APB 

controller. 

The SpaceWire router implements a SpaceWire routing 

switch as defined in ECSS-E-ST-50-12C. Among the 

features supported by the router are: group adaptive routing, 

packet distribution, system time-distribution, distributed 

interrupts, port timers to recover from deadlock situations, 

and SpaceWire-D packet truncation based time-slot 

violations. 

A total of 20 ports is provided, where port 0 is the 

mandatory configuration port, ports 1-18 are SpaceWire 

ports, and port 19 is a custom port called the SIST port. Each 

SpaceWire port contains a SpaceWire codec, and provides 

an external SpaceWire interface. The SIST port provides a 

FIFO interface which is internally connected to a SpaceWire 

In-System Test module (described later). The configuration 

port provides a target for the Remote Memory Access 

Protocol (RMAP) defined by ECSS-E-ST-50-52C [2], and 

an AMBA AHB slave interface, both used for accessing 

internal configuration and status registers. The configuration 

port also provides a SpaceWire Plug-and-Play interface, 

allowing device identification. The ports allowed for 

configuration accesses can be restricted if needed, using 

several configuration options. 

For diagnostic and test purposes, UART and JTAG 

interfaces are provided. These low pin count interfaces are 

suitable in the small package but at the same time have 

sufficient bandwidth. Both the UART and JTAG interfaces 

act as masters on the internal AMBA AHB bus and gives 

access to the complete set of registers. 

The SPI and General purpose I/O interfaces are 

accessible through the router's configuration port, which 

allows SPI devices to be accessed, and general purpose 

signaling to be performed directly through RMAP 

commands, or through the UART and JTAG interfaces. 

An auxiliary time- / interrupt-code interface is present, 

for sending and receiving time- / interrupt-codes through 

external pins. Parts of the interface use dedicated pins, while 

the rest are multiplexed on the general purpose I/O pins. 
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III. PACKET ROUTING FEATURES 

The router's switch matrix can connect any input port to 

any output port. Access to each output port is arbitrated 

using a round-robin arbitration scheme based on the address 

of the incoming packet. A single routing-table is used for the 

whole router, where access to the table is arbitrated using a 

round-robin scheme based on the input port number. Both 

addresses and input port can be assigned either high or low 

priority. 

Fig. 2.  GR718 overview 

All the addressing modes, such as path, logical, and 

regional logical addressing are supported. Group adaptive 

routing is fully supported, meaning that both path and logical 

addresses can be individually configured to use one or more 

output ports. A unique feature is the support for packet 

distribution, which can be used to implement multicast and 

broadcast addressing. Also packet distribution can be 

enabled for any address. 

Each router port is equipped with a timer which can be 

individually enabled/disabled. The timer can be used to 

recover from potential deadlock situations resulting from 

either a stalling source node or stalling destination node. 

IV. SPACEWIRE STANDARD REVISION 1 SUPPORT 

An upcoming revision 1 of the SpaceWire standard is 

planned for the near future. The new revision will contain 

some changes that affected the GR718 development. Some 

of the new additions may result in some old devices not 

being forward compatible. The final details of the updates 

have not been decided yet and there is no date set for when 

this will be ready, so there was a considerable risk in 

implementing these new features before the standard was 

finalized. 

Three changes were identified as having a technical 

impact on the GR718 development. The first one is the 

addition of timers in routers. The GRSPWROUTER IP core 

already contained programmable packet timers for each port, 

which meant that no changes were required. However, an 

addition to the functionality was made in order to be able to 

distinguish between overrun and underrun timeouts. 

The second change is a modification of the link interface 

FSM. Two requirements have been identified that potentially 

can cause the SpaceWire codec to make unwanted 

transitions. These are unlikely corner cases and very few if 

any problems have been seen in practice. This modification 

will probably not affect backward compatibility with older 

SpaceWire codecs, so the risk of including this modification 

in GR718 was estimated to be very low. 

The final and most complicated change is the addition of 

distributed interrupts. The distributed interrupt scheme 

introduces two new control codes, called interrupt-code and 

interrupt-acknowledge-code, which uses one of the reserved 

control bit combinations of Time-Codes. It must therefore be 

made sure that they cannot interfere with the normal Time-

Code facilities. All existing devices might not be forward 

compatible with revision 1 compliant devices due to the 

interrupt- / interrupt-acknowledge-codes. 

The distributed interrupt scheme was identified as the 

part of revision 1 that caused the highest implementation risk 

if included in GR718. Therefore the router was made flexible 

enough to allow ports' handling of the new control codes to 

be configured individually. In this way the router can be used 

as a device that enables old and new equipment to be used in 

the same SpaceWire network. 

The distributed interrupt scheme is defined by [3], and 

GR718 supports all the requirements put on routers, as well 

as some optional features to minimize the effects of errors 

such as a babbling idiot. Due to the uncertainty regarding 

some details in the specification, GR718 was given a high 

degree of configurability how to handle the distribution of 

interrupt- / interrupt-acknowledge-codes. 

V. SPACEWIRE-D SUPPORT 

There is a new protocol emerging called SpaceWire-D, 

where D stands for deterministic [4]. This is anticipated to be 

widely used in the future to provide deterministic and low-

latency transfer of control and command information while 

still preserving the high bandwidth of SpaceWire. It basically 

consists of a time-slotting table replicated in each unit (node 

or router) in the SpaceWire network. Therefore a router 
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needs to have support for SpaceWire-D if it is used in a 

network utilizing that protocol. 

GR718 implements support for SpaceWire-D by 

monitoring packet transfers. In the case of a packet being 

transferred while a Time-Code is received, the packet is 

truncated and an EEP is inserted at the end of the packet. The 

truncation can be individually enabled/disabled per port, and 

there is a programmable Time-Code filter per port as well. 

The filter allows for each port to have different Time-Code 

values or ranges that truncates packets. The programmable 

filters also allows distributed interrupt-codes to truncate 

packets. 

GR718 implements status bits that inform software if a 

packet has been truncated due to a received Time-Code. 

There is also an option to automatically send an interrupt-

code when the truncation occur. 

VI. SPACEWIRE PLUG-AND-PLAY SUPPORT 

SpaceWire Plug-and-Play is an upcoming standard that 

allows SpaceWire routers and nodes in a network to be 

identified and configured, and is defined by [5]. The standard 

uses RMAP commands and replies for communication, but 

with a different protocol ID. 

GR718 includes basic support for SpaceWire Plug-and-

Play, which covers device identification and support for 

network discovery. Extended capabilities, such as routing 

table configuration, and port configuration through 

SpaceWire Plug-and-Play, was not included due to the fact 

that the standard was not considered mature enough at the 

time of implementation. The SpaceWire Plug-and-Play 

functionality can be disabled by means of a configuration 

pin. 

VII. SPACEWIRE IN-SYSTEM TEST 

A built-in self-test is provided for the verification of the 

SpaceWire router and codec functionality. The SpaceWire 

In-System Test (SIST) protocol provides a means for 

verifying larger part of the designs' functionality without the 

need to generate high speed test patterns and observe results 

at high frequencies. 

The internal SIST module is connected to the router via a 

dedicated FIFO port. The external side of the SIST module is 

connected to the AMBA APB bus, which is only accessible 

through the JTAG and UART (debug-) interfaces. Thus it is 

not possible to configure the SIST module via a SpaceWire 

link. 

The SIST module can generate and send SpaceWire 

packets via the internal FIFO port. It can also receive 

SpaceWire packets via the FIFO port and check there 

contents. The packets are generated deterministically and can 

therefore also be easily checked on reception. 

 

The packet format is similar to the commands defined for 

the RMAP protocol (ECSS-E-ST-50-52C): 

 SpW Address (0 to 31 bytes) 

 Logical Address (1 byte) 

 Protocol ID (1 byte) 

 Transaction Identifier (2 bytes) (i.e. seed) 

 Data Length (3 bytes) 

 Header CRC (1 byte as per ECSS-E-ST-50-52C, 

covering header from Logical Address, inclusive) 

 Data (0 to 16 MiB-1) (data is a pseudo-random 

generated bit string based on the seed) 

 Data CRC (1 byte as per ECSS-E-ST-50-52C, covering 

all Data bytes) 

 End-Of-Packet 

 

Packets of up to 2
24

 bytes can be generated and checked. 

Sequences of up to 2
16

 packets can be generated, or auto 

repeat can be enabled. The data is generated by means of a 

16-bit wide LFSR, with a programmable polynomial. The 

stated of the LFSR (a.k.a. seed) at the beginning of the data 

in the packet is transmitted as part of the packet header, 

allowing each packet to be checked independently. The seed 

can also be used to detect dropped packets. The length of the 

packet data field is sent in the packet header. The only 

managed parameter is the polynomial; everything else can be 

derived from the packet header. 

Packets are automatically generated in an initiator, the 

contents of a packet is deterministic. Packets are 

automatically checked in a target when received, providing 

statistics. The initiator and target are normally the same end-

point in a SpaceWire network, but may be different. 

The SIST module also allows direct data read and write 

to the internal FIFO port, as well as sending and receiving 

signaling codes (time-codes and distributed interrupts). 

The packet follows the format defined by SpaceWire 

protocol identification – ECSS‐E‐ST‐50‐51C [6] 

format. The address bytes can be used for path addressing or 

regional logical addressing in a SpaceWire network. 

The SIST functionality is protected by means of a 

protected general on/off register (protection done by 

expected fixed pattern in data). It is not accessible through 

SpaceWire RMAP or SpaceWire PnP accesses to 

configuration port 0. The SIST module can also be clock-

gated to save power (default at reset) via JTAG and UART 

interfaces. 

VIII. POWER-SAVING FEATURES 

GR718 incorporates the following power saving 

functions: 

 Disabling of unused on-chip LVDS receivers/transmitter 

 Disabling of unused off-chip LVDS 

receivers/transmitter or repeater devices 

 Clock-gating of unused SpaceWire ports 

 

The existing power-down functionality provided for the 

LVDS I/O cells in the DARE+ library is being utilized.  
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Signals for disabling the off-chip LVDS devices are 

shared with the external pins provided for general purpose 

I/O. It is possible to control up to 18 external LVDS devices, 

with one external pin per devices. 

 

Fig. 3.  GR718 device 

IX. RESULTS 

GR718 prototype devices has been manufactured in 

180nm UMC CMOS technology, based on the DARE+ 

library from IMEC (BE). The technology is radiation hard, 

with at least 300 krad(Si) TID tolerance, high SEL tolerance 

and SEU hardened flip-flops. The package used is a custom 

256 CGFP. 

The target speed for the SpaceWire links was 200 Mbit/s. 

However, during functional testing and validation the 

devices has been found to operate successfully at 240 Mbit/s. 

The GR718 device uses 1.8V and 3.3V supply, and the 

typical power consumption is 3W when running all 18 

SpaceWire ports in 200 Mbit/s. 

A development board has been developed together with 

Pender Electronic Design. The board comprises a custom 

designed PCB in a 6U Compact PCI format, making the 

board suitable for stand-alone bench top development, or if 

required, to be mounted in a 6U CPCI Rack. The purpose of 

this equipment is to provide developers with a convenient 

hardware platform for the evaluation and development of 

software for the GR718. The principle interfaces and 

functions are accessible on the front and back edges of the 

board, and secondary interfaces via headers on the board. 

X. CONCLUSION 

The overall activity has resulted in tape-out of an 

advanced multi-port SpaceWire router ASIC, and the 

manufacturing of a development board, all now available for 

national and international space industry. 

During the GR718 development Aeroflex Gaisler has 

been participating and contributing in the ongoing 

standardization work of the distributed interrupt scheme that 

will be part of the SpaceWire standard revision 1, as well as 

the upcoming SpaceWire Plug-and-Play standard. These 

extra efforts are expected to pay off with an advanced multi 

port SpaceWire router ASIC which enables coexisting of 

older and newer equipment in the same network. 

An additional unplanned task performed was the 

development of a new custom package, needed in order to 

improve electrical characteristics and support higher clock 

frequencies. 
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1s or 0s).  See Fig. 2..  The 

Layered Protocols 
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minimum signalling rate of Spacewire is 2Mbps and a 
maximum is not specified.  In this paper, the maximum 
signalling rate was limited by the performance of the hardware 
to 133 Mbps. 

The Character level of the protocol defines a 10-bit data 
character set and a variable length control character set.  The 
first bit of either is a parity bit and the second bit is set (1) for a 
control word and clear (0) for a data word.  There is no other 
encoding of the data and the strobe is created from the data as 
described earlier.   

The Exchange level defines the protocol sequence of 
control characters to establish and maintain the link and is not 
pertinent to this paper. 

The Packet level provides a protocol for sending a packet 
between entities on the SpaceWire Network.  A packet consists 
of a destination address, user data (cargo) and an EOP (End of 
Packet) control character.  It is within the user data that this 
paper is primarily concerned. 

The primary problem with galvanically isolating an 
interface is that there isn't a solid Direct Current (DC) reference 
point for the differential signals to use and the circuit 
performance is affected by the actual data transmitted.  A long 

sequence of  ones or zeros will cause the reference to be pulled 
one direction or another and lead to bit errors.  With a single 
data stream, such a bias can be controlled via randomization or 
other encoding techniques.  Unfortunately, the nature of 
SpaceWire's Character level protocol coupled with the Data 
and Strobe encoding of the Physical level makes this a more 
challenging endeavor.     

We used a circuit recommended by Aeroflex for our 
galvanic isolation circuit and tailored component selection 
based on our laboratory results. 

Beyond the actual galvanic isolation circuit, we did not 
want to perturb the SpaceWire standard any more than 
necessary and set down the rule that any additional coding 
would occur within the cargo and all other protocols would 
remain the same.  This effectively made the encoding a 
software function only and meant that we could easily update 
our algorithms to improve performance. 

II. GOALS AND CONSTRAINTS 
There were several goals for this development effort, the 

primary being the realization of a reliable and robust 
galvanically isolated SpaceWire link.  This meant that the 

 

CABLE VcmLVDS LVDS

Fig. 3.  Galvanic Isolation Schematic 

 

Fig. 4. Galvanic Isolation Model 
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galvanic isolation had to be transparent. Other goals and 
constraints are described below 

There are commercially available tools for analyzing and 
verifying a SpaceWire link so it was important to keep the 
electrical interface and the lowest level protocols in place.  In 
particular, the clock recovery encoded between the DATA and 
STROBE lines.  Routers and any other intermediate hardware 
also needed to be functional so no mid-level protocol changes 
were acceptable. 

The SpaceWire interface in this application was 
implemented in an FPGA that was resource constrained and 
already working so any encoding and decoding must be 
performed at the "Cargo" level which, in this application, 
meant in the software.  This benefited the development effort 
by simplifying changes and allowing a rapid turn-around of 
any encoding technique to hardware. 

III. GALVANIC ISOLATION CIRCUIT 
Figure Fig. 3 is our galvanic isolation circuit.  It is similar 

in design to a circuit presented by Aeroflex at the 2008 
International SpaceWire conference.  The circuit is simple and 
requires an isolation transformer only on one end of the 
interface.  The LVDS transmitter and receiver devices are the 

Aeroflex UT200SpWPHY01.   The transformer is an up-
screened T-330SCT from Pulse Electronics. 

Initial performance without any encoding applied was as 
expected.  The interface would lock and establish at 133Mbps.  
When the test pattern in our "cargo" was pseudo-random data 
the link ran with zero bit errors.  When other data patterns were 
presented, the results were also as expected.  With all zeros or 
ones, the link would establish and transfer data until the DC 
offset was sufficient to exceed the capabilities of the LVDS 
receiver.  Alternating ones and zero data also dropped the link 
since that pattern has minimal transitions on the Strobe line.  It 
was not surprising that this link would required some form of 
encoding technique to provide a robust and reliable link.  A 
simulation model was created so that different encoding 
techniques could be applied and modeled.  The model is shown 
in Fig. 4 

The UT200SpWPHY01 has a minimum +/-100mV 
threshold for deciphering a signal, so the worst case signaling 
of repeated 0s, or repeated 1s, fails quickly after it starts 
transmitting (with min/max differential signal falling to 
<50mV). To get an idea of how quickly, another simulation 
was run with an initial alternating 0s and 1s pattern that then 
transitions to nine 0s and one 1 after 6us. As can be seen in 
Fig.5, after nine packets the signal falls below the +100mV 
threshold for detecting 1s at the PHY receiver.  Fig.7  shows 
ideal performance. 

 

Fig.5.  Plot Showing DC Drift 

X8 X7 X6 X5 X4 X3 X2 X1

+ + +

+DATA IN DATA OUT

Fig. 6.  CCSDS Recommended Randomizer 

 

Fig.7 Plot Showing Ideal Random Operation 
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The simulation shows that the circuit can operate with 
margin with a sustained 30% transition density.  Note that the 
30% transition density must be sustained on both the DATA 
and STROBE signals.  We also determined that if the transition 
density was 45% or better, a continuous string of 19 ones or 
zeros could be tolerated (note that this pattern could only occur 
on the strobe due to the parity and control bit appended to 
DATA) 

Additional circuit level simulations were performed to 
determine the sensitivity of the galvanic isolation circuitry to 
component values and the topology changes to the isolation 
circuit.  The following variations to the isolation circuit were 
performed: 

A. Removal of DC decoupling caps 
Removal of caps has no effect on differential voltage; 

common-mode voltage decreases (makes sense, the two 
voltage dividers are now “fighting”). 

B. Remove bias for center tap 
No effect.  This may have more to do with the specifics of 

model (although it's accurate, the center tap may be to deal 
with the voltage offset of a real LVDS signal) 

C. Remove bias (0.5 voltage dividers) 
Without the bias and keeping the caps in place, the 

differential voltage is now the actual voltage (ie common mode 
voltage now 0V). 

Removing the bias AND the decoupling caps has no benefit 
to the differential voltage levels, but shows that they're not 
necessary.  The common mode voltage just goes to the center 
tap bias from the transformer. 

D. Change bias for center tap incrementally 
No effect seen on the differential signal; the DC bias 

capacitors prevent any effects from propagating to the receiver. 

E. Change 0.5 voltage dividers bias incrementally 
Change common mode voltage of received differential 

signal.  This could be optimized by setting it to 1.2V instead of 
1.65V, but not required. 

F. Change termination resistor 
The differential voltage peak-to-peak on the receiver is 

directly proportional to the termination resistor, as one would 
expect. 

IV. RANDOMIZATION    
The first technique applied to fortify the link was to use the 

standard CCSDS recommended randomization as shown in 
Fig. 6 using the polynomial: 

 
h(x) = x8 + x7 + x5 + x3 + 1 

 
The randomizer generates a pseudo random sequence that 

is exclusive-OR'd with the "cargo" on a bit by bit basis.  The 
randomization is likewise removed at the receiving end by 
again, exclusive-OR'ing the pseudo-random sequence with the 
incoming cargo data.  The pattern is restarted with each packet 
and all lower level SpaceWire protocols are observed. 

In actual real world operation the Randomizer proved to be 
sufficient to maintain a reliable link since most data sets are 
predictable and repeat.  When analyzed for a random data set 
there is a possibility for the link to drop with a particular data 
set.  A spreadsheet was developed to simulate the randomizer 
along with the data formatter so statistics could be collected 
and evaluated.  With that spreadsheet it was easy to create a 
data set that created a long string of ones or zeroes on either the 
STROBE or the DATA. 

DATA ENCODING STROBE
XITION

DATA ENCODING STROBE
XITION

0 011010 1 8 001011 2

1 101001 1 9 100011 3

2 011001 2 A 010011 2

3 110001 3 B 110010 2

4 001101 2 C 001110 3

5 101100 2 D 100110 2

6 011100 3 E 010110 1

7 110100 2 F 100101 1

Table 1. 4b/6b Code 

 

D10 D11 D12 D13 D14 D15 D16 D17

E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E110 E111

D20 D21 D22 D23 D24 D25 D26 D27

E20 E21 E22 E23 E24 E25 E26 E27 E28 E29 E210 E211

P1 C1 E10 E11 E12 E13 E14 E15 E16 E17 P2 C2 E18 E19 E110 E111 E20 E21 E22 E23 P3 C3 E24 E25 E26 E27 E28 E29 E210 E211

Fig. 5.  Modified 16b/30b Encoding 
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Table 2.  16b/30b Enc
Parameter 

Average DATA Transition Density 
Average STROBE Transition Density 
Longest Consecutive Bits DATA 
Longest Consecutive Bits STROBE 
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the second eight data bits to have odd parity.  With this 
constraint, the code block will always begin with a 0 (starting 
with the command bit) and end with a 0 (parity) forcing a 
transition on the STROBE.  Creation of the customer 8b/20b 
code is shown in Fig. 9. 

The 8b/20b code was easier to simulate since there are only 
28 possibilities to examine meaning that in the "cargo" portion 
of the packet, there are only 256 type of possible codeblocks.  
Each DATA field codeblock was created and the maximum 
number of consecutive bits and the average number of ones 
calculated.  The resulting strobe was then created from each of 
the codeblocks and the maximum number of consecutive bits 
and average number of ones calculated.  Since every packet 
ends and begins with a zero, it was easy to determine what the 
maximum values for the STROBE were as they could not 
propogate across multiple 20-bit codeblocks. 

The code itself is derived from a byte by splitting it into 
two nibbles that are then encoded per the 4b/6b code shown in 
Table 1.  Two eight bit codewords are the created form the 6-
bit codes and inserted into two SpaceWire 10-bit fields.  The 
first 8-bit codeword is created by appending a one in the 
seventh bit and appending an even-parity bit for bit 8. The 
second 8-bit codeword is created by appending a zero in the 
seventh bit and an odd-parity bit for bit 8.  The combination of 
parity and seventh bit encoding forces additional transisitons 
on the STROBE while keeping the DATA transitions at exactly 
50%.   

Table 3.  8b/20b Encoding Performance  
Parameter Value 

Average DATA Transition Density 50% 
Average STROBE Transition Density 45% 
Longest Consecutive Bits DATA 4 
Longest Consecutive Bits STROBE 7 

 
The 8b/20b has better performance for DC bias, but at a 

much greater impact to efficiency.  The efficiency is a dismal 
40% but it is a bit more robust than the Randomizer or the 

16b/30b encoding.  The 8b/20b does not have the even number 
of octet constraint that the 16b/30b encoding required. 

VII. SUMMARY AND CONCLUSIONS 
Galvanic isolation for SpaceWire does provide many 

benefits, but without an effective encoding technique is not 
practical.  Simple randomization proved effective in the 
laboratory environment and with random or even actual 
payload data worked quite well with no data dropouts or bit 
errors observed.  And randomization achieved this 
performance at no impact to the link efficiency.  However, 
there is a statistical probability that a data pattern will cause the 
link to drop and in a critical spacecraft operation, this may not 
be acceptable. 

The modified DC-balanced code performed exactly as 
expected but at a significant impact to the system bandwidth.  
The codeblocks were easily realized with a lookup table and 
provided to the SpaceWire interface as a sequence of two or 
three bytes.  Bit transition densities were sufficient and 
consecutive strings short. If galvanic isolation is a necessity, 
and the user can afford the impact to bandwidth (and even 
number of octet restraint) the presented code will provide a 
robust and reliable link 
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Abstract—Extended Common Mode LVDS components from 

SPACE IC have been tested for their radiation hardness. The 

collected test results are introduced and discussed. 

Index Terms—LVDS, extended common mode, SpaceWire 

component, SOI, radiation test, TID, SEE. 

I. INTRODUCTION 

SPACE IC GmbH has been founded by the developers of 

Extended Common Mode LVDS as a spin-off from the 

Silicon-On-Insulator (SOI) technologies supplier 

TELEFUNKEN Semiconductors. SPACE IC will bring space-

grade Extended Common Mode LVDS components to the 

market, which are hermetic packaged and screened according 

to ESCC specifications. LVDS translator IC components are 

widely used for SpaceWire (SpW) applications and are 

absolutely essential for aerospace equipment manufacturers. 

Recently an extensive demand on radiation hard LVDS 

components suitable for extended common mode applications 

at high communication speed arose [1]. Those would help 

solving some currently existing robustness issues. 

The radiation testing started with a high dose-rate Total 

Ionizing Dose (TID) test on unbiased components followed by 

Single Event Effects (SEE) tests with heavy ions and laser 

beam. 

II. TESTED COMPONENTS 

The SPACE IC extended common mode capable LVDS 

components comprise LVDS receivers and drivers 

manufactured using the TELEFUNKEN Semiconductors fully 

isolated Silicon-On-Insulator (SOI) technology TFSMART2. 

Generally SOI technologies are known to mitigate SEE due 

to much smaller volume of charge collecting silicon compared 

to bulk devices [2]. If the SOI devices are fully isolated, as this 

is the case in TFSMART2, they are immune to latch-up thus no 

single event latch-up can occur. Additionally TFSMART2 

features body ties for each device type, which due to charge 

diversion phenomena in SOI technology enhances the SEE 

immunity [2]. Combining bipolar and 3.3V CMOS logic 

devices having 0.35µm minimum feature size with high 

voltage DMOS devices up to 100V on the same die, this BCD 

IC manufacturing technology offers a high potential for space 

applications [3]. Besides latch-up it is also inherently resistant 

to such parasitic effects as substrate leakage and others thanks 

to SOI, which improves the performance and makes it suitable 

for high temperature range. 

The extended common mode capable LVDS components 

have been designed for the combination of the RS-485 receiver 

input voltage range and high-speed performance and efficiency 

of LVDS, providing robust but also fast communication 

channels. Those ICs translate the LVDS signals to 3.3V 

CMOS/TTL and vice versa with max provided data rate of 

400Mbps and higher. The max data rate of such translators is 

limited by the CMOS I/O circuits. 

The radiation testing has been performed on two 

component types: the LVDS receiver SPLVDS032 [4] and the 

complementary LVDS driver SPLVDS031 [5]. The 

SPLVDS031 is a 400Mbps Quad LVDS Line Driver optimized 

for high-speed, low power, low noise transmission over 

controlled impedance (approximately 100 Ω) transmission 

media (e. g. cables, printed circuit board traces, backplanes). 

The SPLVDS031 accepts four LVCMOS signals and translates 

them to four LVDS signals. Its differential outputs can be 

disabled and put in a high-impedance state via two enable pins. 

Low 300ps (max) channel-to-channel skew and 250ps (max) 

pulse skew ensure reliable communication in high-speed links 

that are highly sensitive to timing error. Supply current is 

23mA (max). LVDS outputs conform to the ANSI/EIA/TIA-

644-A standard. The SPLVDS032 is a 400Mbps Quad LVDS 

Line Receiver that has to be used in conjunction with the 

SPLVDS031. The SPLVDS032 accepts four LVDS signals and 

translates them to four LVCMOS signals. Its outputs can be 

disabled and put in a high-impedance state via two enable pins. 

The SPLVDS032 input receiver supports wide input voltage 

range of -7V to +12V for exceptional noise immunity. Supply 

current is 7mA (max). LVDS inputs conform to the 

ANSI/EIA/TIA-644-A standard.  
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The first application for these products in space is for 

SpaceWire networks, the use of SpaceWire on board a satellite 

is rapidly growing from a single point-to-point link btw an 

instrument characterized by a high data rate and the P/L mass 

memory to the unique type of bus/network present on the 

Payload part of Spacecraft in charge to transfer not only 

scientific data but also housekeeping and command and control 

messages issued by the OBC. Additionally examples of 

Platform units as RTU connected to the OBC through a 

SpaceWire link already exist. 

III. RADIATION TESTS 

A. Total Ionizing Dose Test 

This test has been performed at the ESTEC 
60

Co facility 

using a high dose-rate of 4.5krad/h [3]. 

The ICs of each of both component types have been 

divided into 6 groups: 5 irradiated groups and one control 

group; each irradiated group contained 5 ICs. The 5 groups of 

both components have been irradiated to the total dose of 

5krad, 10krad, 20krad, 40krad and 100krad respectively and 

the parameter drifts have been measured. (There was a 

shipping period of 2 days between irradiation and post-

radiation measurements.) Then the ICs annealed 7 days at 

room temperature and 5 hours at the temperature of 100°C, 

subsequent measurements followed. 

The test results are shown in Fig. 1. The drifts of all 

examined parameters are shown relative to their pre-radiation 

values. The data points “5krad” to “100krad” are calculated 

from the mean values of the 5 different groups of ICs irradiated 

to the corresponding total dose. The data points “after room 

temperature anneal” and “after hot temperature anneal” belong 

to the group of ICs irradiated to 100krad total dose. 
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Fig. 1.  High dose-rate unbiased TID test results 

The shown test results are looking plausible, since the 

observable drift trend is constant through the total dose steps. 

The data points near 0% might be more influenced by 

measurement tolerances. The highest parameter drift is 10% 

whereas the majority of parameters doesn’t show measureable 

drifts. The SPLVDS031 parameters “Differential output 

voltage” and “Steady-state output common mode voltage” 

show low drifts. They indicate that the voltage reference circuit 

was not significantly impacted by the radiation. The “Output 

short circuit current” of SPLVDS031 shows that the drift of the 

current reference circuit might be approximately 3%. The 

SPLVDS031 parameter “High-impedance output current” has 

wide tolerances. It shows 10% drift at 100krad total dose which 

might indicate some degree of degradation in gate oxide 

properties. 

Finally, all tested parts keep their complete functionality 

after irradiation to the given TID radiation doses, room 

temperature annealing and accelerated ageing. No critical drifts 

or specification limit violations have been observed. 

B. Heavy Ions Single Event Effects Test 

The purpose of single test for heavy ions test is to 

determine the sensitivity of Single Events Phenomena (SEL, 

SEU and SET for this application) against LET of incident ions 

and extract the cross section saturation and LET threshold for 

calculation and simulation of SEE in orbit. 

The SEE test has been conducted in respect of ESA 

guideline: Single Event Effects Test Method and Guidelines 

ESCC Basic Specification No. 25100. The test has been 

performed on two different pairs (driver-receiver pair) of 

component samples with the case lid removed, the two samples 

in a pair were irradiated separately and the not irradiated 

sample was a part of the test equipment for the DUT. Every 

component has been tested for SEL/SEU/SET. The DUT was a 

part of SpaceWire communication channel and the behavior 

has been observed using Link Analyzer and Digital Signal 

Oscilloscope (see Fig. 2. ). The test equipment used in this 

configuration is able to capture failures causing data corruption 

and display accurately the behavior of the SpaceWire link 

during these events. The digital signal oscilloscope captures 

accurately SET behavior of the devices, being both common 

and differential mode distortions to the LVDS signal, as well as 

transients on the CMOS logic outputs of the LVDS receiver. 

SPLVDS031 

SPLVDS032 
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Fig. 2.   DUT under functional test in ESTEC Avionics Lab 

The test has been performed at RADEF. The RADEF 

facility is located in the Accelerator Laboratory at the 

University of Jyväskylä (JYFL). The cyclotron used at JYFL is 

a versatile, sector-focused accelerator for producing beams 

from Hydrogen to Xenon. The test has been performed by 

exposing to heavy ions the LVDS chain based on Space IC 

SPLVDS031 (driver) an SPLVDS032 (receiver) composing a 

SpaceWire transmission channel. Driver and receiver have 

been irradiated separately. 

During this test Xenon, Krypton, Iron and Argon ions has 

been used. The component has been irradiated in air at normal 

direction (normal incidence has an angle of 0°). The DUT is 

positioned after 1cm from beam pipe exit. Table 1 summarizes 

ion characteristics. For each irradiation run a fluence of 5x106 

ions/cm2 has been reached. 

TABLE I.  ION TYPES USED IN THE TEST ON LVDS ICS 

 
Ion Kinetic 

Energy in 
vacuum 

(MeV) 

Kinetic 

Energy at 
DUT surf 

(MeV) 

Air 

distance 
(mm) 

Angle 

(degree) 

Range 

(µm) 

LET 

(MeV/mg/cm
2 

) 

40
Ar

+12
 

372 295 20 0° 70 12.7 

56
Fe

+15
 

523 408 10 0° 73 20.8 

82
Kr

+22
 

768 570 10 0° 70 35.1 

131
Xe

+35
 

1217 856 10 0° 65 65.2 

 

Each device has 4 ports: 

One port has been used for static test – static test mode #0: 

for the driver “1” and “0” have been set at the input and the 

differential output has been monitored to detect SET induced 

by radiation. For the receiver the input (differential) has been 

left unconnected, the output monitored for SETs. 

One Port (for the driver and the receiver) has been fed with 

a clock generated with a pulse generator. The output has been 

monitored in order to detect variation of the duty cycle (trigger 

condition: variation > 10-20%) – dynamic test mode #0. 

 

Fig. 3.  LVDS under test at RADEF 

The remaining two ports have been used for transmission of 

a SpaceWire signal (Data and Strobe) – Link speed 100 Mbit/s. 

Data have been generated by a Star Dundee Conformance 

Tester and the traffic monitored by Star Dundee Link 

Analizer2. The Link Analyzer can generate a trigger for the 

DSO – dynamic test mode #1. 

 

Fig. 4.  SET dynamic test mode #1 

The results of the Heavy ions test campaign on LVDS are 

the following. 

No SEL was observed up to LET of 60 MeV/(mg/cm
2
) at 

70-75°C and 3.6V bias voltage during test session with fluence 

of 1*10
7
 ions/cm² for both parts. 

The driver SPLVDS031 has shown some SET events only 

at the higher LET 65.2 MeV/(mg/cm²) during static test mode 

#0 (see Fig. 5), however neither effects on the duty cycle of the 

transmitted clock (dynamic test mode #0) nor 

disconnection/parity errors have been detected. 
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Fig. 5.  SET on SPLVDS031 

The receivers SPLVDS032 have shown SETs that have 

produced disconnections/parity errors on the two ports of the 

IC used for SpaceWire. SETs have been detected and cross-

section measured using Xenon, Krypton, Iron (see Fig. 6). No 

SET has been observed with Argon (LET = 12.7 

MeV/(mg/cm
2
)). 

 

 

Fig. 6.  SET on SPLVDS032 

C. Laser Beam Single Event Effects Test 

To evaluate the heavy ions SEE test results on SPLVDS032 

a laser beam test has been additionally performed on this type 

of components at MAPRAD srl (Perugia, Italy). 

The test conditions were: 

 Steady-state “1” (external fail-safe network) 

 Solid-state laser with 915nm wavelength 

 Laser spot 5-10um 

 Working distance of about 12mm 

 Pulses length of 1us 

 

Fig. 7.  Laser irradiation points on SPLVDS032 channel circuit 

Although 30 points on the whole LVDS receiver channel 

circuit have been irradiated (see Fig. 7), no visible reaction at 

the output has been observed. 

One possible reason for this might be, that the suspected 

SET sensitive areas are covered by a thin metallic layer. 

Another possible reason – the circuit might be not sensitive to 

the used laser pulses. 

IV. CONCLUSION 

Two Extended Common Mode LVDS component types 

will be made available on the market in space-grade quality.  

High dose-rate unbiased TID test and SEE heavy ions and 

laser beam tests have been performed with promising results.  

After the TID exposure none of the component 

specifications were violated and all tested parts kept their 

complete functionality. 

Under Single Event Effect tests no SEL sensitivity has been 

observed. The LVDS driver has shown no critical SETs. The 

LVDS receiver has shown SETs disturbing the data 

transmitting above LET= 12.7 MeV/(mg/cm
2
), but the 

communication with SpaceWire protocol was still working. 

The laser beam test on the LVDS receiver didn’t show any 

correlation with the heavy ion test results. An improved laser 

beam test is in preparation. 

The low dose-rate TID test on biased components will 

follow soon. 
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Abstract— The AT6981 is a new generation of processor 

designed for critical spaceflight applications, which combines a 

high-performance SPARC® V8 radiation hard processor, with 

enough on-chip memory for many aerospace applications and 

state-of-the-art SpaceWire networking technology from STAR-

Dundee. The AT6981 is implemented in Atmel 90nm rad-hard 

technology, enabling 200 MHz operating speed for the processor 

with power consumption levels around 1W.  This advanced 

technology allows strong system integration in a SoC with 

embedded peripherals like CAN, 1553, Ethernet, DDR and 

embedded memory with 1Mbytes SRAM. The device is ITAR-

free and is developed in France by Atmel Aerospace having more 

than of 30years space experience. This paper describes this new 

SoC architecture and technical options considered to insure the 

best performances, the minimum power consumption and high 

reliability. This device will be available on the market in H2 2014 

for evaluation with first flight models targeted end 2015. 

Keywords—spaceflight processor, SpaceWire, system-on-chip, 

networks, spacecraft onboard data-handling, radiation hard 

processor 

I. INTRODUCTION 

 

There is a continuous demand for more and more processing 

power on-board spacecraft to handle sophisticated instrument 

control, intense data processing and compression, and real-time 

attitude and orbit control. In addition, increasing autonomy of 

spaceflight systems requires intelligent on-board management 

of spacecraft resources. The required processing capability has 

to be provided at minimal power consumption and it has to be 

readily integrated into the on-board data-handling and avionics 

systems. The Atmel AT6981 Castor device is a radiation-hard-

by-design processor being developed by Atmel to fulfill this 

need, providing exceptional processing power per milliwatt 

and integrating a comprehensive set of peripheral interfaces. 

 

AT6981 is a SPARC® V8 rad-hard processor running at 

200MHz and integrating 8 LVDS links SpaceWire router at 

200Mbit/s developed in collaboration with STAR-Dundee. 

Atmel present the status on this new standard space processor 

during the 2014 International Spacewire conference.  

 

II. ATMEL’S UNRIVALLED FLIGHT HERITAGE 

 

Over the last 16 years, Atmel has been steadily building a 

space microprocessor strategy based on SPARC architecture. 

With worldwide sales of over 3000 flight models featuring the 

Atmel TSC695E and already around 1000 flight models with 

the Atmel ATF697F, Atmel’s SPARC processor roadmap has 

an unrivalled flight heritage. The upcoming AT6981 rad-hard 

SPARC V8 processor benefits from this solid experience. 

 

III. AT6981 PRODUCT DESCRIPTION 

The AT6981 is based on the rad-hard  LEON2FT processor 

and integrates all commonly-used space peripherals including 

1553, CAN, SPI, UART,  Ethernet & DSU (Debug Support 

Unit) for debug purposes. A fully-compliant IEEE754 FPU and 

a LEON2 SPARC V8 native MMU are also embedded. This 

SoC integration is done in 90nm rad-hard Atmel technology 

enabling at least 200 MHz operating speed for the processor 

while consuming less than 1W when used in the same 

configuration than AT697F. Atmel continues to offer best-in-

class power-to-performance ratios that offer more possibilities 

for space applications by reducing costs, sizes and embedded 

power supply. 

The AT6981 embeds SpaceWire engines offering up to 8 

links LVDS router. The SpaceWire links support full hardware 

initiator and RMAP. Targeted implementation enables some 

other advanced hardware SpaceWire functionalities such as 

plug-and-play and determinist. 
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This state-of-the-art SpaceWire IP has been developed by 

STAR-Dundee. The AT6981 benefits from strong design 

cooperation between STAR-Dundee and Atmel to achieve an 

embedded system with bandwidth of at least 200Mbit/s. 

   

The AT6981 will be available in 256 MQFP package. 

In addition to a powerful SPARC V8 processor core with a 

high level of integration and performance, the AT6981 embeds 

a 1-Mbyte hardened SRAM memory for PCB area savings and 

fast access at full CPU speed. For external memory, SRAM 

and DDR1/2 interfaces are proposed.  

In order to facilitate analog-to-digital operations and 

provide an even higher level of integration, the AT6981 

embeds a waveform generation (PWM) dedicated unit for 

analog control/command and proposes some ADC/DAC 

interfaces for analog acquisitions/conversions.  

The AT6981 is a rad-hard by design processor that will be 

space qualified and will support: 

  

• Total dose of 300Krads (Si) according to the MIL-

STD883 method 1019  

• No Single Event Latch up below a LET threshold of 95 

MeV.cm²/mg  

• No Single Event Upset below a LET threshold of 10 

MeV.cm²/mg and a cross section of 5 E-8 cm2/bit 

• SEU error rate better than 1 E-3 error/device/day  

 

IV. AT6981 CASTOR ARCHITECTURE  

 

The architecture of the AT6981 Castor device is illustrated 

in Fig. I. 

 

 
Fig.  I: AT6981 Architecture 

The AT6981 Castor device is a complete system on chip, with 

processor, memory and peripherals interconnected via a high 

performance interconnection switch matrix. The switch matrix 

at the heart of the AT6981 device connects the processor, 

memory banks, SpaceWire engines and other IO functions. 

Several internal RAM blocks are provided to support 

concurrent memory accesses by the processor and IO 

facilities.  

The three SpaceWire engines, Ethernet, CAN and MILSTD 

1553 interfaces are all connected as master devices to the 

switch matrix allowing them to read and write to the memory 

using distributed DMA capability.  

Lower speed peripheral devices including SPI, TWI, UART, 

timers, watchdog timers, PMW, ADC interface, DAC 

interface, parallel input/output and interrupts, are connected 

via an APB bus and peripheral bridge to the switch matrix.  

Various forms of external memory (PROM, SRAM, SDRAM 

and DDR) can be attached directly to the AT6981 devices, 

providing ready of expansion of the internal memory when 

required.  

Each of the major components within the AT6981 Castor 

device will now be described in more detail. 

A. Processor 

The processor is a SPARC® V8, LEON2-FT processor 

with integrated floating-point unit, providing excellent 

processing performance: 

• > 150 MIPS (Dhrystone 2.1) 

• > 40 MFLOPS (Whetstone) 

The particular SPARC V8 architecture is a 32-bit 

architecture using a 5-stage pipeline and eight register 

windows. Tighly coupled instruction and data cache memory is 

provided on chip as follows: 

• 32 kbyte Multi-sets Data Cache 

• 16 kbyte Multi-sets Instruction Cache. 

 

Native MMU of the LEON2 SparcV8 architecture is 

activated. The processor has an Advanced High-performance 

Bus (AHB) and includes a memory management unit (MMU) 

with up to 32 table entries. 

The design can support an internal clock frequency of 200 

MHz with a processor input/output toggling frequency of 100 

MHz. The core is designed for low power operation with 

exceptionally low power per MIPS.  

The integrated floating-point unit supports 32 single-

precision and 64-bit double precision fully compliant to IEEE 

754 floating-point standard. 

The processor supports booting from both 8-bit and 40-bit 

PROM interfaces, from serial PROM Flash and from 

Spacewire link 

 

This single CPU core architecture device allows an easy 

and safe migration of the software from AT697F without 

compromise performances. AT6981 benefits from all 

development tools available for LEON core as it offers a 

standard DSU interface for trace and debug.  
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B. Interconnection Switch Matrix 

The AT6981 bus architecture is unique on space market. 

This device takes benefit from Atmel strong IP portfolio and 

powerful architecture coming from the commercial 

microcontroller business where Atmel is one of the leaders 

today. 

The AT6981 System on Chip is built around a HMatrix bus 

which is multi AHB compliant and brings some AHB 

arbitration mechanisms to support multiple transfers. By this 

well proven Atmel technology, conflicts management for 

concurrent access is becoming much easier, even completely 

transparent for the CPU core running software. 

For example, you can manage in parallel all those activities 

without impact the main CPU core execution: 

• Run three Space Wire 200Mbit/s transfers 

• Run two 1553 communication flows 

• Run two high speed CAN transfers 

• Run a MAC Ethernet 100Mbit/s connection 

• Run SPI or TWI sessions as well 

 

Each peripheral can be connected to any of the eight 

protected memory areas and can take benefit from the 200MHz 

x 32bits AHB bus bandwidth without disturbing CPU internal 

operations.  During full speed transfer session, processor is 

never interrupted and has a fully deterministic behavior to 

manage control of all operations. Switching capacity insure any 

of 16 masters to be connected to any 16 slaves at maximum. 

This capacity is half used on Castor device which allow some 

redundancy.  

 

Switch matrix IP used the same hardened techniques than 

all other IPs with TMR and use of hardened cells. 

 

This architecture, which provides up to 6.4 Gbit/s 

bandwidth per Hmatrix links, is ready for targeted future 

evolution like SpaceFibre, Gbit Ethernet and multi-core. It will 

enable a smooth transition for coming product derivatives of 

this high speed SPARC® V8 architecture. 

 

C. Memory 

As well as the on-chip processor cache the AT6981 Castor 

device includes 1 Mbyte of radiation tolerant SRAM. The 

internal memory is separated into eight banks each of 32k x 32-

bits, so that several concurrent transfers into and out of 

memory can be supported by the interconnection switch 

matrix.  

In addition to the internal memory the AT6981 Castor 

device support the direct connection of a range of external 

memory devices, including PROM/Flash, SRAM, SDRAM 

and DDR devices. EDAC protection for external memories is 

provided as required. 

The memory interface can be configured to operate as 8-bit 

or 32-bit wide as AT697F. It is also possible to load a program 

through spacewire link into the internal SRAM for standalone 

operation, without external RAM memory. 

 

D. Peripherals 

In addition to SpaceWire, the AT6981 Castor device 

includes many other commonly used data and control 

interfaces used on board spacecraft. It provides: 

• Redundant CAN Bus interfaces supporting version 2.0 

Part B of the CAN bus specification and providing 15 

channels, 

• Redundant 1553 interfaces which can operate as a bus 

controller or as a remote terminal,  

• An Ethernet interface which can operate at 100 

Mbits/s. 

Each of these interfaces has its own DMA controller. 

 

A comprehensive range of lower speed peripheral 

interfaces is also provides on-chip: SPI, I2C, ADC, DAC, 

UART, Timers … 

The slower speed peripheral devices are connected to 

an Advanced Peripheral Bus (APB) which is bridged to the 

AHB interconnection switch matrix.  

Attached to the APB are two Serial Peripheral Interfaces 

(SPI) with a dedicated DMA controller, two Two Wire 

Interfaces (otherwise known as I2C interfaces) again with a 

dedicated DMA controller, and two eight-bit UARTS. 

Four 32-bit timers are provided along with a 32-bit 

watchdog timer. The interrupt controller provides support for 

31 interrupts. 96-bits of general parallel input/output is 

provided. 

Analogue interfacing is supported with a pulse width 

modulator (PWM) for analog control/command and parallel 

interfaces for connection of Analogue to Digital Converters 

(ADC) and Digital to Analogue Converters (DAC). The ADC 

and DAC interface to support efficient analogue data 

acquisition into memory. 

External FPGA connection to AT6981 is possible through 

parallel interface up to 200Mhz or through SPI link up to 

100Mhz, both with capability of DMA transfer. 

E. Spacewire 

SpaceWire is one on the main data-handling interfaces used 

on board spacecraft today [1][2]. The AT6981 Castor device 

includes extensive, state-of-the-art support for SpaceWire; a 

SpaceWire router with eight external SpaceWire ports and 

three SpaceWire protocol handling engines designed especially 

for Castor. Protocol support is provided for the SpaceWire 

Remote Memory Access Protocol (RMAP) [3], the SpaceWire 

plug and play protocol [4], and SpaceWire-D the deterministic 

data delivery protocol [5]. Extensive time-code support is also 

provided including multiple time-code counters and distributed 

interrupt time-codes [6]. 

 

The SpaceWire architecture used in the AT6981 Castor 

device is illustrated in Fig. III. 
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Fig.  II: SpaceWire Architecture of Castor 

 

1) SpaceWire Router 

The Castor on-chip SpaceWire router has eight SpaceWire 

interfaces, three interfaces to the SpaceWire Engines and an 

internal configuration port which supports configuration of the 

SpaceWire router and engines using the SpaceWire RMAP 

protocol. An APB interface may also be used to configure and 

read status registers from SpaceWire engines, time-code 

controller and SpaceWire router. The router based on proven 

STAR-Dundee technology [7] supports many advanced 

features such as start-on-request, disable-on-silence, and 

watchdog timers on all SpaceWire ports. 

 

2) SpaceWire Engines 

The Castor device contains three SpaceWire engines which 

can support the rapid processing of various SpaceWire 

protocols. Comprehensive support is provided for the 

SpaceWire Remote Memory Access Protocol (RMAP) which 

is widely used on board spacecraft for configuration and 

control [8]. Support is also provided for user defined protocols 

with a multi-channel, protocol selective DMA controller. Each 

SpaceWire engine contains an RMAP Target, RMAP Initiator, 

DMA controller, Protocol Multiplexer and a set of 

configuration and control registers. 

   

3) RMAP Target 

The RMAP Target allows Castor to act as an RMAP Target 

device, receiving, reacting and responding to RMAP 

commands from a remote RMAP Initiator device. When an 

RMAP command is received, its header is checked and if valid, 

the information it contains is used to authorise or reject the 

command. Authorisation can be carried out by the Castor 

processor, or by automatically checking that the RMAP 

command wants to read or write from a predefined area of 

memory. If the command is authorised, it is executed and data 

written to or read from the specified area of memory. An 

RMAP reply is then sent to the initiator of the RMAP 

command, containing an acknowledgement along with any 

data read from memory. A 16-byte verified write buffer is 

provided to support verified write commands where the data 

associated with a write command is validated using a CRC 

before it is written to memory. This supports commanding of 

critical activities using RMAP. 

 

4) RMAP Initiator 

The RMAP Initiator off-loads the Castor processor from 

the generation of RMAP commands. The processor defines the 

RMAP commands to be sent, placing the commands and any 

write data in memory and reserving space in Castor memory 

for any data expected to be returned in response to read 

commands. The RMAP Initiator is then started and will 

automatically send all of the commands and collect the replies, 

informing the processor when the entire set of RMAP 

transaction is complete.  

 

5) DMA Packet Transmission 

The DMA controller supports multiple concurrent transmit 

channels which can be programmed to send one or more 

SpaceWire packets. A packet consists of one or multiple data 

chunks stored in different memory locations. This allows the 

packet header to be stored in a separate location to that of the 

packet data content.  The DMA controller is given a list of the 

chunks making up a packet and will construct the required 

packet as it is being sent. 

The sending of CCSDS Packet Utilizatoin Standard (PUS) 

[9] packets is supported in Castor by providing a means for 

computing the CRC-16 checksum in hardware. 

Continuous transmission of packets is supported with a 

circular buffer mechanism containing data and packet 

descriptor pointers. Interrupts can be set to monitor the 

progress of transmission of packets without halting the actual 

operation. This makes it possible to achieve the maximum 

SpaceWire data-rate with minimum CPU utilization. Errors in 

one channel do not affect the operation of other channels. 

 

6) DMA Packet Reception 

A DMA receive channel receives data from the protocol 

multiplexer and writes it to Castor memory. Each receive 

channel is associated to a particular SpaceWire protocol or 

packet type using a packet filter in the protocol multiplexer 

which switches packets based on their first four bytes. Packets 

which are received on the same DMA channel are stored 

contiguously in memory and their packet length is stored in 

packet descriptors. Reception of PUS packets is supported by 

providing the hardware computation of its CRC-16. CRC-8 

calculation is also supported in hardware. 

Continuous reception of packets is provided with a circular 

buffer mechanism that stores data and packet descriptor 
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pointers. It is possible to enforce that a packet is not split at the 

end of a memory region. Interrupts can be set to monitor the 

progress of packets received without halting the actual 

operation. The user application or software driver frees the 

space used by packets once the data received has been 

processed. This procedure allows data to be received at the 

maximum SpaceWire data rate with minimum CPU utilization. 

When an error occurs the reception is halted and the processor 

is interrupted. 

 

7) Protocol Multiplexer 

The protocol multiplexer multiplexes packets to and from 

the RMAP Target, RMAP Initiator and the DMA controllers. 

When appropriate it uses the SpaceWire Protocol Identifier 

[10] to perform the multiplexing. Alternatively other relevant 

information at the start of the packet can be used. 

When sending packets, the multiplexer selects the next 

packet to be sent from one of the possible sources (RMAP 

Initiator, RMAP Target, three DMA transmit channels) and 

waits for the end of packet before selecting the next packet to 

be transmitted. 

When receiving packets, the protocol de-multiplexer checks 

the first four packet bytes against a configurable pattern and 

mask to determine the destination of the packet; either the 

RMAP target, the RMAP initiator or a specific DMA channel. 

The pattern and mask are programmable by the host processor 

through the APB registers. This allows multiplexing of packets 

according to their SpaceWire Protocol Identifier or other 

information at the start of the packet. 

 

8) Time-Code Controller 

The SpaceWire time-code controller is able to forward 

received time-codes and to generate time-codes from software, 

processor timer interrupt or an internal dedicated time-code 

master counter. The time-code controller has a time-code 

register for each of the four time-code flags, therefore allowing 

independent time-code forwarding for each flag code. 

The time-code controller stores the last time-code received 

for each type of control flag and can indicate to the host that a 

time-code has been received through the status/interrupt 

interface. 

The controller can act as a time-code master either by 

software insertion of a time-code, sending time-code on a 

processor timer interrupt or by setting up an internal time-code 

master counter, which automatically sends time-codes 

periodically. The time-code frequency can be controlled by the 

host software with up to 1 micro-second precision. 

 

9) SpaceWire Interrupt Controller 

The SpaceWire interrupt controller provides event 

notification to the host processor for packet, time-code and 

error events.  

F. Power Management 

The AT6981Castor device is a low power device with 

dedicated mechanisms for adapting power consumption to the 

level of processing performance required by the application. 

Specific techniques used for power management include: 

• Programmable clock functions that provide the clock 

for each main function and peripherals, which are able 

to adjust the clock speed and to gate it off completely. 

• Dedicated reset for each major function which allows 

them to be reinitialized locally after their clock restarts.  

The estimate power consumption of the AT6981 Castor device 

is as follows: 

• Core stand-by current target: <100mA, mostly internal 

memory leakage 

• Core operating current target: 5mA/MHz 

 

G. Rad Hard by design 

The AT6981 Castor device is designed for spaceflight 

application and is fault tolerance by design. It uses low level, 

full triple modular redundancy (TMR) along with single event 

transient (SET) filtering to provide radiation tolerance of its 

internal logic. Memory is protected using EDAC which is 

capable of single error correction and double error detection. 

All internal memories have a dedicated scrubber with 

internal EDAC in order to manage auto correction.  

This scrubber is fully programmable on period of the 

scrubbing cycle and the protected RAM array.  It is an 

additional value to the external EDAC capability provided with 

the 1Mbytes of on chip available high speed SRAM to allow 

customer own correction management.  

All Memory blocks are designed in a way to never have 

any adjacent bits for a same word. This technique simplifies 

strongly the error management activities which allow using 

only a simple EDAC for data single event protection. By this 

way it’s not needed to implement an heavy TMR mechanisms 

to protect register files which trigger some potential 

performances limitation.  

TMR mechanisms are implemented on all logic of the 

design with also an SET filtering method. 

Rad hard libraries on this proposed 90nm technology are 

developed by Atmel in France based on all well proven 

libraries from Atmel commercial products. AT6981 benefits 

from the strong 30 years’ experience of Atmel France in rad 

hardening techniques. 

 

H. Debug and Test Facilities 

The AT6981 Castor device has comprehensive debug 

support with a processor debug support unit (DSU) supporting 

debugging, trace memory and hardware watch points. The 

DSU can be accessed through a UART, IEEE 1149.1 JTAG 

Interface, or at high speed through a SpaceWire interface. 

 

I. Operating Range 

The AT6981 Castor device operates from two supply 

voltages, minimizing the need for external power supply 

components while keeping power consumption low: 

• 3.3V +/- 0.30V for input/output, 

• 1.0V +/- 0.15V for the core. 
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Castor operates over an ambient temperature range of -55 to 

+125°C (Tj max 145°C). 

 

The inputs/outputs are cold sparing. 

 

V. AT6981 SOC VERIFICATION 

 

AT6981 is a complex System on Chip device where 

complexity management and control at each stage of the 

development is key to insure the best product maturity and time 

to market. Several verification steps are handled all along the 

component development cycle as follow: 

• Performances verification at early stage of the 

design. All IPs have been unitary tested regarding 

functionality and performances with modelisation 

techniques and profiling. All IPs have been also 

ported and verified on FPGA 

• A full front end RTL functional validation has 

been done after the IPs integration. Full set of 

Atmel embedded software described later has 

been used to exercise all applicative 

configurations. 

• Multilayer package routing validation with a 

special focus on all differential links DDR and 

LVDS to verify propagations and 

synchronizations. During this phase RLC effects 

have been minimized by electrical simulations as 

much as possible to insure the 200Mhz IO 

toggling  

• Several Tests vehicle have been initiated to 

validate the Rad Hard libraries used w 90nm 

selected silicon to support radiations effects. 

Those test vehicle have been used to assess: 

o SET width variation at different ion 

energies to size clock skewing of the 

TMR cells 

o EDAC and TMR errors feed-back 

handled by processor TRAP interrupt 

o IOs libraries cold sparing mechanisms 

and ESD protection level 

o Devices charge sharing effects to limit 

multiple devices upset 

o SEU and SEL libraries capabilities 

• Set up a pre silicon development kit based on 

FPGA to validate design in the system with all 

peripherals and embedded software. It’s the way 

to anticipate the applications tests before 

prototypes are available 

 

At each stage of testing, traceability is insured between 

product requirements and test results. For final system tests 

with hardware and software, applications cases are used to 

handle the system test coverage. 

 

VI. AT6981 EVALUATION KIT, SOFTWARE & SERVICES  

 

Several options proposed by Atmel and partners for the 

evaluation kit including hardware and software services 

according to the development steps and customer engagement. 

 

1) Atmel FPGA pre silicon evaluation environment   

 

In order to manage system validation of AT6981 device 

before silicon freeze, Atmel has developed a FPGA test board 

based on Xilinx Virtex which contains the final and complete 

RTL code. This FPGA board supports all castor peripherals 

interface like Spacewire, CAN, 1553, DDR, etc … With this 

board, end user can manage a full functional evaluation of the 

CASTOR device, develop and exercise the full embedded 

software. Level of performances will be of slightly limited 

compare to real silicon device but largely enough to port real 

time operating system like RTEMS or VXWorks. 

 

 
 

Fig.  III: Atmel FPGA pre silicon environment 

 

 

2) Atmel Hardware evaluation kit 

 

As soon as first AT6981 prototypes will be available, 

associated Atmel Hardware evaluation kit will be also available 

to complete application tests and to manage performances 

assessment. AT6981 hardware kit design will be definitively 

aligned on the current Sparc V8 kit architecture like for 

AT697F or ATF697FF.  
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Fig.  IV: Atmel Hardware evaluation kit 

 

 

3) Extended Hardware kit from partners   

 

StarDundee is providing an extended Spacewire FPGA 

Test Board which allow to explore some extended capabilities 

related to SpaceWire interface, SpaceWire protocol engines 

and SpaceWire router. 

 

4) Atmel Software and Services 

 

With AT6981 Atmel hardware kit and Atmel pre silicon 

environment, Atmel is offering a complete ecosystem of 

software and tools which are used for the full chipset validation 

and qualification. This guarantees the best starting point for 

end user application development. A full software package 

including embedded software drivers and libraries together 

with a Basic Tools set for debug, download and trace are 

proposed to AT6981 developers.  

 

For embedded software package proposed with AT6981, 

software drivers and libraries architecture concept is fully 

reused from Atmel industrial and automotive microcontrollers. 

This Atmel named ASF architecture is widely deployed and 

proven with already some OS port facilities available. 

 

 Atmel ASF is structured in stacks. Each stack is composed 

of two layers: 

• The drivers layer 

• The services layer 

The software is also embedding a Bootloader mechanism.  

 

Main stack are: 

• The memory stack: 

 The aim of the memory stack is to implement a 

memory virtualization. The virtualization allows to use every 

types of supported memory in the same way (memory 

controller). It also allows protecting memory at processes level 

(Memory Management Unit) and dynamic allocation. 

• The I/O stack: 

 The I/O stack manage general purpose IO, PWM and 

ADC/DAC interface 

• The communication stack: 

 The communication stack allows data transfer through 

all communication interface using standard protocols such as 

TCP/IP. The stack allows communication through all present 

interfaces:   

o Ethernet 

o Mil STD 1553 

o Space Wire 

o CAN 

o TWI 

o SPI 

o UART 

 

• The system stack: 

 The system stack handle with architecture specificities 

such as system traps, windows management, interrupt. It also 

manages system self test and diagnostic (e.g. edac). 

 

 

 

Fig.  V: AT6981 embedded software architecture 

 

By taking advantage of all proposed software buildings 

blocks available with the AT6981, end user is able to manage 

his own system design and improve targeted application time-

to-market.  

 

5) Extended Software services from partners 

 

AT6981 developers will also benefit from additional 

services and extended tool set that will be proposed by Atmel 

partners as the comprehensive software development 

environment suite from STAR-Dundee. 

 

For more information related to Star-Dundee proposed 

services with AT6981, please refer to http://www.star-

dundee.com/ 

 

VII. AT6981 SCHEDULE  

The AT6981 is in its final stages of development and 

evaluation by customers is targeted to start Q3 2014. Flight 

models are targeted to be full space qualified end 2015. 
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VIII. AT6981 TARGETED SPACE APPLICATIONS 

 

Providing integration of more peripherals and memory 

blocks around the SPARC V8 processor core enables size, 

weight and cost improvements for today’s space applications: 

on-board computing, data handling, telemetry/telecommand, 

remote terminal units, sensors, instruments and payloads. In 

addition to strong system integration value, the AT6981 

enables more powerful processing with 200MHz and 

embedded fast memory to follow higher bandwidth capabilities 

of peripherals with SpaceWire 200Mbit/s. 

 

In this section several applications of the AT6981 Castor 

Processor will be described. A generic functional block 

diagram of a spacecraft avionics system is illustrated in Fig. 

IV, from which the various applications of Castor will be 

explored.  
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Fig.  VI: Spacecraft Avionics Functions 

A. Instruments 

The instruments or payloads are the reason for the 

spacecraft being launched. Instruments support the science, 

earth observation or commercial application of the spacecraft. 

The instruments sense the environment across the 

electromagnetic spectrum and convert sensor signals into 

digital data that can be handled on board the spacecraft and 

sent to Earth. Instruments may be passive, receiving 

information from the environment, or active sending out 

signals which interact with the environment, reflecting some of 

the transmitted energy back to the sensor on board the 

spacecraft. Instruments may be relatively simple requiring very 

basic control, or sophisticated requiring substantial interactive 

control.  

The Castor device is perfect for instrument processing 

owing to its wealth of onboard resources and its low power 

consumption. A typical instrument control application will run 

within the on-chip memory of Castor and only the peripherals 

that are required need to be activated and consume power. The 

on-chip SpaceWire technology is able to off-load the 

communications from the Castor processor simplifying the 

sending of instrument data to the onboard mass memory unit. 

The SPI, TWI, ADC/DAC and parallel IO interfaces of Castor 

are designed to support direct connection to the instrument 

electronics. If an FPGA is being used within the instrument 

Castor is readily connected to the FPGA. The integrated 

SpaceWire RMAP target handling capability is perfect for 

controlling the instrument with minimal processor overhead. 

 

B. Instrument Processing 

Some instruments may require a substantial amount of 

processing power and may require inputs from other sensors or 

instruments in order for the instrument processing to be carried 

out. In this case a separate instrument processor may be 

required. This may be located within the main instrument itself 

or in a separate instrument processing box. 

Castor has substantial processing capability (>150 MIPS) 

with a floating-point unit that is able to provide 40 MFLOPS. 

This is adequate for many demanding instrument processing 

applications. Where more processing power is required two or 

more Castor devices may be easily networked and used in 

parallel thanks to the embedded SpaceWire router. 

C. Mass Memory 

The onboard mass-memory provides data storage facilities 

for the various instruments, managing the available storage, 

allocating it according to mission priorities sent from ground 

via the telecommand system. 

A processor is typically used to control the mass-memory 

system, allocating memory resources to the various instruments 

or more specifically to particular application processes 

identified by their application process identifiers (APIDs). 

SpaceWire has been used in several mass memory systems 

either for control, or for memory module interconnection or 

both. The Castor processor with its embedded SpaceWire 

router and MILSTD 1553 interfaces is just right for mass 

memory control. Its on-chip memory is perfect for command 

buffering and the integrated SpaceWire Engines with their 

multi-channel DMA controllers are able to offload the 

processor from much of the work distributing commands. The 

internal SpaceWire router can also save on one of the 

SpaceWire router devices that may be needed for the mass-

memory internal network, or the external payload data-

handling network. 

D. Data Compression 

A data compression processor may be attached to the mass-

memory to compress data from one or more of the payloads to 

save on downlink telemetry bandwidth, enabling more payload 

data to be sent to ground. Both loss-less and lossy (e.g. JPEG) 

compression may be required to cover a variety of different 

types of data. 

The Castor device with its high processing power can be 

used for some data compression tasks, especially if high-speed 

data is buffered into the mass-memory first and subsequently 

read out, compressed and written back to the mass-memory, 

before being telemetered to ground. The Castor device is not 

suitable for very high data-rate compression, but if an FPGA or 

ASIC compression device is being used then Castor may have 

a role in configuring and controlling the data compression 
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device, and in performing some of the less regular processing 

required for rate control. 

E. Housekeeping and Autonomy 

The overall health of the spacecraft, including power 

consumption, operating temperature, and battery status is 

monitored by the housekeeping function. To perform this 

monitoring function it gathers housekeeping information from 

the various spacecraft subsystems, and reports this information 

to ground via the telemetry encoding function and 

communications subsystem. Autonomous operation of the 

spacecraft may be supported in the event of anomalous 

conditions occurring. 

Castor has a wide variety of interfaces to support 

housekeeping. It also has adequate processing capability to 

support complex autonomous operational modes should that be 

required. Where a SpaceWire network is being used for on-

board data-handling, it is straightforward for Castor to support 

periodic housekeeping information gathering from any device 

on the SpaceWire network. The SpaceWire Engines in Castor 

include RMAP Initiators which may be set up with a sequence 

of RMAP commands to acquire housekeeping information. 

This sequence of commands can then be triggered every so 

often by the processor and the RMAP initiator will send out all 

the commands, gather the replies, put the data from those 

replies into specified areas of Castor memory, and then signal 

to the processor that the entire information gathering exercise 

is complete. Any errors or missing replies are also reported to 

the processor. This offloading of routine SpaceWire 

communication tasks from the Castor processor is a major 

benefit of the Castor architecture. 

F. Telecommand and Payload Control 

The instruments are activated and deactivated by the 

payload control processing function, which is in overall control 

of the spacecraft operation. It determines what onboard 

resources are activated at any particular time. It receives 

telecommands from the communications subsystem which are 

decoded by the telecommand decoding function. 

Software running on Castor is able to decode incoming 

telecommands, validate those commands and execute them. 

Once again the large amount of on-chip memory provided in 

Castor is often adequate for the telecommand and payload 

control processing. 

G. AOCS Processing 

AOCS processing receives required attitude and orbit 

parameters from the telecommand system, and is responsible 

for maintaining the required orbit and attitude of the spacecraft. 

To achieve this, the AOCS processor will read the AOCS 

sensors (e.g. star-tracker, gyro, accelerometer, GPS) to 

determine its current pointing and orbital position, and control 

various AOCS actuators to achieve the desired attitude and 

orbit. AOCS processing is mathematically intense and often 

requires support for floating-point maths. The processing has to 

be deterministic. 

Castor has the floating-point capability necessary for most 

AOCS processing applications, its on-chip memory is adequate 

for most AOCS software, and its range of peripheral interfaces 

is sufficient for almost all important spacecraft AOCS sensors. 

 

IX. CONCLUSION 

International Spacewire conference 2014 is the ideal place 

to update the worldwide space community on the progress of 

new coming device. This processor is a highly capable 

processor, which operates with low power consumption, 

incorporates substantial on-chip memory and includes an 

extensive set of on-chip peripherals. It has been designed 

specifically for spaceflight, meeting the requirements of many 

different onboard processing applications.  On top of 

component itself, a whole ecosystem including some Hardware 

and Software facilities that will be provided by Atmel and 

partners in order to facilitate fast ramp up, reuse & time to 

market for space actors.  
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Abstract—SpaceFibre is a multi-gigabit/s data link and 

network technology for use onboard spacecraft. Compatible with 

SpaceWire at the packet level, SpaceFibre runs over electrical 

and optical media. It provides extensive quality of service (QoS) 

and fault detection, isolation and recovery (FDIR) capabilities 

that are designed specifically for spacecraft applications. This 

paper provides a short introduction to SpaceFibre and then 

describes how SpaceFibre is being implemented. It introduces 

some SpaceFibre test equipment and explains how SpaceFibre 

has been validated. SpaceFibre is designed to support high data 

rate payload data-handling like synthetic aperture radar (SAR), 

multi-spectral imaging systems and fast mass memory. It is an 

ideal candidate for the next generation of spacecraft 

interconnect, being an open standard designed specifically for 

spacecraft applications.  

Index Terms—SpaceWire, SpaceFibre, Network, Spacecraft 

Onboard Data-Handling, Quality of Service, FDIR, Next 

Generation Interconnect. 

I. INTRODUCTION 

SpaceFibre [1][2][3] is a very high-speed serial data-link 

being developed by the University of Dundee for ESA for use 

with high data-rate payloads. The draft SpaceFibre standard 

has been written by the University of Dundee for ESA and has 

been reviewed by the international spacecraft engineering 

community. It has also been simulated and implemented in 

several forms. SpaceFibre is currently being integrated into 

several third party beta test applications to help refine the 

standard. 

The SpaceFibre standard is described in section II. The 

design of a SpaceFibre IP core is outlined in section III. A 

radiation ASIC implementation of SpaceFibre is described in 

section IV. Currently available test equipment and future test 

equipment for SpaceFibre is considered in section V. The ways 

in which the SpaceFibre standard has been validated are 

explained in section VI. 

II. THE SPACEFIBRE STANDARD 

SpaceFibre is currently a draft standard being specified by 

the University of Dundee with contributions from several other 

organisations. The protocol stack for SpaceFibre is illustrated 

in Fig. 1.  
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Fig. 1.  SpaceFibre Protocol Stack 

The network layer protocol provides two services for 

transferring application information over a SpaceFibre 

network; the packet transfer service and the broadcast message 

service. The Packet Transfer Service transfers SpaceFibre 

packets over the SpaceFibre network, using the same packet 

format and routing concepts as SpaceWire. The broadcast 

message service broadcasts short messages carrying time and 

synchronisation information to all nodes on the network.  

The QoS and FDIR layer provides quality of service and 

flow control for a SpaceFibre link. It frames the information to 

be sent over the link to support QoS and scrambles the packet 

data to reduce electromagnetic emissions. It also provides a 

retry capability; detecting any frames or control codes that go 

missing or arrive containing errors and resending them.  

The Multi-Lane layer is able to operate several SpaceFibre 

lanes in parallel to provide higher data throughput. In the event 

of a lane failing the Multi-Lane layer provides support for 

graceful degradation, automatically spreading the traffic over 

the remaining working links. It does this rapidly without any 

external intervention. 

The Lane layer initialises each lane initialisation and re-

initialises the lane when an error is detected. Data is encoded 

into symbols for transmission using 8B/10B encoding and 
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decodes these symbols in the receiver. 8B/10B codes are DC 

balanced supporting AC coupling of SpaceFibre interfaces. 

The Physical layer serialises the 8B/10B symbols and sends 

them over the physical medium. In the receiver the Physical 

layer recovers the clock and data from the serial bit stream, 

determines the symbol boundaries and recovers the 8B/10B 

symbols. Both electrical cables and fibre-optic cables are 

supported by SpaceFibre. 

The management layer supports the configuration, control 

and monitoring of all the layers in the SpaceFibre protocol 

stack. 

The SpaceFibre standard has been simulated, implemented 

and reviewed at all stages of its research, design and 

development. The lane and QoS layers of SpaceFibre are fully 

defined and have been extensively tested with simulations by at 

least three independent organisations, and by implementation 

in FPGAs. The physical layer is well on the way to being 

complete with final inputs on eye pattern masks etc. to be 

added. The multi-lane layer has been designed and simulated, 

and is currently in the process of being implemented and tested 

in FPGAs. Once this testing is complete and the specification 

updated to resolve any issues found, draft G of the SpaceFibre 

standard will be issued and an ECSS working group will be 

convened to finalise the standard for formal approval.  

The SpaceFibre network layer will be a separate standard 

document. The network layer uses the same packet format as 

SpaceWire and supports path and logical addressing. 

III. A SPACEFIBRE IP CORE 

A SpaceFibre IP core has been designed and developed to 

test and validate the SpaceFibre specification. This has been 

updated and used to re-validate each revision of the SpaceFibre 

standard. A block diagram showing the interfaces to the IP 

Core is given in Fig. 2. The current version SpaceFibre IP core 

is complaint to draft F3 version of the SpaceFibre standard and 

supports all its features with the exception of multi-laning. 
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Fig. 2.  SpaceFibre IP Core Interfaces 

The SpaceFibre IP Core is designed to interface with an 

8B/10B encoder/decoder and SerDes. This allows the 

SpaceFibre IP Core to be used with space qualified SerDes 

such as the TLK2711-SP device from Texas Instruments. The 

application interface to the SpaceFibre IP core comprises three 

separate interfaces: 

1. A virtual channel interface, which is used to send and 

receive SpaceFibre packets over the virtual channels in 

the interface. 

2. A broadcast interface, which is used to send broadcast 

messages over the SpaceFibre network. 

3. A management interface, which is used to configure, 

control and monitor the status of the SpaceFibre 

interface. 

The FPGA resources required for a SpaceFibre link with a 

single virtual channel are detailed for various types of space 

qualified, radiation tolerant FPGAs in Fig. 3. to Fig. 5. The 

utilisation for an 8 virtual channel interface is about twice that 

of a single virtual channel interface. 

 

 

Fig. 3.  SpaceFibre Single Virtual Channel Xilinx Virtex 4 FPGA Utilisation  

 
Fig. 4.  SpaceFibre Single Virtual Channel Xilinx Virtex 5 FPGA Utilisation  

 

 

Fig. 5.  SpaceFibre Single Virtual Channel Microsemi RTAX2000 Utilisation  

The SpaceFibre IP core has been designed to support the 

testing of the SpaceFibre standard. It has not been designed for 
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speed or size. A version of the SpaceFibre IP core targeted for 

high performance and small size in flight qualified FPGAs is 

currently being developed by STAR-Dundee Ltd. This IP core 

is designed to support instrument interfacing with SpaceFibre 

using existing flight proven FPGAs and SerDes devices. 

IV. A RADIATION TOLERANT SPACEFIBRE DEVICE 

A radiation tolerant SpaceFibre interface device has been 

developed by University of Dundee, STAR-Dundee, Ramon 

Chips, ACE-IC, IHP, Airbus DS and SCI within the Very High 

Speed Serial Interface (VHiSSI) European Commission 

Framework 7 project [5]. The VHiSSI chip integrates a 

complete SpaceFibre protocol engine, together with the 

physical layer interfaces, in a radiation tolerant chip 

manufactured by a European foundry. A block diagram of The 

VHiSSI device is shown in Fig. 6.  
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Fig. 6.  VHiSSI Chip Block Diagram 

There are five main functions within the VHiSSI chip: 

 SpaceWire Bridge 

 FIFO, DMA, Memory and Transaction Interface 

 SpaceFibre Interface 

 SerDes 

 IO Switch Matrix 

 Mode Switch Matrix 

The SpaceWire Bridge provides a bridge between 

SpaceWire and SpaceFibre with up to 11 SpaceWire interfaces 

being available. The SpaceWire Bridge includes a seven port 

SpaceWire router which allows routing between three 

SpaceWire ports, three Virtual Channel (VC) buffers of the 

two SpaceFibre interfaces and a device configuration port. 

Configuration of the VHiSSI chip can be carried out over any 

SpaceWire interface connected to the embedded SpaceWire 

router or over VC0, VCA and VCB of the SpaceFibre 

interface. The SpaceWire Bridge is connected to the IO Switch 

Matrix and to the Mode Switch Matrix. 

The FIFO and DMA, Memory and Transaction (DMT) 

Interface provides various types of parallel interface into the 

VHiSSI chip for sending and receiving data over the 

SpaceFibre interfaces. The various parallel interface functions 

have been designed with specific application scenarios in mind 

and between them are able to operate with many types of local 

host system, including FPGAs and processors. The parallel 

interface is also designed to use a small number of pins, so that 

the VHiSSI chip can fit into a small (100 pin) package 

The SpaceFibre Interface has 11 virtual channels. VC 0 is 

intended primarily for VHiSSI device and local system 

configuration and monitoring and is connected to the 

embedded SpaceWire router. The other VCs have 

programmable VC numbers and so are referred to by letters. 

VCA and VCB are connected to the embedded SpaceWire 

router. The other VCs are connected directly to a SpaceWire 

interface, or to the parallel interface, depending on the mode of 

operation. Each VC supports full SpaceFibre QoS which can 

be configured independently for each VC.  

VC0 and VCA are directly connected to the embedded 

SpaceWire router. The other SpaceFibre VC buffers are 

connected to the Mode Switch Matrix which connects them to 

either the SpaceWire Bridge or the parallel interface. The 

SpaceFibre interface is connected via a multiplexer to either 

the nominal or redundant SerDes and CML transceiver. 

The SerDes converts parallel data words from the 

SpaceFibre interface into a serial bit stream and vice versa. On 

the receive side the bit clock is recovered from the serial bit 

stream by the SerDes. The SerDes includes integral CML 

transceivers. 

The IO Switch Matrix connects either the SpaceWire 

LVDS, SpaceWire LVTTL or parallel interface signals from 

the FIFO and DMT interface to the digital IO pins of the 

VHiSSI chip. Configuration is static and determined on exit 

from device reset. 

The Mode Switch Matrix connects either the SpaceWire 

Bridge or FIFO and DMT interface (parallel interface) to the 

VC buffers of the two SpaceFibre interfaces. Configuration is 

static and determined on exit from device reset. 

The digital logic for VHiSSI was designed by STAR-

Dundee Ltd. with system architectural design and project 

management being carried out by University of Dundee. 

AirbusDS provided inputs to the VHiSSI requirements. The 

back end design was carried out by Ramon Chips. ACE-IC 

designed the SerDes parts of the chip. Test vectors were 

prepared by STAR-Dundee and SCI with inputs from other 

partners. The chip was manufactured by IHP. The resulting 

VHiSSI chip is shown in Fig. 7.   

 

Fig. 7.  VHiSSI SpaceFibre Chip 

Initial testing of all chips was carried out at IHP with 

support from STAR-Dundee and SCI. The VHiSSI chip can be 

seen on the right hand side of Fig. 8. mounted on a chip tester. 

135



 

Fig. 8.  VHiSSI in Chip Tester at IHP 

The chip tester was able to carry out basic testing of the 

VHiSSI chip, but full-speed functional testing had to be carried 

out using dedicated test boards and test equipment. Four test 

boards were designed: 

1. SpaceWire LVDS test board, for testing VHiSSI in 

the SpaceWire bridge mode with five LVDS 

SpaceWire interfaces and one LVTTL interface. This 

board is also being used for SEU radiation testing of 

VHiSSI. 

2. SpaceWire LVTTL test board, for testing the 

SpaceWire bridge mode with eleven SpaceWire 

LVTTL interfaces. 

3. FMC interface test board, for testing the parallel, 

FIFO and DMT, interface modes of operation. 

4. Radiation test board, for testing the total ionising dose 

characteristics of the VHiSSI device. 

A block diagram of the SpaceWire LVDS test board is 

shown in Fig. 9.  

VHiSSI ASIC
In 

Test Socket

Termination
Pads

Po
w

er
 S

u
p

p
ly

Pi Filters

Power
Planes

Configuration
Switches

SpaceFibre N

Clock/
Oscillator

SMA

Po
w

er
 S

u
p

p
ly

 
C

o
n

n
ec

to
r

Termination
Pads

SpaceFibre R

LVTTL
LVDS

Buffer

SpaceWire 2

LVDS
Buffer

SpaceWire 1 LVDS
LVDS

Buffer
SpaceWire 3

LVDS
LVDS

Buffer
SpaceWire 4

LVDS
LVDS

Buffer
SpaceWire 6

LVDS
LVDS

Buffer
SpaceWire 5

SMA  

Fig. 9.  Block Diagram of VHiSSI SpaceWire LVDS Test Board 

The VHiSSI chip is mounted in a specially designed wide 

bandwidth test socket which can support the SpaceFibre 2.5 

Gbits/s serial data rate. The VHiSSI chip is directly connected 

to the nominal and redundant SpaceFibre interfaces. The 

SpaceWire interfaces are connected via LVDS buffers to 

SpaceWire micro-miniature D-type connectors. The LVDS 

buffers on the board are only necessary for SpaceWire 

interface 1 which has an LVTTL interface to the VHiSSI chip. 

The others are there simply to protect the VHiSSI chip during 

testing since in the SpaceWire LVDS mode they have LVDS 

interfaces on the VHiSSI chip. A crystal oscillator, 

configuration switches and power supply circuitry are included 

on the test board. Latch up protection circuitry is also included 

within the power supply circuitry for the SEE radiation testing. 

The VHiSSI chip was tested using a STAR-Dundee STAR 

Fire unit, to send and receive SpaceFibre packets and broadcast 

codes from VHiSSI and to monitor the link during lane 

initialization and error recovery operations. The STAR-Fire 

unit is described in section V. 

The block diagram of the VHiSSI SpaceWire LVDS 

illustrates how simple it is to build a SpaceWire to SpaceFibre 

bridge using the VHiSSI chip, with very few additional 

components being required especially when external LVDS 

buffers are not used. 

A photograph of the VHiSSI SpaceWire LVDS test board 

is shown in Fig. 10.   

 

Fig. 10.  VHiSSI SpaceWire LVDS Test Board 

The radiation test board for VHiSSI is shown in Fig. 11.  

 

Fig. 11.  VHiSSI Radiation Test Board 

Four chips are tested together two powered and two not 

powered with one of the powered devices also clocked. 

The VHiSSI chip is currently being tested in Dundee. 

Initial results from the testing will be available by the end of 
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September 2014. Radiation testing will be carried out by 

Airbus DS GmbH in October 2014. 

V. SPACEFIBRE TEST EQUIPMENT 

STAR-Dundee has developed a range of SpaceFibre test 

and development equipment. The first unit, STAR Fire, was 

designed to support the testing of SpaceFibre and include 

SpaceWire to SpaceFibre bridging, pattern generation and 

checking for multiple virtual channels and link analysis 

capabilities. A block diagram of STAR Fire is shown in Fig. 

12. and a photograph in Fig. 13.  
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Fig. 12.  STAR Fire SpaceFibre Development Kit 

The STAR-Fire unit contains two SpaceFibre interface each 

with eight virtual channels. Two virtual channels of each 

SpaceFibre interface are connected to a SpaceWire router, 

which also has two SpaceWire ports, a USB port and an 

RMAP configuration port. This allows the two SpaceWire 

interfaces and the USB interface to send packets through either 

SpaceFibre interface. To test the SpaceFibre interface at full 

speed and to exercise and validate the bandwidth reservation, 

priority and scheduled qualities of service, a packet generator 

and checker is attached to six of the virtual channels of each 

SpaceFibre interface. The STAR Fire unit is configured and 

controlled by a Remote Memory Access Protocol (RMAP) 

interface attached to the SpaceWire router. This allow 

configuration to be performed over the SpaceWire interfaces, 

USB interface or the SpaceFibre interfaces. Each SpaceFibre 

interface has an analyser attached which can be used to record 

and analyse the operation of the SpaceFibre interface.  

 

 

Fig. 13.  STAR Fire Unit 

A graphical user interface provides access to all the 

capabilities of STAR Fire. Part of an example analysis display 

is shown in Fig. 14. where the control words being exchanged 

in each direction are shown in colour and the four symbols that 

make up the left hand control code being shown in black and 

white.  

 

Fig. 14.  STAR Fire Analysis Display 

A cPCI interface board has also been developed for 

SpaceFibre which is compatible with cPCI, RASTA and 

National Instruments PXI systems. This board can provide a 

number of different SpaceFibre functions including SpaceFibre 

interface, SpaceWire to SpaceFibre bridging and SpaceFibre 

Router functions. This board is expected to be available early 

in 2015. The STAR Fire unit is currently available from 

STAR-Dundee along with the SpaceFibre IP core. 

VI. SPACEFIBRE VALIDATION 

The University of Dundee designed the lane layer of 

SpaceFibre with funding from ESA under the SpaceFibre 

contract, and the QoS and FDIR layer with funding from the 

European Commission (EC) SpaceWire-RT grant. The 

physical, multi-lane and management layers are currently being 

specified with ESA funding under the SpaceWire 

Demonstrator contract. 

As SpaceFibre was being designed by the University of 

Dundee, various alternative designs were simulated to rapidly 

explore alternative designs and support design trade-offs.  

In parallel with specifying the SpaceFibre standard the 

University of Dundee designed and tested the SpaceFibre IP 

core in VHDL. This was used to validate each revision of the 

SpaceFibre standard in a series of FPGA implementations. 
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To support the testing of SpaceFibre a suitable test platform 

was required, so STAR-Dundee Ltd. developed the STAR Fire 

unit. This device was used as a validation platform for the 

SpaceFibre IP core. Link analysis capability was included so 

that the exchange of information over the SpaceFibre interface 

could be recorded and analysed. 

As the specification of the SpaceFibre standard developed 

formal simulations of the standard were carried out by St 

Petersburg University of Aerospace Instrumentation (SUAI), 

covering drafts C, D and E [6], and by Thales Alenia Space 

France, covering draft F3. These simulations identified many 

issues with the SpaceFibre standard which were then rectified. 

NEC and Melco in Japan are both developing SpaceFibre 

interface devices to the specification produced by the 

University of Dundee. This work has provided valuable 

feedback on the specification and implementation of 

SpaceFibre. 

Several ESA projects are using the Dundee SpaceFibre IP 

core under a Beta evaluation programme. Feedback from these 

beta sites has been used to improve the SpaceFibre standard 

and the SpaceFibre VHDL IP core and related documentation. 

To raise the TRL of SpaceFibre a spaceflight engineering 

model is being developed by Airbus Defence and Space in the 

frame of the ESA SpaceFibre Demonstrator project. This 

design uses already flight proven components (RTAX2000 and 

TLK2711-SP). 

The VHiSSI radiation tolerant SpaceFibre interface device 

was developed by University of Dundee and partners within 

the Very High Speed Serial Interface (VHiSSI) European 

Commission Framework 7 project. This device has been 

manufactured and is currently being tested. 

Axon is working on an open specification for SpaceFibre 

cable and connectors, which has been referred to in the current 

draft specification of the SpaceFibre standard. The cables and 

connectors have been tested using the STAR Fire unit. 

VII. CONCLUSIONS 

SpaceFibre is a multi-Gigabit/s data link and network 

technology specifically designed for spaceflight applications. It 

is targeted primarily at spacecraft onboard payload data-

handling applications. It includes built in, very efficient, 

quality of service and fault detection, isolation and recovery 

techniques, which simplify the use of SpaceFibre enormously; 

providing substantial system level benefits without requiring 

the implementation of complex performance limiting software 

protocols. SpaceFibre is backwards compatible with 

SpaceWire at the packet level allowing easy bridging between 

SpaceWire and SpaceFibre, so that existing SpaceWire devices 

can be incorporated into a SpaceFibre network and take 

advantages of its performance and QoS and FDIR capabilities. 

SpaceFibre has been designed, reviewed and validated 

through analysis, simulation and hardware implementation, in a 

series of stages with feedback from each validation cycle 

feeding into the design. This has resulted in a mature well 

tested standard which will be released to ECSS for formal 

standardisation at the end of 2015. The TRL is already at TRL 

5 with an implementation designed in flight proven radiation 

tolerant FPGA and SerDes devices. It will be raised to TRL 6 

with application demonstrations in the near future. An 

experimental radiation tolerant SpaceFibre interface has been 

designed and manufactured and is currently undergoing tests.  
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Abstract—

The paper considers experience of SpaceFibre/SpaceWire-
RT implementation and analysis. Overheads are estimated and 
gaps in the SpaceFibre draft for implementation are 
considered, its refinement is proposed.   

The problems in the Retry level are discussed. In case of 
repeating a frame the virtual channels characteristics 
(priorities, timeslots) are not fully followed; it could corrupt 
required QoS of the traffic. Another problem with the Retry 
level is shown in a case study of streaming data traffic. For 
such type of traffic late frames transmission (could be not only 
useless but harmful for the target traffic. To deal with the 
problems a modification of Retry is proposed. 

Another open problem is in disconnection of a link at the 
Lane and Encoding levels when there is a need to change 
virtual channels (VC) logical numbers. When one needs to 
switch on or change a logical number of a single VC the link 
disconnection and restart is done. Thus data transfer would be 
stopped for all the VC of the link. It leads to considerable 
delays in tuning logical structuring of networks, excessive 
delays in virtual channel transfers when other VC in the same 
controller are retuned,  excessive complication and resources 
in processor-less nodes implementations. To deal with the 
problem a modification of link flow control crediting is 
proposed. 

 

I. INTRODUCTION 
The SpaceFibre standard supports several quality of 

service (QoS) classes: 
- guaranteed packet delivery; 
-priorities; 
-guaranteed throughput; 
 - scheduling; 
- best effort. 
Support for these classes of service is provided in the 

data link at the QoS layer. (The SpaceFiber protocol stack is 
shown in fig. 1). The QoS layer includes the Virtual channels 
sublayer, the Framing sublayer and the Retry sublayer,  
fig. 2. 

 

 
Fig.1. The SpaceFibre protocol stack 

However, there are some problems and requirements, 
which are not supported in the current SpaceFibre standard 
draft: 
- problem of fulfillment  the data flows characteristics 

(priority, reserved bandwidth, timeslots list for 
scheduling) in case of frames retransmission; 

- no packets transmission without guaranteed delivery for 
some types of traffic; 

- no reconfiguration of virtual channels logical numbers 
without disconnection on the Lane and Encoding layers. 

In some cases a single error that occurs in the channel 
does not lead to breaking the connection at the Lane and the 
Encoding layer. Currently specified in the SpaceFibre 
procedure of frames retransmission may violate the QoS 
characteristics and constraints that are specified for data 
flows characteristics. At the VC layer it can lead to quite 
noticeable delays of high-priority traffic transmission, and, 
when scheduling is used, to frames transmission out of the 
assigned timeslots. 
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For most types of streaming data traffic there is no 
requirement of guaranteed delivery, for example for video 
traffic. Loss of some data in this traffic is not critical for 
system functionality as a whole. In typical videostream 
networking (e.g. ARINC 818) frame fragments with errors 
are not repeated; it is neither needed, nor possible for 
conventional equipment to implement. Created by this traffic 
network load is very high. The retransmissions of such 
traffic may lead to network congestions, impossibility to 
deliver other traffic with the QoS constraints to destination 
terminal nodes,  e.g. command traffic, which transmission is 
much more critical to the system functionality.  

Reconfiguration of virtual channels logical numbers may 
be necessary due to changes in the network operation mode, 
to tasks and applications migration between nodes, to new 
equipment attachment, etc. In SpaceFibre, to reconfigure VC 
logical numbers one needs to disconnect the link. 
Disconnection leads to data transmission impossibility via all 
the other VCs of the data link during reconfiguration of the 
single VC and connection recovery (about 50 us). This may 
result, for example, in very essential delay of command 
traffic. 

 

 
Fig. 2 The QoS sublayer structure 

 

II. THE QOS LAYER OF THE SPACEFIBRE STANDARD 
The QoS layer includes the Virtual channels sublayer, the 

Framing sublayer, the Retry sublayer, fig. 2. 

A. The Virtual channels sublayer 
The main functions of the Virtual channels sublayer are: 
- the data flow control functions (credit based 

mechanism); 

- partitioning of packets into data blocks, each of 
which is further placed in a separate frame; 

- support of priority mechanism; 
- providing of guaranteed throughput; 
- scheduling. 
 
The Virtual channels sublayer has a separate buffer space 

for every virtual channel (VC), which includes the buffers 
for storing the transmitted data and the buffers for storing the 
received data. The Destination VC sends to the Source VC 
information about the available buffer space. The Source VC 
may send amount of data that corresponds to this free buffer 
space. 

The Virtual channel partitions data into blocks before 
transmission to the Framing sublayer that will place them 
into separate frames. 

Transmission of the next data block may start if the 
Virtual channel transmission buffer contains the end of 
packet or contains 256 Nchars (the maximal size of frame 
data field). 

The media access controller, fig. 2, arbitrates requests for 
data transmission from the virtual channels. The arbitration 
is done in correspondence with the priority levels, amount of 
allocated bandwidth and scheduling that are assigned to 
every VC. 

B. The Framing sublayer 
The main functions of the Framing sublayer: 
- packing data blocks, FCT, Broadcasts to frames for 

transmission and extraction of data blocks, FCT, 
Broadcasts from received frames; 

- scrambling and descrambling. 

C. The Retry sublayer 
The main functions of the Retry sublayer are: 
- junction for transmission of data frames, Broadcast 

frames, command frames correspondingly to their 
priorities; 

- separation of the received frames into the data frames 
flow, Broadcast frames flow, command frames flow; 

- implement mechanisms for guaranteed delivery. 
 
To ensure guaranteed delivery, at the Retry sublayer on 

the source side: 
- A serial number and CRC are assigned to every 

frame. 
- A frame is stored in the retry buffer for transmitted 

and unacknowledged frames; the frame is stored in 
this buffer until ACK will be received. 

- When ACK is received, all the frames with 
sequence numbers less or equal to the specified in 
the ACK are considered successfully transmitted 
and are deleted from retry buffer. 

- When NACK is received all the frames with 
sequence numbers more than the specified in 
NACK number should be retransmitted (sequence 
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numbers of the frames could be changed before 
retransmission). 

 
To ensure guaranteed delivery on the destination side: 
-  the Retry sublayer checks the sequence number, 

CRC and structure of the received frame; 
- if there are no errors in the frame the ACK 

(acknowledgment of success) is sent; 
- if an error is found, the NACK is sent. 

If the frame has been received without errors it is 
transferred to the Framing layer and then pass to the Virtual 
channels layer (or to the Broadcast layer). 

 
The problem of data frames retransmission in correct 
QoS sequence  

The data flow, FCT flow and broadcast flows are 
distinguished at the Retry layer (the priority levels of them 
are kept when they are retransmitted). However, the data 
frames of different virtual channels are not distinguished at 
the Retry layer. Serial numbers of frames are generated at the 
Retry layer and the frames are placed in the buffers, fig.2. If 
a NACK is received, the unacknowledged data frames will 
be retransmitted in the order, in which they happened to be 
placed in the Retry data buffer. The assigned priorities, 
scheduling, allocated bandwidth in this case are not 
accounted by the Retry layer. It can violate QoS parameters 
of data frames from different VC. 

The fig. 3 shows dependency between the frame 
retransmission time and quantity of retransmitted frames that 
have been placed in the Retry buffer before this negatively 
acknowledged frame. The frame retransmission time grows 
proportionally to the quantity of previous frames in the Retry 
buffers. 

 

 
Fig.3 The dependency between the frame retransmission time and 

quantity of retransmitted frames that are placed in the Retry buffer before 
this frame 

The Retry sublayer provides the guaranteed delivery 
service class by retransmission of all corrupted or lost data 

frames. This retransmission mechanism cannot be turned off 
for some data flows, for which the guaranteed delivery is not 
required.  

We suggest some modifications of the QoS layer for 
provision of: 

- rearranging frames processing between the 
sublayers of the QoS layer to take into account the 
frames’ QoS attributes and parameters when the 
frames are retransmitted; 

- additional transmission mode without guaranteed 
delivery for some data flows; 

- resetting and reconfiguration of a single VC without 
interruption of information flow in other VCs. 

 

III. THE MODIFICATIONS OF THE VIRTUAL CHANNELS AND 
THE RETRY SUBLAYERS  

At the Retry sublayer there is no information about the 
required characteristics of frames, their QoS attributes and 
parameters.  Therefore in frames retransmission it is not 
possible to apply processing algorithms for QoS support at 
this layer. We suggest moving the retransmission 
functionality from the Retry sublayer to the Virtual channels 
sublayer and the Broadcast layer. At these layers 
retransmission of frames may be arranged in accordance 
with their priorities, the list of timeslots, allocated 
bandwidth. The modified QoS protocol sublayers structure is 
represented in fig. 4. The suggested modifications: 

- separate numbering of data frames and FCT frames; 
- separate numbering of data frames and Broadcast 

frames; 
- separate the acknowledgement and retransmission 

for different Virtual channels, for Broadcasts 
channels; 

- move the acknowledgement and retransmission 
schemes d from the Retry to the Virtual channels 
sublayer; 

- move the acknowledgement and retransmission for 
Broadcast frames from the Retry sublayer to the 
Broadcast layer. 

Within the suggested approach the receiver interprets the 
frame numbers with reference to the type of flow (Data, 
Broadcast, FCT) and for the Data and FCT flows – with the 
reference to the logical VC number also. Some functions of 
the Retry sublayer go from the Retry sublayer to the VC 
sublayer and Broadcast sublayer: 

- data frames and FCT sequence numbers will be 
generated and controlled by the VC sublayer (; 

- sequence numbers of Broadcast frames will be 
generated and controlled by the Broadcast sublayer; 

- ACK and NACK frames are generated separately:  
for the Data and FCT flows they are generated by 
the VC sublayer, for Broadcasts  - by the Broadcast 
sublayer; 

To support these new features: 
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- include additional information in the ACK, NACK 
and RETRY frames – the attribute of belonging the 
ACK/NACK to the data flow, FCT flow or 
Broadcast flow;  

- include the VC number in Data and FCT frames; 
- include in the FULL frame the attribute of 

belonging to data flow, FCT flow or Broadcast 
flow, for the Data and FCT flows the VC number 
also; 

- frames, which belong to a data flow without 
guaranteed delivery (No-retry frames), should be 
transmitted with the sequence number 0. 

- IDLE frames should be transmitted with the 
sequence number 0. 

The ACK, NACK, RETRY FULL commands should be 
transmitted between the VC and the Retry sublayers via the 
Framing sublayer, fig.4. 

Fig . 4 The suggested variant of the QoS sublayer structure 

In the modified sublayers the frame retransmission can 
be organized only for data flows with the guaranteed 
delivery requirement. If guaranteed delivery is not required 
for a data flow, its frames are not checked in the receiver of 
the Retry sublayer; the receiver does not send acknowledge 
for such frames. For these frames the frame sequence 
number is not used and we recommend setting it to 0. 

IDLE frames do not belong to any flow. If an error 
occurs when an IDLE Frame is received, it does not cause 
frames retransmission for any flow. Therefore the serial 
number of IDLE frames is not used in the receiver; we 
recommend to set its value to 0. 

We propose to change the format of the ACK, NACK, 
RETRY and FULL frames. These frames are generated not 
by the Retry sublayer (as in the basic variant) but by the VC 
sublayer and by the Broadcast sublayer. We add to them 
information about flow type (Broadcast, FCT, Data) and the 
VC number (for Data and FCT flows), fig. 5-8. 

 Fig. 5 The ACK frame format 

 
Fig. 6. The NACK frame format 

 
Fig. 7 The RETRY frame format 

Fig. 8 The FULL frame format 

The encoding of the FLOW_TYPE field: 
D0_0 – Broadcast; 
D0_1 – FCT; 
D0_2 -  Data. 

Other possible values are reserved. 

The suggested QoS sublayers modification positively 
effects implementation complexity. The transmitter buffers 
of the Retry sublayer are not needed due to suggested 
modification (its role play the buffers on the VC layer). 
Therefore hardware cost of an implementation is decreased 
by 15 – 20% (Concrete value in general case depends on the 
Retry buffer size in the basic variant of an implementation.) 

Frame numbering separation from the junction controller 
of data, broadcast and command flows, which includes 
priority control, allows decreasing of ratio between the QoS 
layer operating frequency and data transmission frequency 
in the serial channel. It is important parameter if a 
SpaceFibre port is implemented, for example, in 180 nm 
technology. Such technologies are actively used today for 
aerospace equipment when thinner design rules do not meet 
space operation requirements. 

Implementation of suggested mechanisms leads to some 
additional channel throughput overheads. To estimate 
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overheads assume that transmission of one frame (the 
maximal size one) corresponds to transmission of one FCT 
and one ACK in the opposite direction. Overheads of FCT 
and ACK transmission in SpaceFibre are about 3% of the 
channel throughput. In the modification, the length of ACK 
(NACK) and FCT grow in 2 times, so maximal overhead of 
its transmission grows from 3% to 6% of the channel 
throughput. 

For data without guaranteed delivery requirement the 
suggested algorithms allow to decrease data link 
transmission time.  Let the ratio between QoS processing 
frequency and data channel transmission frequency be 1/10. 
The ratio between frame transmission time without CRC 
control and with them is represented on fig. 8. These charts 
show that timing gain is 10 - 15% when frames length is 64 - 
256 bytes; elimination of unnecessary for this traffic frames 
retransmission gives additional gain also. 

 
Fig. 9 Ratio between frame transmission time without CRC control 

and with CRC control 

Implementation of the suggested mechanisms allows 
reducing transmission delay of high priority frames or 
frames that should be transmitted in specific timeslot, in case 
of channel errors.  
The charts of the ratio between high priority packet 
transmission time with current SpaceFibre and with the 
suggested modification used are represented in fig.9. In this 
investigation we supposed that the high priority packet 
length is 64 bytes. We assume that transmission error does 
not cuase disconnection at the Lane or Encoding layer. 
Different quantities of frame buffers at the Retry layer: 2, 4, 
8; and the frame length in the buffers from 8 to 256 Bytes, 
are considered. These charts show that when frames in the 
Retry buffers are short and quantity of retry buffers is small 
the proposed method allows to reduce time in 2 – 4 times. If 
the quantity of buffers is big and frames are long enough 
timing gain goes up to 18 times.  

 

 
Fig. 10. Ratio between high priority packet transmission time with the 

current SpaceFibre retransmission mode and with the suggested 
modification 

IV. LOGICAL NUMBERS RECONFIGURATION AND RESET FOR 
SEPARATE VC WITHOUT DISCONNECTION 

User may need to change logical numbers of a VC in a 
SpaceFibre network reconfiguration for starting new 
applications in the network nodes or migration of 
applications between nodes, adding new devices, changing 
of a node equipment operation mode, etc. 
In the current SpaceFibre draft it is not possible to reset a 
single VC. For example in case of a VC data buffer overflow 
(such event is considered in standard) the user should reset 
all virtual channels. Thus data transmission for others VC of 
this data link will delay until connection recovery (about 50 
us). 

In the current SpaceFibre standard draft any changes of 
VC logical numbers without the connection break is 
impossible.  The new VC logical numbers on different sides 
of the connection will be configured with some variance in 
time. As a result, one side can start FCT sending before 
another side is configured; these FCT will be rejected as 
invalid. So if we need to reconfigure a single VC, we should 
break connection at the Lane layer. The connection recovery 
time is about 50 us. For this time data transmission from all 
the other VC of this data link will be impossible. This delay 
can significantly affect parameters of the data flows 
transmitted via other VC, may violate special requirements 
and QoS constraints for these VC.   
To deal with the problem we suggest: 
- to slightly change the FCT sending rule: after the VC 

logical number configuration the VC should send only 
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one FCT; all other FCT should be send only after 
receiving of one FCT from the other side of the channel 
(the first FCT is used not only for credit but for 
connection establishment on the VC sublayer); 

- add the new reset command– “Single VC Reset”; this 
command is analog to the flush command, but it resets 
only one VC – the VC, for which user needs to reset or 
to change logical number. 

This modification of the FCT transmission mechanism 
affects only the VC sublayer. We propose to introduce an 
additional command for reset of a single concrete VC 
(VC_reset) to solve this problem. For this command coding 
could be the KCode that in current SpaceFibre standard draft 
is used for NACK command, but in our modification, which 
is described in the previous section, it is not needed more for 
this purpose. When the VC_reset command is received, the 
control logic of this virtual channel only is set to the initial 
state. 

 

 
Fig. 11 The format of VC_reset command 

Implementation of this mechanism requires some 
modifications at the Retry and Framing layers also, because 
the command should go via these layers. Processing of this 
command should be done at the Virtual channels layer. 

Implementation of the suggested mechanisms requires 
little hardware cost (less than 1% of the SpaceFibre port 
implementation). It does not lead to additional overhead of 
data channels bandwidth.  

 

V. CONCLUSION 
The suggested modifications of SpaceFibre standard draft 

can extend its functionality and improve implementation and 
application. 

Transfer of all functionality for data QoS support to the 
Virtual channels sublayer allows to retransmit frames in full 
correspondence with the QoS traffic parameters (such as 
priority, scheduling). AS we show, it isn’t ensured fully in 
the current SpaceFibre draft. This modification allows also 
decreasing hardware cost of an implementation due to 
removing buffers from the Retry sublayer. Changing the 
frames numbering scheme allows to decrease ratio between 
the QoS processing frequency and the serial link frequency. 
It is useful when coarse design rules are used for 
implementation.  

The modification enables to retransmit only traffic with 
guaranteed delivery requirement also. For other types of 
traffic retransmission could be switch off, along with 
overheads for its implementation. It efficiently supports 
streaming data traffic and improves network useful 
bandwidth. Adding of the service class without guaranteed 
delivery allows to reduce transmission time, to exclude 
retransmission of data frames in case of disconnections and 
thereby decrease network load after connection recovery, 
and, accordingly, decrease delivery time for other traffic. 

Provision of dynamic reconfiguration of a single virtual 
channel number and a separate reset for a single virtual 
channel without disconnection at the Lane and the Encoding 
layers provide possibility of dynamic reconfiguration for 
some data flows without distortion of other data flows.  
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Abstract—Nowadays SpaceWire, SpaceFibre, GigaSpaceWire  
protocols are widely used in spacecraft design. SpaceWire is 
established as one of the main standards for data transmission. It 
is used in many Russian, European, American and Japanese 
spacecraft. SpaceFibre is a newly emerging standard for the 
SpaceWire technology standards family, which is able to operate 
over fiber-optic and copper cable and supports data rates up to 2 
Gbit/s. GigaSpaceWire link specification is also developed for 
SpaceWire technology extension. It provides gigabit link 
technology with longer distances and galvanic isolation capability 
for SpaceWire networks.  

Quality of service (QoS) becomes important network 
characteristic for prospective onboard networks. There are 
various approaches for QoS provision in networks. Some of them 
provide QoS at every data link and node inside the network, some 
provide QoS features at the network boundary, in its terminal 
nodes, some combine these approaches in a way.    

The SpaceFibre follows the first approach. In every data link it 
has QoS services, providing priorities, guaranteed bandwidth, 
guaranteed data delivery, scheduled frames transmission. 
Implementation of these mechanisms is associated with additional 
overhead such as frame transmission delay, transmitting overhead 
information such as header and end of frame,  traffic planning and 
dispatching, retransmission in every data link, etc. These factors 
lead to increasing overheads and packet transmission time, to 
useful bandwidth degradation. 

For SpaceWire/GigaSpaceWire the second approach for QoS 
provision is evolving. QoS services can be implemented over the 
basic SpaceWire/GigaSpaceWire network interconnection, e.g. at 
the Transport layer, with much more economical implementation 
and overheads.  

In the article we analyze both approaches, their feasibility and 
value of QoS in SpaceWire/GigaSpaceWire and in SpaceFibre 
networks. Networks with different topologies and traffic pattern 
are used to study and to evaluate the performance. Various traffic 
types such as the data packets, streaming data, commands will be 
transmitted in networks. Data delivery characteristics for 
SpaceFibre and SpaceWire/GigaSpaceWire networks are analyzed 
and compared. 

Index Terms—SpaceFibre, SpaceWire, GigaSpaceWire , Quality 
of Service (QoS) 

I. INTRODUCTION  
Let us see what features for QoS have SpaceFibre, 

SpaceWire and GigaSpaceWire. 

The SpaceFibre standard, [1], supports several classes of 
service at the data link layer: 

• priority; 
• guaranteed throughput; 
• guaranteed packet delivery; 
• scheduling; 
• best effort. 

The QoS (Quality of Service) layer of the SpaceFibre 
standard provides these services. Its sublayer - the Virtual 
channels sublayer, realizes priority, guaranteed throughput, 
scheduling and best effort classes of service functionality. 

For each virtual channel (VC) a priority level may be 
assigned. When some virtual channels have data to transmit, 
data from the VC with the highest priority will be sent first. 
Unique priority level can be assigned to every VC or one 
priority level may correspond to some VC. 

For each VC amount of bandwidth that it can use can be 
defined. There is a bandwidth credit counter for every virtual 
channel. If the VC does not transmit any data the bandwidth 
credit counter is incremented. If the VC transmits some data, 
the bandwidth credit counter is decremented (wherein takes 
into account amount of transmitted data and defined amount 
of bandwidth for this channel). If some virtual channels with 
the same priority level have data to transmit, first come data 
from the VC with the largest bandwidth credit counter value. 

Another QoS mode uses scheduled frames transmission. 
For every virtual channel a list of timeslots, in which it can 
transmit data, can be defined. . Request from the VC for data 
transmission during other timeslots are blocked. It gives 
guaranteed delivery latency for VC traffic. 

The SpaceFibre standard draft makes the Retry layer 
responsible for guaranteed data delivery service. This layer 
checks correctness of the received frames and retransmit 
frames that have been transferred with errors or lost. For 
these mechanisms each frame includes a sequence number 
and the checksum (excluding IDLE frames). 
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Mechanisms of constrained priority are supported in the 
SpaceWire/GigaSpaceWire standards. Mechanisms to 
support other classes of service are not provided by the core 
SpaceWire/GigaSpaceWire networks. However mechanisms 
to support different service classes may be implemented on 
top of these standards, at the Transport layer especially. In 
this paper we consider only variants that do not require 
implementation of some special functions in routers for 
SpaceWire, [2], and GigaSpaceWire, [3]: 

• priorities (at the Network layer); 
• the guaranteed packet delivery between the source 

and destination terminal nodes (at the Transport 
layer); 

• the scheduling mechanism for providing 
constrained data packet delivery time (at the 
Transport layer). 

In the paper we consider and compare: 
• features and characteristics that could be provided 

by the priority mechanism in SpaceWire 
/GigaSpaceWire networks and in SpaceFibre  
networks; 

• mechanisms of guaranteed packet delivery that is  
based on an acknowledgement scheme between 
data source and destination terminal nodes in 
SpaceWire/ GigaSpaceWire and retransmission 
mechanism in data links in SpaceFibre . 

• scheduling mechanisms for guaranteed data packet 
delivery time for SpaceWire/GigaSpaceWire  
networks and in SpaceFibre data links.  

II.  PRIORITY MECHANISMS FEATURES  
In the SpaceFibre standard draft each VC may have its 

own priority level. The priority level affects frames 
transmission order from different virtual channels to the link. 
The frame for transmission is selected according to its 
priority value. If transmission of a lower priority frame has 
started before the higher priority frame arrival, then higher 
priority frame waits until the lower priority frame 
transmission is finished. The SpaceFibre standard does not 
use frame transmission interruption. Therefore high priority 
frame waiting time is up to maximum length frame (256 
Nchar) transmission time plus time overheads. 

In SpaceWire/GigaSpaceWire a priority level can be 
specified for packets at the Network layer. Priority level is 
associated with the packet network address (logical, 
regional-logical). The priority level affects packet 
transmission order to the output port. When transmission of a 
packet with lower priority is started before the packet with 
higher priority has arrived, the higher priority packet is 
transmitted after completion of the lower priority packet 
transfer; SpaceWire/GigaSpaceWire do not use packet 
transmission interruption. Therefore high priority packet 
waiting time depends on the lower priority packet length. 

The SpaceWire standard does not limit packet length and 
in a general case we can’t estimate the high-priority packet 
delay in a hop. Its waiting time depends on data formats used 

in a specific network. If we limit maximum packet length in 
the SpaceWire network, we can obtain reliable estimates of 
high priority packets waiting time. 

To estimate transmission characteristics of high priority 
traffic in SpaceFibre and SpaceWire/GigaSpaceWire  
networks consider dependency of high priority packet 
transmission time in one router from low priority packet size. 
This dependency is presented in Fig. 1; the high priority 
packet length is 64 bytes. 

 
Fig. 1.  Dependency of the high priority packet transmission time in one 

router from low priority packet size. Data rate: 400 Mbit/s in 
SpaceWire; 1250 Mbit/s in GigaSpaceWire; 1250 Mbit/s in 

SpaceFibre 

The SpaceFibre provides priority level at the Frame 
layer. Its dependency on the Fig. 1 looks almost like straight 
line parallel to X axis with value 2784 ns. 

High priority packet transmission time in one router for 
SpaceWire and GigaSpaceWire practically coincides with 
high priority packet transmission time in one router for 
SpaceFibre when low priority packet size is less than 256 
bytes; after it high priority packet transmission time in one 
router for SpaceWire and GigaSpaceWire significantly 
grows.  

The results show that high priority packet transmission 
time for SpaceWire and GigaSpaceWire networks may be 
close to the value for SpaceFibre networks if low priority 
packets size would be limited to 256 bytes. This can be 
achieved by appropriate fragmentation on the Transport layer 
in terminal nodes.  

Now let us consider dependency of low priority message 
transmission time from the packet size. Charts for this 
dependency are presented in Fig. 2.; data rates are 250 
Mbit/s and 312 Mbit/s.  

The Figure 2 shows that message transmission time is 
almost the same when it is transmitted as one packet and by 
several packets with the size of 256 Nchar. So packets 
fragmentation practically doesn’t worsen the message 
transmission time. 
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Fig. 2.  Dependency of the low priority message transmission time from the 

packet size. 

Thus for traffic with different priorities in 
SpaceWire/GigaSpaceWire networks practically the same 
transmission characteristics as in SpaceFibre can be achieved 
if packet’s data field length would limited to 256 Nchar. It 
can be implemented at the Transport layer. 

From the functional point of view 
SpaceWire/GigaSpaceWire networks are more flexible in 
packet priority mechanism than the SpaceFibre. In them a 
priority is assigned to logical and regional-logical addresses. 
Thus different priorities can be assigned for dozens and 
hundreds of packet streams in a network. In SpaceFibre 
priorities are assigned to a virtual channel in a data link. 
While in theory there could be 256 VCs in a data link, due to 
high hardware overheads for a VC implementation their 
number in a link would be limited by quite several ones (4-8 
VC as an optimistic estimation). Thus only 4-8 data packet 
streams may have particular priorities in the entire network. 

 

III. PACKET DELIVERY MECHANISMS  
The guaranteed delivery in SpaceFibre is ensured by 

checking the frames transmission correctness in every data 
link at the Retry layer. Transmitted with errors or lost frames 
are retransmitted. 

From a functional point of view both options allow to 
ensure guaranteed delivery of a packet. Difference is in 
where retransmission is organized – at every data link or at 
the network boundary, in terminal nodes.  These options may 
have different timing characteristics and hardware costs. 

 

  
Fig. 3.  The illustration of retransmission scheme in SpaceFibre  data link 

layer and corresponding delays 

The SpaceWire and GigaSpaceWire do not provide 
mechanisms for guaranteed packet delivery in a data link. 
But mechanisms for guaranteed packet delivery can be 
implemented in terminal nodes, at the Transport layer (the 
RMAP protocol is an example). Such protocol can include 
mechanisms for identification of packets that are lost during 
transmission (for example by sequence numbers), for 
identification of packets with errors (for example by CRC), 
for data packets acknowledgement and retransmission of 
unacknowledged packets (either not been confirmed or timed 
out in acknowledgement waiting). 

 
Fig. 4.  The illustration of retransmission scheme between source and 

destination node in SpaceWire /GigaSpaceWire  network  and 
corresponding delays.  

To compare timing characteristics we assume that one 
error occurs during the packet transmission. In a SpaceFibre 
network it cause a frame retransmission in the data link. In 
this case additional transmission time consists of the NACK 
transmission time and the retransmission time of the frame in 
the link. We assume that time of NACK formation and time 
of it operation at the Retry level is negligible. 

In SpaceWire/GigaSpaceWire networks an error will 
cause a full packet retransmission from the source node. In 
case when one error occurs during the packet transmission, 
packet retransmission time depends on  

• communication protocol organization; 
• rules of error detection; 
• timeout mechanisms and timeout values ; 
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Timeout values depend on network
characteristics, transmission paths of differen
intersect with the considered traffic. 

Let us first take the case when a packet
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Fig. 6.  Dependency between the packet delivery time and the packet size 

when a transmission error occurs (Tout = Tf  

As one can see from the Fig.6, packet delivery time in 
SpaceWire is less than in SpaceFibre if size of packets ≤ 
1024 bytes. Packet delivery time in GigaSpaceWire is less 
than in SpaceFibre if size of packets ≤ 2048 bytes. 

However this value of acknowledgment waiting timeout 
for SpaceFibre/GigaSpaceWire networks may be selected in 
cases when packet and NACK paths do not interfere with 
packet paths of other traffic. Namely, packet and its NACK 
don’t wait in output ports. If packet and NACK paths 
interfere with packet paths of other traffic, we should 
consider waiting time to access an output port also in a value 
of acknowledgment waiting timeout.  

Let us evaluate packet delivery time when 
acknowledgment waiting timeout is equal 3*Tf.  
Dependency between the packet delivery time and packet 
size when the noise duration is 1 us is presented in Fig. 7. 

As one can see from the Fig.7, the packet delivery time 
in SpaceWire is less than in SpaceFibre if size of packets ≤ 
512 bytes. Packet delivery time in GigaSpaceWire is less 
than in SpaceFibre if size of packets ≤ 1024 bytes. 

Let’s consider the packet transmission time in case when 
no errors occur during transmission and packets are not 
retransmitted. The plots of dependency between packet 
transmission time and the transit routers number are 
presented in Fig. 9. 

As can be seen, the packet transmission time (for packets 
with considered length) is 1,5 times less for GigaSpaceWire 
than for a SpaceFibre network. The wormhole routing used 
in SpaceWire/GigaSpaceWire routers reduces the packet 
transmission time via network. The packet transmission time 
in a SpaceFibre network is about 1,5 times bigger due to 
delays associated with the full frame buffering and CRC 
checking in each data link. This check is made for all types 
of traffic, including the traffic for which guaranteed data 
delivery is not required by an application.  

 

 
Fig. 7.  Dependency between the packet delivery time and packet size when 

transmission error occur (Tout = 3*Tf). 

This delay is especially significant for short packets with 
less than 256 Nchars length. The transmission time of short 
packets is bigger for SpaceFibre network with 1250Mbit/s 
transmission rate than even for SpaceWire network with 
400Mbit/s transmission rate. Short packets typically are used 
for command traffic therefore its delivery time is particularly 
important. 

It is important to understand that provided in the 
SpaceFibre guaranteed delivery mechanism, cannot 
guarantee a packet delivery if there would be faulty network 
equipment or links. Therefore for networks with high 
guaranteed delivery requirements one still need to use 
mechanisms of packet replication at the hardware level. 

If the hardware and data redundancy is used in a 
SpaceFibre network in combination with standard retry 
mechanism and recoverable connection breaks, then correct 
interpretation of the packet replicas that goes via a path with 
temporary disconnection is very difficult. 

Connection recovery in a SpaceFibre link may take a 
long time – duration of connection procedure is 50 us. The 
duration of noise may be added to this time. Therefore one 
copy of packet can reach the destination node with a very 
noticeable delay (dozens – hundreds of us, dependent on 
duration of noise) in comparison with other copies that goes 
via paths without disconnections.  

In systems with data duplication for redundant 
transmission (N replicas of one packet are sent to the 
network) typically packet numbering is used. The receiver 
terminal node determines by its number whether it has 
already a copy of this packet. 
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The Figure 10 represents plots of the packet delay due to 
a transmitted out of its timeslot traffic. 

 
Fig. 10.  Dependency of the packet delay in one router from the size of the 

packet that is transmitted out of his timeslot  

If we need to transmit traffic with guaranteed delivery 
time and traffic without this requirement, the one part of time 
slots can be for traffic with guaranteed transmission time and 
remaining time slots to other traffics. The transmission paths 
of the traffic without guaranteed time requirement can share 
interconnection paths in assigned for them all time slots. 

We should take into account also that in SpaceFibre 
timeslotting is associated with virtual channels, not with 
packets. As in the priorities case, the quantity of virtual 
channels in a SpaceFibre data link is constrained by its 
hardware cost. Typical virtual channels quantity per data link 
is 4 or, rarely 8. The specified in the SpaceFibre standard 
draft quantity of 256 VC is practically impossible for 
implementation in VLSI. Therefore in SpaceFibre there is 
very limited number of objects for scheduling. Applications’ 
packets flow scheduling and selection of data transmission 
paths will be essentially complicated in comparison with 
SpaceWire/GigaSpaceWire networks. The quantity of data 
flows that can be planned to time slots is very limited. 

V. CONCLUSIONS 
As has been shown abode, the QoS may be implemented 

both in SpaceFibre and in SpaceWire/GigaSpaceWire 
networks. While SpaceFibre strives for QoS in every data 
link, SpaceWire/GigaSpaceWire could implement QoS at the 
boundaries of the network, in its terminal nodes, at the 
Transport layer.  

If we constrain the packet length in SpaceWire and 
GigaSpaceWire network by value of 256 Bytes (equal to the 
SpaceFibre data frame size) the timing parameters of high 
priority traffic transmission in these networks and 
SpaceFibre are similar. This constraint does not affected 
essentially transmission time of big data objects, which in 
this case would be sent by multiple packets. Basically, the 

question goes down to where the data objects (messages) 
will be sliced into pieces – in terminal nodes (as packets) or 
in every data link (as frames).  

The data transmission time when network error occur in 
SpaceFibre will be better than in SpaceWire/SpaceWire 
GigaSpaceWire  network with retransmission of lost or 
incorrect packet between the source and destination nodes, 
for example at the Transport layer. On the other hand, 
impossibility of turning off for retry mechanism in 
SpaceFibre leads to essential growing of data packets 
transmission for traffic without guaranteed delivery 
requirement (e.g. video data streams). Potential incorrect 
interpretation of the packets that arrive too late due to 
waiting of connection recovery in network with packets 
duplication is another problem. 

For traffic with guaranteed delivery in 
SpaceWire/GigaSpaceWire networks same characteristics 
could be reached as for SpaceFibre networks if all data flows 
will be transferred strictly in the assigned timeslots. If can 
happen that some traffic is transmitted out of its timeslots (as 
result of malfunctions of terminal nodes or disconnections on 
links) then SpaceFibre operation will be more reliable. It 
checks the schedule in every data link and will stop invalid 
in time transmission in the first network node on its. 

Traffic parameters for SpaceWire/GigaSpaceWire 
networks can be similar to the SpaceFibre ones when 
SpaceWire packet length is constrained by 256 bytes. 

In general, in timing characteristics for QoS traffic both 
SpaceFibre and SpaceWire/GigaSpaceWire area balancing in 
their gains in relation to network topology, error probability, 
size and features of target data items. In many cases they 
could be made rather similar.  

The SpaceFibre advantages are in QoS mechanism 
immersion in every data link that makes them more reliable 
in case of network components malfunctioning. Drawbacks 
of the SpaceFibre approach to QoS are much higher 
implementation costs and longer latencies in packets 
delivery. 

The SpaceWire/GigaSpaceWire QoS approach is 
considerably cheaper in implementation, gives lower 
latencies, and may operate over conventional 
SpaceWire/GigaSpaceWire network backbone. However, 
without control of packets transmission QoS rules and 
assignments inside the network backbone, it may be more 
sensitive to errors and network components malfunctioning. 
What could be included in a SpaceWire router node for more 
reliable QoS network operation, without sacrificing the 
native SpaceWire feature – compactness and simplicity, is a 
good subject for further research.  
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Abstract— This paper presents the implementation of a RMAP 

bootloader which has been developed in the context of the RPW 

(Radio Plasma Waves) experiment on the Solar Orbiter mission. 

It describes the different steps of the RMAP boot mechanism, the 

performances of this process, the main advantages of such an 

approach and its integration as a reusable software block in the 

GERICOS (GEneRIC Onboard Software) framework. 

Index Terms—RMAP, Bootloader, RPW, Solar Orbiter, 

LEON3-FT, Flight software 

I. INTRODUCTION 

The Radio and Plasma Waves (RPW) experiment [1] is one 

of the ten instruments of the ESA Solar Orbiter mission which 

will be launched in 2017. The RPW instrumentation is a 

sophisticated plasma/radio wave receiver system providing in-

situ measurements of both electrostatic and electromagnetic 

fields and waves in a broad frequency range. The RPW 

consortium is led by CNES (RPW management) and LESIA 

(PI institute). It includes the scientific and technical 

participations of the following labs and institutes: LPC2E 

(Orleans), LPP (Palaiseau), IRF (Uppsala), IAP (Praha), IWF 

(Graz).  

In this paper, after presenting the electrical and software 

architecture of the instrument, we describe how the RMAP 

protocol [2] has been used to implement a remote boot process 

of the RPW subsystem software. We also give the various 

justifications which have led to this technical choice. Some 

results about the performance of the RMAP boot process are 

detailed. Finally, we show how the RMAP boot loader modules 

have been developed and qualified as generic and reusable 

pieces of software. 

II. RPW INSTRUMENT ELECTRICAL AND SOFTWARE 

ARCHITECTURE 

A. RPW Electrical Architecture Overview 

1) RPW System 

The RPW instrument is divided in three subsystems located 

in different parts of the Solar Orbiter spacecraft: 

 The MEB (Main Electronic Box) is located with in-situ 

systems. 

 The SCM (Search Coil Magnetometer) is located on 

the S/C boom. 

 The Antennas are located on the three sides of the S/C. 

2) RPW MEB 

The RPW Main Electronic Box is made up of several 

electronic boards. Four RPW sub-systems embed a LEON3-FT 

processor and thus a flight software:  

 the first one is the Data Processing Unit (DPU) which 

is in charge of the communication with the spacecraft 

via a SpaceWire interface;  

 the three others are analyzer boards in charge of the 

electrical field and magnetic field signal acquisition 

and processing.  

The RPW MEB contains also: 

 a Bias Unit board driving the currents to the electric 

antennas; 

 a Low-Voltages Power Supply (LVPS) and Power 

Distribution Unit (PDU).  

The figure below shows the RPW MEB architecture: 

 

Fig. 1.  RPW MEB Architecture 
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3) RPW DPU 

The RPW DPU is based on the Aeroflex LEON3-FT 

UT699 processor. It handles four SpaceWire interfaces, one 

toward the spacecraft, the three other toward the analyzer 

boards.  

The RPW DPU embeds an EEPROM (4 MB) for storing 

the software images, a SRAM memory module (64 MB) 

allocated to the software execution and science data processing 

and a PROM (64 KB) for storing the DPU boot software.  

In addition to the processor, a FPGA is used to generate the 

control signals for the memory management and the 

synchronous serial interfaces to the RPW Bias Unit and to the 

RPW Power Distribution Unit. 

They are two DPU, one nominal and one redundant, the 

redundancy scheme being a cold redundancy. 

4) RPW Analyzer Boards 

The first analyzer board is a Low Frequency Receiver 

(LFR) which is designed to produce waveforms, averaged 

spectral matrices and basic parameters from LF 

electromagnetic waves in the range from quasi-DC to 10 kHz. 

The second analyzer board is a Time Domain Sampler 

(TDS) which consists in a medium frequency wave analyzer 

that processes analogue signals from electric field antennas and 

search coils at sampling rates up to 524288 samples per 

second. 

The Third analyzer board is a Thermal Noise and High 

Frequency Receiver (TNR-HFR) which provides electric 

power spectral densities from 4 kHz up to 16.4MHz and 

magnetic power spectral densities from 10 kHz up to 500 kHz. 

The three RPW analyzer boards (LFR, TDS and TNR-

HFR) are based on a LEON3-FT processor synthetized in a 

RTAX FPGA. They communicate with the DPU thanks to a 

point-to-point SpaceWire link. They use as SpaceWire link 

controller a GRSPW core with RMAP support. 

B. RPW Software Architecture Overview 

The RPW Instrument contains five flight software: the 

DPU application S/W, the LFR flight S/W, the TDS flight 

S/W, the TNR-HFR flight S/W and the DPU boot S/W. 

1) DPU Application S/W 

The DPU Application Software (DAS) is a complex 

software managing lots of various interfaces and implementing 

the standard PUS services but also a set of services specific to 

the RPW experiment. The DAS is responsible for managing 

the RPW modes, switching on/off the RPW sub-units, 

configuring and commanding the RPW sub-units, verifying 

and executing the RPW telecommands received from the S/C, 

monitoring the RPW sub-units, reporting housekeepings and 

events, supporting the FDIR mechanisms, distributing the time 

to the analyzer boards, processing, compressing and 

packetizing the science data sent by the analyzer boards, 

performing science event detection. The DAS communicates 

with the spacecraft using the CCSDS protocol over the 

SpaceWire link [3]. 

2) LFR, THR and TDS Flight S/W 

The main role of the analyzer flight software is to acquire 

and pre-process the raw data provided by the sensors. The pre-

processing includes event detection, data reduction, data 

selection and lossy compression. The communication protocol 

used between the DPU and the analyzers for exchanging TC 

and TM is the CCSDS protocol. 

3) DPU Boot S/W 

To manage the maintenance and the boot of the DPU 

application software, a standard and well proven architecture 

based on the use of a separate boot software has been 

implemented. The DPU boot software is a critical and low 

complexity software stored in PROM.  The DPU application 

software, that is stored in the DPU EEPROM, is loaded in the 

working memory and started upon the reception of a dedicated 

TC packet by the boot software. The boot software implements 

also the memory management PUS service and is able to patch 

or fully change in EEPROM the application software. 

4) Analyzer Flight S/W Boot and Maintenance  

The approach chosen for managing the boot of the DPU 

Application S/W is a well proven approach, used for many 

years in the context of lots of space missions. However, this 

approach has a relatively high cost in terms of development. A 

boot software is never a trivial software: in addition to the boot 

mechanism itself, it shall implement a subset of the PUS 

services [4], as the service 1 (telecommand verification), the 

service 3 (housekeeping reporting), the service 5 (event 

reporting), the service 6 (memory management). A boot 

software shall be stored in PROM to avoid any corruption or 

unexpected erasing of the software image during the mission. 

The consequence is that this kind of boot software cannot be 

changed or patched during the flight. A software failure, not 

seen during the validation, which would occur for example in 

the module managing the communication with the spacecraft 

or in the module managing the boot process itself could have 

dramatic consequences for the mission and could result in the 

loss of the instrument. That’s why the criticality level of the 

boot software is the level B according to the ECSS-E-40 

standard [5]. The effort for qualifying a level B software is 

huge in terms of validation, code coverage analysis, design 

justification and quality rule verification. Developing such a 

boot software is not always possible for the instrument teams 

which prefer focus their efforts on the development of the 

application software which is directly linked to the scientific 

return of the mission. 

All these arguments have pushed the RPW team to find 

another solution for tackling the issue of the analyzer flight 

S/W boot process and maintenance management. 

In order to simplify the overall electronic and software 

architecture of the RPW instrument and to suppress the risks 

and costs inherent to the development of a level B software, the 

boot process and maintenance management of the three 

analyzer software has been delegated to the DPU application 

software. A solution based on the capability offered by the 

SpaceWire / RMAP technology has been studied. 
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III. RMAP BOOTLOADER MECHANISM 

A. RMAP Bootloader General Principle 

The boot process of each analyzer flight software is 

performed remotely, over the SpaceWire link, by the DPU 

application software using the RMAP protocol. Each analyzer 

board integrates a RMAP hardware controller, which allows 

the DPU to access to any area of its memory, including the 

processor registers. The RMAP protocol offers all the 

mechanisms allowing to have remote memory write and read 

operations highly reliable. In this sense, the RMAP protocol is 

very suitable for implementing a remote boot mechanism for 

the flight software.  

Thanks to the RMAP protocol, the DPU can remotely 

configure the registers of the LEON3-FT processor analyzer 

boards, load a software image in the SRAM analyzer board and 

start it without intervention of any local boot software. The 

boot process of the analyzer software is entirely under the 

responsibility of the DPU application software.   

The image of each analyzer flight software is stored in the 

EEPROM of the DPU. In addition to being responsible for the 

analyzer boot process, the DPU application software is also 

responsible for the maintenance of these three software images. 

During the flight, the various software images can be patched 

or entirely replaced by a new one directly in the DPU 

EEPROM by the DPU application software using the standard 

PUS memory management service (PUS service 6). Each flight 

software executable image is stored in EEPROM as a sequence 

of several data/opcode segments and one end segment, each 

segment being protected by a checksum. The size of each 

segment is limited to the maximum size (204 bytes) of one 

telecommand in order to simplify the code upload process and 

the code maintenance: each memory load TC (PUS service 6,2) 

allows to upload exactly one data/opcode segment. In case of 

failure of the EEPROM at the DPU side, the RMAP boot 

process allows to retrieve the analyzer software images directly 

from the DPU SRAM instead from the EEPROM. A set of 

GSE software tools have been developed to generated 

automatically from the SREC (S-Record format) files provided 

by the compilation chain a sequence of telecommands allowing 

to upload in the EEPROM of the DPU any analyzer S/W 

image. 

With this approach, there is no need to have, at the analyzer 

board level, a boot software whose the development and the 

qualification would have been costly and whose a failure 

during the flight would be critical for the mission. 

In the same way, there is no more need to have EEPROM 

parts or PROM parts at the analyzer board level: this simplifies 

the hardware design and reduces the number of potential 

failures. The overall development cost (hardware and software) 

is also clearly minimized. 

B. RMAP Boot Process Steps 

1) RMAP Boot Process Overview 

The RMAP boot process is divided into the following steps: 

 Identify the start address of the analyzer flight S/W in 

the DPU source memory (EEPROM or SRAM). The 

flight S/W start address is a parameter of a 

telecommand packet or can be retrieved in the RPW 

operational context maintained by the DPU 

application S/W in case of boot operation triggered 

after an internal decision taken in the context of the 

FDIR (Failure Detection and Isolation Recovery) 

mechanisms. 

 Check in the DPU source memory (EEPROM or 

SRAM), where the flight S/W is stored as a sequence 

of opcode and data segments, the completeness and 

correctness of each software segment using 

checksums. 

 If the flight S/W image is complete and correct in the 

DPU source memory, configure the registers of the 

analyser LEON processor before loading the 

application image itself. 

 Copy, using RMAP write commands, all the software 

segments from the DPU source memory (EEPROM or 

SRAM) to the analyzer executable memory (SRAM).  

 Check in the analyzer executable memory (SRAM), 

using RMAP read commands, that the flight S/W has 

been correctly deployed. 

 If the flight S/W has been correctly deployed, start the 

flight software. 

The success of each step depends on specific criteria: if a 

failure is detected, the boot process is stopped and an event 

report TM packet is generated to notify the ground segment 

of the error. 

2) Boot Process Starting 

The RMAP boot process of the analyzer S/W is started 

upon the reception of a telecommand from the spacecraft 

(ground telecommand or OBC telecommand). The 

telecommand contains a parameter allowing to choose the 

location in EEPROM (or SRAM) of the software image to be 

booted. The RPW EEPROM has been sized to be able to store 

up to 2 software images for each of the four RPW flight S/W. 

A second parameter allows to enable or disable the 

verifications which are performed during the various steps of 

the boot process. 

3) Software Image Integrity Verification 

This second step consists for the boot manager in checking 

that each data / opcode segment stored in EEPROM and 

forming the software image pointed by the logical address 

given in the telecommand are not corrupted. The verification is 

based on the computation of a XOR checksum on the data / 

opcode block and to the comparison of this XOR checksum 

with the XOR checksum contained in the trailer of the 

segment. During this step, the boot manager checks also that 

the destination address and the size of the data / opcode block 

contained in each segment header are in authorized ranges. 

Each segment shall be immediately followed by another 

segment. The verifications ends with success if the boot 

manager finds an end segment and that all the verifications 

performed for the previous segments have been successful. 

4) Remote Processor Configuration 

In this step, the DPU application S/W takes the control of 

the remote processor (LEON3-FT inside the analyzer board). 
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The DPU application S/W puts the remote LEON3-FT 

processor in the debug state. To do that, it sends a RMAP write 

command toward the analyzer board for configuring the Debug 

Support Unit (DSU) Control Register and for setting the Break-

Now (BN) bit of the DSU Break and Single Step Register of 

the remote processor. It has to be noted that after the initial 

powering-on sequence, the LEON3-FT processor of each 

analyzer board goes by itself in the debug mode without 

executing any instructions: this is done by asserting DSUEN 

and DSUBRE signals at reset time [6]. 

Then, before loading the S/W image, the boot manager 

performs on the remote LEON3-FT processor the setting listed 

below by accessing its various registers using RMAP write 

commands: 

 Set up analyzer memory configuration: the analyzer 

memory controller shall be initialized before the RAM 

can be accessed. This shall be accomplished by writing 

to the MCFG[1:3] registers over RMAP. 

 Disable interrupts 

 Disable the watchdog 

 Clear the IU register files 

 Clear the FPU register files 

 Set up the Y, PSR, WIM, FSR registers 

 Set up GPIO if needed 

 Set up AHBSTAT if needed 

 Set up the PC and TBR registers to the entry point 

address of the analyzer software 

 Set up the NPC registers to the entry point address plus 

4 bytes 

 Set up the stack pointer 

 Configure the timers 

5) Software Image Deployment 

Once the remote LEON3-FT processor is configured, the 

code deployment phase itself can start. The content of each 

data / opcode segment is copied from the local EEPROM to the 

remote SRAM by using RMAP write commands.  

Just after having copied a segment, the boot manager reads 

back, using a RMAP read command, the segment written in the 

analyzer memory. Then, it compares the content of the read 

segment with the source content stored at the DPU level. If the 

comparison fails, the boot process is stopped and an error event 

report packet is generated. This verification has been 

implemented to make the boot process fully reliable. However, 

it has to be noted that the RMAP protocol includes already a 

verification mechanism, based on a CRC computation, of the 

integrity of both the write command header and data. In case of 

corruption of the data during the transfer, the analyzer RMAP 

controller will detect it and reply with a negative 

acknowledgment reporting the cause of the error (“invalid data 

CRC error”). The CRC implemented in the RMAP protocol is 

a 16-bit CRC highly reliable (99.998%): the verification based 

on the read back operation of the written blocks could be 

optionally skipped without taking too much risk. 

6) Remote Software Starting 

When all the data / opcode segments are copied and 

checked, the boot manager has to release the remote processor 

from the debug state by writing 0 to the DSU control register 

and by clearing the Break-Now bit of the Break and Single 

Step Register. The remote application is then started and can 

perform its own initializations. 

7) RMAP Boot Process Ending 

If all the different steps of the boot process have been 

successful and as soon as the first housekeeping packet is 

received from the analyzer board, the DPU application S/W 

produces a progress event report TM packet notifying that the 

boot process is a success and giving the version number of the 

booted software. 

8) Error Management and Failure Reporting 

The following errors can cause the failure of the boot 

process: 

 At a given address in the DPU memory (EEPROM) or 

after a list of valid segments, there is no other valid 

segment. 

 A calculated checksum over a segment is different 

from the checksum value at the end of this segment. 

 At a given address, there is only an end segment. 

 The destination address in a segment is invalid. 

 The size of a segment is invalid. 

 The content of a segment copied in the analyzer 

memory is different of the content of the segment in 

the DPU memory. 

All these errors cause the aborting of the boot process and 

the generation by the DPU application software of an error 

event report TM packet giving information useful for the 

diagnosis. 

The errors which can occur at the SpaceWire level or at the 

RMAP level are also reported by the DPU application S/W and 

are normally recovered thanks to a retry mechanism. If a 

RMAP command fails due to any reason (EEP, Invalid Data 

CRC, Too much data…), the RMAP software driver 

implemented in the DPU application S/W will repeat it again. 

The boot manager knows that a command has been 

successfully executed because all the RMAP commands are 

acknowledged by the receiver, the Reply bit of the RMAP 

write commands being set to 1. 

IV. RMAP BOOTLOADER PERFORMANCE 

The RMAP bootloader performance, in terms of duration of 

the boot sequence, depends on the following parameters: 

 The CPU clock of the board hosting the RMAP boot 

loader. 

 The SpaceWire data rate. 

 The size of the remote software image. 

Concerning RPW, the CPU clock of the DPU is 25 MHz 

and the SpaceWire data rate is 10 Mbps.  

The duration of the RMAP boot process which has been 

measured for each RPW analyzer flight S/W is given in the 

following table:  

TABLE I.  RMAP BOOT PROCESS DURATION 
S/W Size (KB) Boot process duration (s) 

LFR 260 8 

TDS 95 5.5 

TNR-HFR 211 7.5 
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The CPU load and the output data rates reported by the 

DPU Application S/W during the RMAP boot process show 

that, with the RPW configuration, the main bottleneck is the 

CPU resource which reaches 100%. The SpaceWire link 

occupation rate never exceeds 4% during the boot process. 

With a processor clocked at 50 MHz, it should be possible to 

reduce by a factor of two the boot duration (less than 4 seconds 

for a 260-KB software). With a processor clocked at 100 MHz, 

the boot duration for a 260-KB should be lower than 2 seconds. 

By skipping the read back operation of the written blocks, with 

the same configuration, the boot duration should be lower than 

1 second. 

 The figures below show the CPU load and the SpaceWire 

transmission rate during the RMAP boot process of the three 

RPW analyzers. 

 

Fig. 2.  CPU load during the RMAP boot process 

 
Fig. 3.  SpaceWire transmission data rate during the RMAP boot process 

V. DESIGN AND QUALIFICATION OF THE RMAP BOOTLOADER  

The RMAP bootloader developed for the RPW instrument 

has been designed to be a fully reusable software block. The 

RMAP bootloader modules have been developed in C++ using 

a coding standard which is compliant to the ECSS-E-40 

requirements and which is derived from the Lockheed Martin 

Joint Strike Fighter standard Air Vehicle C++ coding standard 

[7]. Its object-oriented design makes it easily re-usable in the 

context of other projects and missions. The RMAP bootloader 

modules are part of the LESIA GERICOS (GEneRIC Onboard 

Software) framework. The GERICOS  framework offers a set 

of C++ libraries allowing to build a flight software by using a 

collection of generic, re-usable, interoperable and space-

qualified software bricks implementing various things as a 

RTOS object-oriented abstraction layer, SpaceWire and RMAP 

drivers, the main PUS services...  

The qualification of the RMAP bootloader modules has 

been carried out according the requirements of the ECSS-E-40. 

All the code of the RMAP bootloader modules has been 

verified thanks to quality tools as Logiscope (metrics and 

coding rules) or Polyspace (static analysis tool).  

The development and the integration tests have been 

performed using a DPU breadboard and specific home-made 

simulators allowing to produce any RMAP or SpaceWire 

errors. Several tests have been carried out for proving the 

robustness of the RMAP bootloader to transient SpaceWire 

errors and to RMAP failures. 

The final validation of the RMAP bootloader modules has 

been performed on the RPW EM boards. The RMAP boot 

process and its implementation are now validated. The result of 

this validation has been submitted to the RPW CDR review 

group.  

VI. CONCLUSION 

The RMAP boot loader developed for the RPW instrument 

is now fully operational. It has been integrated in the RPW 

DPU application S/W and is currently extensively used in the 

context of the RPW AIT. No major issues have been 

encountered during the various tests carried out at AIT level or 

at software development level. The approach can be now 

considered as successful. 

This approach takes benefit from the RMAP protocol and 

its close integration with the LEON-3FT processor. The gains, 

in terms of risk reduction and cost saving, relatively to the 

development of a standard boot software, have been clearly 

confirmed. Thanks to this technology, the RPW analyzer flight 

software are fully reconfigurable during the flight: this is 

crucial for the success of the mission. 

The RMAP boot loader modules have been designed as a 

set of generic software bricks, integrated in the GERICOS 

framework, which could be easily reused in the context of 

other space instruments. 

In the context of the PLATO 2.0 project, studies are going 

to be carried out in order to assess if the concept of RMAP 

bootloader could be used. With the large number of DPU 

boards making up the on-board data processing system, the 

benefits could be huge for the PLATO payload team. 

Last but not least, we advocate that the use of such an 

approach could be also envisaged, by the space agencies and 

the main prime contractors of the domain, at spacecraft level 

for managing the boot of the payload DPU themselves. Such a 

generic approach would reduce the development cost of the 

scientific payloads. 
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Abstract— SpaceFibre protocol, which is developed by 

European Space Agency as a standard protocol to communicate 

between payloads in satellite network, adopts multi-lane 

technique to increase transfer rate by using multiple physical 

links. To realize high transfer rate in which the multi-lane 

technique is needed, e.g. 20Gbps, FPGAs or ASICs devices to 

process the SpaceFibre protocol needs to increase operating 

frequency or to extend processing data width at one clock cycle. 

The later way is generally adapted for giga bps class transfer 

system since the operating frequency of FPGAs and ASICs for 

space systems is relatively lower than these devices for 

commercial systems. 

It is important to consider a length of data to be processed 

when extending the processing data width at one clock cycle. In 

the SpaceFibre protocol, it is effective to design processing device 

with 32-bits data width, because the minimum unit of 

transmitting/receiving data width is 32-bits. For example, 

however, if the width of data bus is assumed to 64-bits, it is 

possible that frame boundaries between leading data frame and 

following data frame is appeared in the middle of data bus. In 

this case, two frames have to be processed at the same time and it 

causes increase of complexity for processing and increase of 

circuit size. To mitigate the complexity, we change the frame 

length to be aligned with the utilized lane number at the framing 

layer. In this paper, we report the method for alignment of frame 

length and its evaluation results. 

Index Terms— SpaceFibre, Multi-lane, throughput, 

implementation 

I. INTRODUCTION 

The SpaceFibre protocol in Fig. 1 is currently developed, 

and applies various techniques such as virtual channels, quality 

of services and retransmission [1]. Furthermore, the SpaceFibre 

protocol has a multi-lane transmission as an optional feature 

which can enhance transfer rate by using several physical links 

simultaneously (hereafter, a “physical link” is called by a 

“lane”). However, implementing the multi-lane transmission 

into actual devices has some problems. Although details of 

those problems are described in chapter II, continuous data 

might be unable to be processed in one clock cycle for 

aerospace devices. Therefore, we describe a framing method to 

adjust a number of words in a data frame to a multiple of a 

number of used lanes for multi-lane transmission so as to 

process a data frame efficiently by a circuit in chapter III. We 

also show evaluation results of data throughput with our 

method in chapter IV, because the data throughput with our 

method decreases from that with the standard specification of 

the SpaceFibre protocol. 
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Fig. 1.  Overview of multi-lane transmission of the SpaceFibre protocol 

II. PROCESSING PROBLEM IN MULTI-LANE TRANSMISSION 

The minimal meaningful unit of the SpaceFibre protocol is 

32-bit data (one word). For example, framing control words, 

such as Start Data Frame (SDF) and End Data Frame (EDF) to 

configure one data frame, Start Broadcast Frame (SBF) and 

End Broadcast Frame (EBF) to configure one broadcast frame 

and Start Idle Frame (SIF) to configure one idle frame, are 32-

bit data. Similarly, other control words such as Flow Control 

Token (FCT), ACK and NACK are also 32-bit data. Therefore, 

it is efficient to design a processing device for the SpaceFibre 

protocol with 32-bit data width. If a processing device is 

designed with 32-bit data width, a required frequency is 62.5 

MHz to achieve 2.0 Gbps throughput which is an initial 

transfer rate of the SpaceFibre protocol by using only a single 

lane. This operating frequency is feasible for an aerospace 

device [2][3]. 

In multi-lane transmission of the SpaceFibre protocol, all 

words are distributed and transmitted in parallel by using the 

multiple lanes. In multi-lane transmission, at transmitter side, 

the first word shall be sent over the lane with lowest 

number(lane #1), the next word shall be sent over the lane with 

the next number of the lowest number(lane #2), and so on, as 
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shown in Fig. 1. Multiple words, which is the same as the 

number of used lanes, are transmitted simultaneously to a 

receiver side. Besides, each transfer rate of multiple lanes is the 

same as that of sigle lane. Therefore, the multi-lane 

transimission of the SpaceFibre protocol can enhance transfer 

rate in proportion. In contrast, the receiver gathers received 

words from every lane and re-construct the transmitted words 

from these receirved words.  

Since the transfer rate of each lane does not depend on the 

number of used lanes, the operating frequency of lane layer is 

the same as that of single lane. However, upper layers such as 

quality layer and multi-lane layer require higher throughput 

than the lane layer. To achieve the higher processing speed, 

these layers should operate at higher frequency, or should 

expand internal data-bus of these layers in order to process 

multiple words simultaneously. For example, when 10 lanes 

are used and the transfer rate of each lane is 5.0Gbps which is 

the maximum number of lanes supported in the SpaceFibre 

protocol and the maximum transfer rate will be supported long-

term, the former way needs 1.5625 GHz with 32-bit data-bus. 

It is difficult for aerospace devices to achieve this operating 

frequency. Therefore, it is necessary to adopt the latter way to 

implement the multi-lane transmission. 

The required operating frequency of the latter way in the 

quality layer is the same as that for single lane transmission. 

Fig. 2 shows an example of data format of the SpaceFibre 

protocol. When N lanes are used, N words are located from the 

least significant word (LSW) to the most significant word 

(MSW). For the latter way, N words on a line in Fig.2 are 

processed simultaneously to increase the data throughput. 

Words located at LSW are sent over the lowest number lane, 

and words located at MSW are sent over the highest number 

lane as shown in Fig. 2. 
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Fig. 2.  Word placement for multi-lane transmission  

 

The frame length of the SpaceFibre protocol is independent 

of the number of used lanes in the specification. Therefore, two 

or more EDFs can be located at the same line which should be 

processed at the same time. In this case, receiver should verify 

two or more data frames at the same time since these EDFs 

include frame sequence numbers and CRCs used for frame 

verification. However, it is difficult to process multiple data 

frames in parallel because sequential EDFs have order 

dependency in their frame sequence numbers. This makes the 

operating frequency lower in a processing device. This is a 

problem to implement the multi-lane transmission into the 

devices for aerospace since the operating frequencies of the 

devices are slow.  

Additionally, multiple CRC calculators are needed to 

calculate CRCs of multiple data frames in parallel at the same 

time. Although these parallel circuits are not always required, 

they have to be prepared to calculate multiple CRCs only when 

multiple frames are in the same line. This makes the circuit 

area increase in a processing device. According to the reference 

[4], a circuit size of CRC-32 calculator with 256-bit data width 

becomes over 2000 LUT’s. This complexity is approximately 

equal to a half of the SpaceFibre protocol using single lane 

transmission. Thus, it is not preferred to implement two or 

more large CRC calculators for the aerospace devices whose 

circuit area is smaller than commercial devices. 

III. OUR FRAMING METHOD FOR MULTI-LANE TRANSMISSION 

To solve the problems of multi-lane transmission described 

in chapter II, it is effective to limit the number of frames by 

one in N continuous words to be processed at the same time 

when N lanes are used. This avoids two or more frames 

verifying at the same time and calculating in parallel. 

Compared to the SpaceFibre protocol, this method can increase 

the operating frequency and reduce the circuit area. 

A. Detail specification of our framing method 

We propose to add/modify the following three rules into the 

specification of the SpaceFibre protocol for multi-lane 

transmission (see Fig. 3). 

Rule 1: Quality layer inserts Fill words to make a frame 

length included one SDF and one EDF to a multiple of N if N 

lanes transmission is used, whereas the Fill word contains of 

four Fill codes (K27.7) in this paper. Thus, SDFs are located at 

LSW and EDFs are located at the MSW. 

Rule 2: Multi-lane layer sends SDF, SBF, SIF and FCT 

over the lowest number lane (lane #1) \and sends EDFs over 

the highest number lane (lane #N).  

Rule 3: Multi-lane layer sends a control word whose length 

is one word such as FCT, ACK or NACK over the lowest 

number lane (lane #1), and sends the Padding words over the 

rest lanes (lane #2-#N). The Padding word should be assigned 

a new K-code to distinguish a control word inserted at the 

multi-lane layer from the other control words inserted at the 

other layers. 

By the first rule, two or more words which include the 

frame sequence number are not sent at the same time in multi-

lane transmission, because the frame length is set to a multiple 
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of the number of used lanes. Therefore, the problem to verify 

two or more frame sequence numbers at the same time can be 

avoided. By the second rule, two frames are not sent at the 

same time. Therefore, the problem to implement two circuits 

such as CRC calculators to process two frames in parallel can 

be avoided. This second rule can reduce the circuit area in a 

processing device. By the third rule, for control words other 

than data frames, verifying multiple frame sequence numbers 

and calculating multiple CRCs at the same time can also be 

avoided because the rule makes one control word, such as FCT, 

ACK or NACK, to N words by inserting the N-1 Padding 

words. In the case, the Padding words should be removed in 

the multi-lane layer at the receiver side. 
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Fig. 3.  Our framing method for multi-lane transmission 

B. Optional rules for our framing method 

Our framing method inserts the Fill words and the Padding 

words to limit the number of frames to be processed at the 

same time by one. Therefore, compared to the standard 

specification of the SpaceFibre protocol, data throughput of our 

method must be decreased by inserting these words. Thus, we 

add/modify the following two optional rules to the standard 

specification of the SpaceFibre protocol. 

Optional Rule 1: Quality layer makes a frame length 

including one SDF and one EDF to the maximum number of a 

multiple of N which is less than or equal to 64 words for N 

lanes transmission. 

Optional Rule 2: Minimum interval of sending ACK is 

256ns in spite of the number of used lanes. 

The first optional rule can reduce a number of the Fill 

words inserted by our framing method. In the specification of 

the SpaceFibre protocol, if there are 64 or more words of data 

without EOP in virtual channel buffer, only 64 words of data 

are read out from the buffer to make a data frame by adding a 

SDF and an EDF. Then, the frame length is 66 words which 

include 64 words of data, the SDF and the EDF. In our framing 

method, the Fill words should be inserted when 66 words is not 

a multiple of the number of used lanes. In other words, the data 

throughput is decreased by inserting the Fill words to make a 

data frame if the number of used lanes is not a submultiple of 

66. By the first optional rule, the Fill words are not needed to 

make a data frame if there are data more than maximum frame 

length in the virtual channel buffer, except for last data frame. 

Then, the decrease of the data throughput by inserting the Fill 

words can be reduced. 

The second optional rule can reduce the number of the 

Padding words inserted by our framing method. When N lanes 

is used with our framing method, one ACK word is sent over 

the lowest number lane and the N-1 Padding words are sent 

over rest lanes. Thus, compared with the standard specification, 

the bandwidth for sending ACK becomes multiples of N in our 

framing method. In the specification of the SpaceFibre protocol, 

the minimum interval of sending ACK is 16 words in order to 

restrict the increase of the bandwidth for sending ACK. This 

interval equals to 256 ns in a single lane transmission if data 

transfer rate is 2.0 Gbps. The bandwidth for sending ACK can 

be the same as the single lane transmission in the standard 

specification to apply this second optional rule to our method. 

Then, the decrease of the data throughput by inserting the 

Padding words can be reduced.  

IV. EVALUATION OF DATA THROUGHPUT WITH OUR METHOD 

Our framing method proposed in chapter III makes 

implementation of the multi-lane transmission easily by 

adjusting a frame length to the number of used lanes. On the 

other hand, the data throughput must be decreased because the 

Fill words and the Padding words are inserted to adjust a frame 

length. Therefore, we evaluate the data throughput with our 

framing method in computer simulations. 

A. Simulation conditions 

To measure the data throughputs of the SpaceFibre protocol 

and our methods, we built a C-language simulation 

environment. In our method, four packet transfer models, such 

as (1) without any optional rules, (2) with the first optional rule, 

(3) with the second optional rule, and (4) with the two optional 

rules, are evaluated. The packet is transmitted in one-way and 

the length of packet is set from 1 to 1024 words in random, and 

there is no error at any physical links (Bit error rate is 0). The 

throughput of data and control words are measured by counting 

the received data or the received control words. 

B. Simulation results 

Figure 4 shows that the usage ratio of the bandwidth which 

is occupied by data and control words when 10 lanes are used. 

The left circle graph shows the usage ratio with the standard 

specification of SpaceFibre Draft-F3 protocol, where the usage 

ratio of the data is 95.5%. But this is an ideal data throughput 

for multi-lane protocol since it is difficult to be implemented 

by actual LSI and FPGA for aerospace as pointed in chapter II. 

The right circle graph shows the usage ratio of our framing 

method without any optional rules described at chapter III. The 

data throughput is decreased from 95.5 % to 78.3% by the 

insertion of the Fill words and the Padding words. 

162



 

DATA

95.5%

SDF/EDF

3.0%

ACK

1.5%

Draft F3

DATA

78.3%

SDF/EDF

2.6%

ACK

1.3%

Fill

5.9%
Padding

11.9%

Our method

w/o any optional rules  
Fig. 4.  Usage ratios of Draft-F3 and our method without any optional rules. 

 

Next, the usage ratios of our methods with the first optional 

rule, with the second optional rule, and with two optional rules 

are shown in Fig. 5 when 10 lanes are used. In the case of our 

method with the first optional rule, the usage ratio of the Fill 

words can be decreaced from 5.9% to 0.7%. The usage ratio 

occupied by ACK or the Padding words is the same as the case 

without any optional rules. In the case of the second optional 

rule, the usage ratio of the Padding word can be decreaced 

from 11.9% to 4.3%. In addition, the usage ratio of the ACK 

words can be decreaces from 1.3% to 0.5%. Finally, in the case 

with two optional rules, the usage of data achieves about 91.8%, 

and the data throughput with two optional rules can increase 

from 78.3% to 91.8%. 

DATA

83.2%

SDF/EDF

2.9%

ACK

1.3%

Fill

0.7%
Padding

11.8%

(2) w/ 1st option

DATA

91.8%

SDF/EDF

2.7%

ACK

0.5%

Fill

0.8%

Padding

4.2%

(4) w/ two options

DATA

78.3%

SDF/EDF

2.6%

ACK

1.3%

Fill

5.9%

Padding

11.9%

(1) w/o any options

DATA

85.9%

SDF/EDF

2.9%

ACK

0.5%
Fill

6.4%
Padding

4.3%

(3) w/ 2nd option  
Fig. 5.  Usage ratios of our method with/without optional rules 

 

Next, maximum throughput of our methods are shown in 

Fig. 6 when a number of used lanes is changed. Figure 6 shows 

that the maximum throughputs of our methods are decreaced 

by insertion of the Fill words and the Padding words with the 

increasing of the number of used lanes. However, Figure 6 also 

shows that the optional rules can mitigate the deceasing of the 

data thoughput. Especially, the method with the two optinal 

rules can acheive over 90% data throughput in spite of a 

number of used lanes. 
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Fig. 6.  Data throughput of our methods for the number of used lanes 

V. SUMMARY 

In order to make circuit implementation of the SpaceFibre 

protocol using multilane transmission easy, we studied the 

problems about multi-lane transmission and proposed the 

framing method to solve it. 

In the specification of the SpaceFibre protocol, two or more 

EDFs can be received at the same time from different lanes. 

This makes it difficult to implement the SpaceFibre protocol 

into an aerospace device because sequential EDFs have order 

dependency and the aerospace device generally operates at low 

frequency. To solve this problem, we change a framing method 

for multi-lane transmission by adjusting the frame length to a 

multiple words of a number of used lanes, and by sending the 

first word of a frame from the lowest number lane an sending 

the last word of a frame from the highest number lane. 

To evaluate the effect of our method, we measured the data 

throughput in simulation because the data throughput may be 

decreased by inserting the Fill words and the Padding words in 

our method to adjust the placement of data or control word. 

The simulation result shows the data throughput in our method 

without the optical rules is decreased by 18% compared with 

the case of the standard specification of the SpaceFibre 

protocol. However, the maximum data throughput can achieve 

over 90% at any number of lanes by applying two optional 

rules which changes the maximum frame length and the 

interval of sending ACK. 
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Abstract—SpaceFibre based spacecraft network is used as a case 
study of the real network, which SpaceWire based implementation 
was analyzed in [1]. The network structure has tree-based structure, 
includes dozens of different data sources (such as Telemetric  System, 
Radiation Monitoring System, Control Block of Onboard Complex ) 
and some data processing nodes (such as Central Computing 
Machine, Computer of the Engine Bay, Cosmonaut Consoles). 

We consider implementation of this network based on SpaceFibre 
technology with its advantages: quality of service mechanisms 
(guaranteed throughput, scheduling), possibility of galvanic isolation 
on physical layer. 

For this example we evaluate parameters for SpaceFibre network 
implementation, compare the results with reachable parameters for 
SpaceWire based network. The analyzed network includes some 
typical data flows – video information, measurement information 
from different sensors, command information. For different data 
types flow parameters and timing requirements are essentially differ. 

I. THE EXAMPLE: A FRAGMENT OF A SPACECRAFT NETWORK 
Here we show an example of the real network which was 

analyzed with the simulator. This is a fragment of a spacecraft 
network shown in Fig. 1. The physical interconnections 
between components (terminal nodes and routers) are 
represented by the thick black lines. The thin black lines 
correspond to videotraffic transmission paths. This traffic is the 
main part of the communication system’s load. 

The marked by hatching terminal nodes are sources or 
destinations of command traffic of CBOC. The packet 
transmission time of this traffic is most important for the whole 
system correct functionality. 

Detailed characteristics of the network traffic are given in 
Table 2. All abbreviations described in Table 1. 

The videotraffic enters the network permanently. The 
traffic of other types is generated every 200 ms. The traffic 
between CBOC and CCM, OREC has highest priority. Every 
CBOC sends/receives one packet with data length 64 Bytes 
every 200 ms. Four CBOC are connected to every RRV router; 
five CBOC are connected to every REB. 

Characteristics of the considered network should meet the 
following requirements:  

1. Latency of packets  between CBOCs and CCM is ≤ 
10 ms. 

2. Latency of video frames is ≤ 100 ms. 
We evaluate the reachable characteristics for considered 

network fragment implementations based on SpaceWire, 
gigaSpaceWire and SpaceFibre standards: 

• maximal packet transmission time from CBOC; 
• videoframes transmission time; 
• maximal available throughput. 
In connection with the expected operating conditions for 

the SpaceWire network we consider the variant, in which the 
transmission rate is limited to 125 Mbit/s. 

The variants with SpaceFibre and gigaSpaceWire 
transmission rates 1250 Mbit/s and 125 Mbit/s are reviewed 
also. 

For simulation we use the routers with parameters: 
• internal frequency of the router is 125 MHz; 
• the width of switch matrix channels is 32 bit; 
• the packet header transmission time is 7 clocks of 

processing frequency. 
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Fig. 1.  Fragment of spacecraft network (rectangles are terminal nodes and rounds are routers) 

TABLE I.  ABBREVIATIONS 

ATS Automated Test System 
OREC Onboard Radio Engineering Complex 
OS Onboard Systems 
CBOC Control Block of Onboard Complex 
RV Re-entry Vehicle 
EB Engine Bay 
CEB Computer of the EB 
RRV Router of RV 
REB Router of EB 
ISS International Space Station 
CC Cosmonaut Consoles 
OMS Onboard Measurement System 
RMS Radiation Monitoring System 
BS Bearing System 
CS Communication System 
TS Telemetric  System 
CCM Central Computing Machine 
CRRV Central RRV 
CREB Central REB 
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TABLE II.  NETWORK TRAFFIC, IN MBIT/S 
                         Receivers 
Senders ATS OREC CBOC CEB ISS CC OMS TS CCM 

ATS - - - - - - - - - 

OREC - - - - - 2 - - 5 

OS - - - - - 1 1 - 3 

CBOC - - - - - - 0.5 - 0.08 

CEB - - - - - 0.1 2 - 2 

ISS - - - - - 25 3 - 2 

CC 25x3 - - - - - 2 - 0.2 

OMS 5 - - - 3 0.1 - - 5 

RMS - - - - - 1 1 - 1 

BS - - - - - - 0.1 - - 

CS - - - - - - 0.2 - - 

TS - 25 - - 25 25 0.1 - 0.01 

CCM 5 5 0.08 2 2 5 1 0.01 - 

 
II. THE TRANSMISSION TIME BETWEEN CBOC AND CCM, CBOC 

AND OREC 
The path between CBOC and CCM includes 2 or 3 transit 

routers (depend on placement of CBOC in system). The path 
between CBOC and OREC includes from 1 to 4 transit routers. 

Let’s evaluate data packets transmission time form CBOC 
with maximal length for our example. The data packets length 
is 64 Bytes. 

The minimal transmission time of these packets in 
SpaceWire network is 2,3 us when transmission rate is 
400 Mbit/s and 6,4 us when transmission rate is 125 Mbit/s. 

The minimal transmission time of these packets in 
SpaceFibre network is 2,2 us when transmission rate is 
1250 Mbit/s and 14,8 us when transmission rate is 125 Mbit/s. 

The minimal transmission time of these packets in 
gigaSpaceWire network is 1,3 us when transmission rate is 
1250 Mbit/s and 6,9 us when transmission rate is 125 Mbit/s. 

These values are essentially less than user constrains 
(10 ms). But this transmission time is reachable only in case 
when data packet from CBOC doesn’t wait the output ports in 
transit routers. 

Let’s evaluate the maximal data packet transmission time 
form CBOC to OREC in SpaceWire, gigaSpaceWire and 
SpaceFibre network with transmission rate 125 Mbit/s. 

The data packets from CBOC have the highest priority 
layer, all CBOC send its packets practically in the same time. 
Therefore in worst case the data packet from CBOC should 
wait in output port queue of transit routers until all packets 
from other CBOC, which goes along the same path, and one 
packet with low priority (that transmission can happen to start 
before the first packet from CBOC goes to the router) would be 
transmitted. For considered data path this low priority packet in 
worst case would be videotraffic packet from RMS to OMS. 

Figure 2 shows the dependence between the maximal data 
transmission time (CBOC ->OMS) and the low priority traffic 

(videotrffic) packet length. We consider the packet lengths 
from 512 to 4096 Bytes. 

For the SpaceFibre network we evaluate transmission time 
for network variations with different quantity of CBOC: from 
30 to 60. In SpaceFibre the data transmission time for high 
priority traffic depends not from the low priority traffic packet 
length but from the frame length for SpaceFibre network. Thus 
the corresponding to SpaceFibre diagrams, are straight lines 
that go parallel with the X axe. 

These graphs show, that in all cases the transmission time is 
less than 10 ms (the user defined constraint). The data 
transmission time for SpaceWire and gigaSpaceWire network 
is less than for SpaceFibre, when the low priority traffic packet 
size is 2 – 4 times bigger than the SpaceFibre frame size. 

III. EVALUATION OF MAXIMAL VIDEOFRAMES DENSITY FOR 
SPACEFIBRE AND GIGASPACEWIRE NETWORKS 

Let’s evaluate the maximal reachable videoframes density 
for considered example with SpaceFibre and gigaSpaceWire 
based networks. 

In this network video data goes counter each others, Fig. 1, 
Table 1. Therefore in each direction of SpaceFibre network 
should be translated one video data flow and ACK (NACK) 
and FCT flows from video data flow that goes to opposite 
direction. 

In each direction of gigaSpaceWire network the video data 
flow and FCT for It go in opposite directions. 

In the SpaceFibre network video data flow can be 
transmitted with big packets (packet size equal to video frame 
size – from 1 to 2 Mbytes). These packets would be sliced in a 
data link into frames with maximal size (256 Nchars). On each 
such frame will have to transfer one ACK and one FCT from 
an opposite video flow. Thus the overhead of data transmission 
are 5,88 %. So the maximal reachable throughput for video 
data flow is 941 Mbit/s. 

We now consider the transfer of the same traffic by the 
gigaSpaceWire network. We assume that for video flow 
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transmission packets with data field size 256 Nchars and 
network header size 1 Nchar are used. This packet size is 
selected to provide required transmission time for high priority 
traffic.  

In the gigaSpaceWire standard the credit size can be 
adjusted. We assume that the size of one credit is 128 Nchars 
(the maximal possible value). The size of the Credit command 
is 1 K-Code. 

For these parameters the overhead is 1,53 %. 
Correspondingly the maximal reachable throughput for 
videotraffic transmission is 984 Mbit/s. 

When the videoframes transmission path does not meet 
with command traffic, and therefore we can transmit 
videoframes with big packets. If we transmit frames by packets 
with 1 Mbyte size, the overhead is 0,78 %. For packets with 
2 Mbytes size the overhead is 0.77 %. 

 
Fig. 2.  Dependency between the data packets length and the maximal 

transmission time between CBOC and OMS (videostream) 

IV. EVALUATION OF THE VIDEOFRAMES TRANSMISSION TIME 
To evaluate transmission time of the big data objects – 

videoframes with size 1 Mbyte, 1.7 Mbytes, 2 Mbytes for 
SpaceFibre and gigaSpaceWire network with transmission rate 
1250 Mbits/s consider that in gigaSpaceWire network the 
videoframe is divided to packets with 256 Nchars data field 
size. 

The graph (Fig. 3) of dependency between the videoframe 
transmission time and its size for gigaSpaceWire and 
SpaceFibre network when other traffic isn’t transmitted via the 
network. 

 
Fig. 3.  Dependency between the size of videoframes and its transmission time 

in the network that includes 1 or 3 routers 

This figure shows that parameters for gigaSpaceWire and 
SpaceFibre are practically same. 

With transmission rate 1250 Mbit/s the transmission time 
of biggest videoframes (2 Mbytes size) is less than 18 ms. 

Let's evaluate transmission time of videoframes in the 
considered network with command traffic from CBOC when 
the videotraffic and traffic from CBOC are crossed in the 
CRRV router. 

 
Fig. 4.  Dependency between the size of videoframes and its transmission time 

in network with 3 routers and traffic from CBOC 
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In the gigaSpaceWire network QoS mechanisms are not 
provided. But the curves in the Fig. 4 show, that the 
videoframes transmission time is practically the same for 
gigaSpaceWire and for SpaceFibre. 

It was reached thanks to the traffic logical organization: the 
videoframes were divided into packets with data field sizes 
equal to the SpaceFibre maximal frame size.  

The number of terminal nodes in this example is less than 
224. Therefore the SpaceWire address field size of these 
packets is 1 for this example. 

V. CONCLUSSION 
In this article we consider different implementations of the 

onboard network: the SpaceWire based network, the 
SpaceFibre based network and the gigaSpaceWire based 
network. We estimated reachable timing parameters and 
throughput for different traffic types in these variants of 
network implementation. 

SpaceFibre with its QoS features provides ready-made 
backbone networking for spacecrafts with mixture of high-
priority command traffic and low priority intensive streaming 
data (videostreams as an example); the user packet delivery 
latency constraints are consistently met for both traffic classes. 

Unlike SpaceFibre, SpaceWire and gigaSpaceWire network 
shave no QoS support mechanisms. But we show that for 
SpaceWire and gigaSpaceWire network the same timing 

characteristics as for SpaceFibre can be reached when packet 
sizes for low-priority traffic is selected correctly. The packet 
delivery latency constraints are consistently met also. For more 
complicated mixture of traffic types, stricter latency constraints 
and priority requirements SpaceWire and gigaSpaceWire 
networks could be supplied with QoS features at the Transport 
layer. 
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Abstract—The Remote Virtual-Channel Transfer Protocol 

(RVTP for short) is proposed to transfer CCSDS AOS Virtual 

Channel Frames across a SpaceWire Network. In order to 

transfer more efficiently and reliably onboard data in large 

volume and at high data rate, RVTP is designed to encapsulate a 

CCSDS AOS Virtual Channel Frame into a SpaceWire packet at 

the initiator node. At the target node, RVTP provides error 

detection and handling services.  

Keywords—SpaceWire RVTP, CCSDS,  FY-4 Series Mission. 

I. INTRODUCTION  

RVTP is designed to encapsulate a CCSDS AOS Virtual 

Channel Frame into a SpaceWire packet [1] which is 

transferred from an initiator to a target across a SpaceWire 

network. The RVTP provides error detection as a received 

packet can be checked if it complies with the protocol at the 

target. But it does not provide any means for ensuring 

successful delivery of the packet, neither is it responsible for 

the content of the packet being a CCSDS AOS Virtual Channel 

Frame [2]. 

Fig. illustrates the location of the RVTP in a typical 

onboard protocol stack. The RVTP provides a unidirectional 

data transfer service from a single source user application to a 

single destination user application through a SpaceWire 

network.  

Remote Virtual Channel 

Transfer Protocol 

User Application

SpaceWire 

Network

SpaceWire 

Network

Remote Virtual Channel 

Transfer Protocol

User Application

 
Fig.1.   Protocol configuration 

II. PROTOCOL FEATURES 

RVTP is suitable for high-speed data transferring between 

remote instruments and communication system. It provides the 

capability to transfer AOS virtual channel frames with fixed 

size between end nodes of a SpaceWire network. When a 

RVTP SpaceWire packet is received at the target, error 

detective mechanism works. If the AOS virtual channel frame 

is right, it will be extracted, and a synchronous header 

(1ACFFC1D) is inserted to form a Channel Access Data Unit 

(CADU) which can be transferred in communication system. 

There are three main innovations of RVTP shown as 

follows: 

 The RVTP is based on Virtual Channel which is firstly 

proposed. 

 The RVTP packets are with fixed length which makes 

the data transfer delay predicable in a SpaceWire 

network. 

 The RVTP provides FDIR function at the target node to 

facilitate fault location and recovery autonomously. 

III. SERVICE PARAMETERS 

The RVTP provides users with data transfer services. The 

point at which a service is provided by a protocol entity to a 

user is called a Service Access Point. A Service Access Point 

of the RVTP is identified by a SpaceWire logical address and 

each service user is also identified by a SpaceWire Logical 

Address.  

Implementations may be required to perform flow control 

at a Service Access Point between the service user and the 

service provider. However, the RVTP does not recommend a 

scheme for flow control between the user and the provider.  

The end-to-end quality-of-service provided to service users 

is the one that is provided by the underlying SpaceWire 

network. The RVTP does not provide any mechanisms for 

guaranteeing a particular quality-of-service; it is the 

responsibility of implementing organizations to ensure that the 

end-to-end performance of a particular service instance meets 

the requirements of its users.  

The service parameters are as follows. 

A. Virtual Channel Frame 

The Virtual Channel Frame parameter, intended as the 

service data unit transferred by the Remote Virtual Channel 

Transfer service, shall be the AOS Virtual Channel Frame. 
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B. Frame length 

The value of the Virtual Channel Frame length shall be of a 

fixed size. 

The frame length is selected depending on the bandwidth of 

communication channel. Users can select a suitable frame 

length for a particular mission.  

C. Status code 

The Status code parameter shall be used to indicate the 

validity of the Virtual Channel Frame to the receiving service 

user. It shall take one of the following values [4]: 

 0x00 indicates that the Virtual Channel Frame is ok; 

 0x01 indicates Virtual Channel Frame arrived 

terminated by EEP; 

 0x02 indicates Channel ID was illegal. 

D. Target SpaceWire Address 

The Target SpaceWire Address parameter shall be used to 

define the path to the Target when SpaceWire path addressing 

is being used. 

E. Target Logical Address 

The Target Logical Address parameter shall be used to 

define the logical address of the Target that is to receive the 

Virtual Channel Frame. 

F. Virtual Channel Data Unit 

The RVTP packet contains an integrated Virtual Channel 

Data Unit (VCDU) with that is defined in [2]. 

VCDU, shown in Fig.2, is contained by VCDU Header and 

VCDU Data Zone. 
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Fig.2.   Virtual Channel Data Unit 

 

VCDU shall follow, without gap, the Protocol Identifier. 

G. Bitstream Protocol Data Unit 

The RVTP uses Bitstream Protocol Data Unit (B_PDU), 

which is defined in CCSDS 732.0-B-2 AOS Space Data Link 

Protocol, to form Virtual Channel Data Units. 

B_PDU, shown in Fig.3, shall be divided by B_PDU 

Header and B_PDU Bitstream Data Zone. 
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Fig.3.    Bitstream Protocol Data Unit 

 

B_PDU shall follow, without gap, the VCDU Header. 

IV. PROTOCOL FORMAT 

The complete format of the RVTP packet is shown in Fig.4. 

Target Logical Adress

……

Protocol Identifier Channel ID (MS)

VC Frame Count (MS) VC Frame Count (LS) Signaling Field

B_PDU Bitstream Data 

(First byte)
B_PDU Bitstream Data B_PDU Bitstream Data 

B_PDU Bitstream Data …… …… B_PDU Bitstream Data 

EOP

VC Frame Count

Target SpW Adress

Channel ID (LS)

B_PDU Header (MS) B_PDU Header (LS)Frame Insert Zone (MS) Frame Insert Zone (LS)

B_PDU Bitstream Data

Target SpW Adress

First byte transmitted

B_PDU Bitstream Data
B_PDU Bitstream Data

(Last byte)

Last byte transmitted

Fig.4.   RVTP packet format 

A. Target SpaceWire Address field 

The Target SpaceWire Address field shall comprise zero or 

more data characters forming the SpaceWire address which is 

used to route the RVTP packet to the target. 

SpaceWire path addressing and regional addressing may be 

used. 

The Target SpaceWire Address field shall not be used when 

a single logical address is being used for routing the Virtual 

Channel frame to the target. 

B. Target Logical Address field 

The Target Logical Address field shall be an 8-bit field that 

contains a logical address of the target. 

 The Target Logical Address field is normally set to a 

logical address recognised by the target. 

 If the target does not have a specific logical address 

then the Target Logical Address field can be set to the 

default value 254 (0xFE). 

 A target can have more than one logical address, but a 

logical address indicates one target, in other words, 

different target has different logical address in a 

SpaceWire Network. 

C. Protocol Identifier field 

The Protocol Identifier field shall be an 8-bit field that 

contains the Protocol Identifier complied with the provisions of 

the related ECSS standards [3]. 

D. Channel ID field 

The Channel ID shall be a 16-bit field that contains Frame 

Version Number, Spacecraft ID(SCID), Virtual Channel 

ID(VCID). 

 The Frame Version Number shall be a 2-bit field that 

identifies the data unit as a VC Transfer Frame; it shall 

be set to ‘01’. 

 The Spacecraft Identifier shall be an 8-bit field that is 

assigned by CCSDS and provide the identification of 

the spacecraft which is associated with the data 

contained in the VC Transfer Frame. 

 The Virtual Channel Identifier shall be a 6-bit field that 

is used to identify the Virtual Channel. 

170



E. VC Transfer Frame Count field 

The Virtual Channel Transfer Frame Count shall be a 24-bit 

field which contains a sequential binary count (modulo-

16,777,216) of each Transfer Frame transmitted within a 

specific Virtual Channel. 

The purpose of this field is to provide individual 

accountability for each Virtual Channel, primarily to enable 

systematic Packet extraction from the Transfer Frame Data 

Field. 

F. Signaling field 

The Signaling shall be an 8-bit field that contains Replay 

Flag, Virtual Channel Frame Count Cycle Use Flag, Reserved 

Spares, Virtual Channel Frame Count Cycle. 

The Replay Flag shall be a one-bit field that is to 

discriminate between real-time and replay Transfer Frames 

when they both may use the same Virtual Channel. When it is 

set to ‘0’, it means that it is a real-time Transfer Frame, 

otherwise, it is a Replay Transfer Frame. 

The Virtual Channel Frame Count Cycle Use Flag shall be 

a one-bit field that indicates whether the VC Frame Count 

Cycle field is used. When it is set to ‘0’, it means that the VC 

Frame Count Cycle field is not used, otherwise, it means that 

the VC Frame Count Cycle field is used. 

The Reserved Spare shall be a 2-bit field that is reserved for 

future definition by CCSDS and shall be set to ’00’. 

The Virtual Channel Frame Count Cycle shall be a 4-bit 

field. If used, the Virtual Channel Frame Count Cycle Use Flag 

shall be set to ‘1’. Each time the Virtual Channel Frame Count 

returns to zero, the VC Frame Count Cycle shall be 

incremented. If not used, the Virtual Channel Frame Count 

Cycle Use Flag shall be set to ‘0’ and this field shall be set to 

‘all zeros’. 

G. Frame Insert Zone field 

The Frame Insert Zone shall be a 16-bit field that can be 

used to insert some special information according to user 

application, such as time, secret key. 

The Frame Insert Zone shall exist in every Transfer Frame 

transmitted within the same Physical Channel, including Idle 

Transfer Frames. 

H. B_PDU Header Field 

The B_PDU Header shall be a 16-bit field that contains 

Reserved Spare and Bitsream Data Pointer. 

The Reserved Spare shall be a 2-bit field that is currently 

undefined by CCSDS; by convention, it shall therefore be set 

to the reserved value of ‘00’. 

The Bitsream Data Pointer shall be a 14-bit field that 

discriminates between idle user data and valid user data within 

B_PDU Bitstream Data field. The locations of the bits in the 

B_PDU Bitstream Data field shall be numbered in ascending 

order. The first bet in this filed is assigned the number 0. The 

Bitstream Data Pointer shall contain the binary representation 

of the location of the last valid user data bit within B_PDU 

Bitstream Data field. 

I. B_PDU Bitstream Data Field 

The B_PDU Bitstream Data Field shall be fixed-length that 

follows, without gap, the B_PDU Header. 

The Bitstream Data field shall contain either a fixed-length 

block of the user Bitstream Data (possibly terminated with idle 

data at a location delimited by the Data Pointer), or Idle Data (a 

fixed-length project-specified ‘idle’ pattern). 

J. EOP character 

The end of the RVTP packet shall be indicated by an EOP 

character. 

 

V. PROTOCOL ACTION 

The normal sequence of actions for a RVTP packet transfer 

is illustrated in Fig.5. 

1. Send Request

3. Receive Indication

2. Transfer

Packet

Initiator Target

 Fig.5.   RVTP Packet Transfer 

A. Send request 

The RVTP packet transfer shall begin when an initiator 

user application requests to send a RVTP packet (Send 

Request). 

The initiator user application shall pass the following 

information to the initiator: 

 Target SpaceWire Address 

 Target Logical Address 

 Channel ID 

 VC Transfer Frame Count 

 Signalling field 

 Frame Insert Zone 

 B_PDU 

B. Transfer packet 

In response to the send request the initiator shall 

encapsulate the Virtual Channel Frame into a SpaceWire 

packet as described in Part IV and send it across the SpaceWire 

network to the target (Transfer Packet). 

C. Receive indication 

When a RVTP SpaceWire packet is received at the target, 

error detection and recovery mechanism works as follows. 

 Protocol identifier error.  When a SpaceWire packet is 

received at the target and the Protocol Identifier field is 

not indicated to be a RVTP packet,  the packet shall be 

discarded. 

 Channel ID error. If the Remote Virtual Channel 

Transfer Protocol packet arrives at the target with the 

Channel ID field set to an invalid value (the value is not 

expected and pre-assigned), the target user application 

should be informed that there is a Channel ID Error at 
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the target. In this case, the Virtual Channel Frame shall 

be extracted from the SpaceWire packet and passed to 

the target user application. 

 Frame Count discontinuous error. If the Virtual Channel 

Frame Count received at the target is not sequential 

within a specific Virtual Channel, the target user 

application should be informed that there is a Frame 

Discarded Error with the specific Channel ID. In this 

case, the Virtual Channel Frame shall be extracted from 

the SpaceWire packet and passed to the target user 

application. 

 Virtual Channel Frame Length error. If the RVTP 

packet arrives at the target with the Virtual Channel 

Frame Length shorter than the predesigned value, the 

target user application should be informed that there is a 

Shorter Frame Error with the specific Channel ID. In 

this case, the Virtual Channel Frame shall be extracted 

and inserted idle data subsequently till the Frame 

Length equal to the predesigned value. Otherwise, If the 

length longer than the predesigned value, the target user 

application should be informed that there is a Longer 

Frame Error with the specific Channel ID. In this case, 

the Virtual Channel Frame shall be extracted till the 

Frame Length equal to the predesigned value and the 

redundant data shall be discarded. 

VI. CONCLUSION 

RVTP has been applied in FY-4 series mission which is the 

first Chinese Space mission using SpaceWire for onboard data 

transfer in China. Through mass of engineering tests, RVTP is 

proved to be more efficient and reliable. Besides, it can make a 

unified design at the target. 
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Abstract— DAS Photonics and Airbus Defence and Space 

(Spain) have been working for more than six years in the concept 

of an Active Optical Cable (AOC) for copper SpaceWire cable 

substitution. The main advantages that AOC offers are 

significant mass and size saving, better flexibility and routing of 

the cable and immunity to EMI. 

Index Terms—Active Optical Cable, low mass, SpaceWire, 

high speed, fiber optic 

I. INTRODUCTION 

Communication harness constitutes a major part in mass 

and volume of current satellite and onboard equipment. The 

main problems of the typical copper or coaxial cables used are 

the high mass and some problems derived of the technology, 

like low immunity to EMI or difficult to be routed. In order to 

assure the harness to be free of EMI or noise, it is needed to 

increase the diameter of the cables, increasing in consequence 

the volume/mass. 

The limitations of the copper cables, as base for satellite 

harnessing, are used as main arguments to switch the actual 

technology from copper to optical fibre to be used for payload 

and potentially platform applications.  

The first and most obvious benefit of harness reduction is a 

saving in the mass of the spacecraft. This could reduce launch 

cost significantly, may make the spacecraft easier to balance 

prior to launch, and reduces the fuel required to manoeuvre the 

spacecraft after launch. Moreover, harness mass savings could 

allow additional payloads to be flown, increasing the spacecraft 

capability. 

Another benefit of optical cables is a decrease in the cable 

diameter, making it easier to route through the spacecraft. In 

addition, it does not cause or is affected by EMI and avoids 

ground loops.  

DAS Photonics and Airbus Defence and Space have been 

working together developing an opto-electronic conversion 

module to use fibre optic without impacting the current IF 

elements in on-board equipment. 

The first demonstration of the technology was performed in 

the Spanish Space Program and the next steps done consisted 

in two in-orbit validations to verify the suitability of the 

technology under real space conditions. Finally a GSTP was 

executed where first Active Optical Cables (AOC) for 

SpaceWire (SpW) were developed. 

Mainly, an AOC consist in two transceivers that manages 

the electro-optical conversion of equipment data, being 

connected using fiber optic. 

In this paper are presented the main tasks performed on the 

design and technology verification, as well as related results to 

date.  

II. FIRST DEVELOPMENTS 

The first works were focused in the validation of the optical 

technology intended to be used in the opto-electronic 

conversion modules for digital communications. The initial 

developments consisted in a set of optical transceivers to fit 

low and medium signal speed: 

- Low Speed: this solution, with a maximum data rate 

of 10Mbps, covers all control buses such as MIL-

STD-1553 and CAN. Also is suitable to substitute 

other low speed links such as TM/TC signals or even 

low speed clocks. 

- Medium Speed: this solution, with a maximum data 

rate of 500Mbps, covers all SpW data links (with low 

skew/jitter) usually used from 100 to 400 Mbps. Also 

is suitable to substitute other medium speed such a 

clocks or commands. 

Due to the lack of qualified optical components [1], and in 

order to minimize the size and mass, commercial components 

were used in the design of the optical transceivers. 

The developed models were submitted to several 

environmental and mechanical tests in order to validate the 

suitability of the technology for space use [2]. 

 

Fig. 1.  First Active Optical Cable developed by DAS 
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III. IN-ORBIT VALIDATIONS 

The successful and promising results obtained in the first 

developments brought DAS two opportunities to validate in 

orbit a test bed of the AOCs.  

First flight opportunity raised under the frame of the TDP8 

project, framed in the Alphasat mission, where DAS delivered 

a flight optical board with four optical transceivers for digital 

communications. The experiment allowed the demonstration of 

the performance of 4 optical links working @1Mbps and 4 

optical links working @100Mbps. 

 

Fig. 2.  Optical experiment boarded on TDP8 for Alphasat 

As part of the in-orbit validation activities, the non space 

qualified components were submitted to a complete space 

assessment campaign with good results. 

 

Fig. 3.  Constructional analysis of photonic component 

Although the satellite suffered some delays, finally was 

launched in 2013. At this moment DAS is receiving telemetry 

from the experiment with no detected errors in the optical links 

or visible degradation in their performance. 

The second flight opportunity was in Proba-V satellite, 

where DAS and T&G Elektro developed a test bed to validate 

MTP connectors and multi-fibre cables. Thanks to the good 

results during TDP8 activity, T&G trusted DAS to design and 

manufacture an experiment that allowed both companies to 

demonstrate the feasibility of the technology for future space 

applications. 

This flight opportunity consisted in single equipment with 4 

optical channels SpW compatible working at 100Mbps and 

interconnected through two MTP connectors. Each optical 

channel was configured with different power margin between 

transmitter and receiver in order to check the complete losses 

(including MTP connector) in the channel. 

No errors have been detected in any channel except for the 

channel_2, but since the distribution is centered in each 

equipment switch on, it seems that the error is produced due to 

a bad start of the equipment. The start procedure was changed 

on flight, and no errors were detected beyond this change. 

  

Fig. 4.  Optical experiment boarded on Proba V 

This experiment was executed within a very stringent 

schedule of 6 months. The Proba-V satellite  was launched in 

April 2013. Collected data from the experiment telemetry 

allows to have more than one year of results producing 

representative BER information of the optical channels. 

TABLE I.  1 YEAR PROBA-V EXPERIMENT BER 

Optical channel 

@100Mbps 
BER values 

1 1.86E-16 

2 (max. power margin) 3.43E-12 

3 1.86E-16 

4 (min. power margin) 1.86E-16 

IV. AOC FOR SPACEWIRE 

With the information collected from previous activities 

DAS started a GSTP focused on the development of an AOC 

for buses and point-to-point protocols being SpaceWire one of 

the target applications. 

Since SpW is a protocol well known and used in intra-

satellite communications [3], the key points of the new AOC 

design was to improve such points where optic fiber has strong 

advantages against copper, minimizing the impact on the 

equipment in terms of power consumption and signal integrity. 

Another key point was the reduced electrical connector used in 

SpW. The uD-9 has very low profile and this fact constrained 

the mechanical design of the AOC in order to have the same 

size than the uD9 connector plus the backshell.  

 

Fig. 5.  SpW AOC transceiver block diagram 
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During GSTP execution not only the design of the AOC 

was performed, also a devoted components assessment 

campaign complementary to previous ones was executed, 

including life test and constructional analysis. 

The GSTP activity was divided in following stages: 

- Requirements identification 

- Detailed Design of the optical transceivers 

- Components assessment for non-qualified EEE 

- Manufacturing of the AOCs 

- Test campaign at module level 

The results of test campaign as well as the summary of 

OAC performance will be presented in following paragraphs. 

V. COMPONENT ASSESSMENT 

Since photonic and some EEE parts used in the optical 

transceivers are non space qualified because of the lack of 

available parts for these technologies, a components 

assessment was needed to be performed.  The obtained results 

along with the previous information from other activities, the 

viability of the use of the parts will be determined for future 

missions. 

Previous data results from other activities were used to 

complement the GSTP components assessment: 

- Outgassing and residual gas test (Previous data;P) 

- Catastrophical Optical Damage (P) 

- Thermal Vaccuum Cycling (P) 

- Heavy Ions (P) 

- Life test (new test) 

- Thermal Conductance analysis 

The life test of 1000 hours @85ºC was performed on 20 

samples of each component type used in the AOC. No major 

degradation was observed during the life test and all 

components survived to the test. 
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Fig. 6.  Life test, output optical power of first set of 10 lasers 

Also, a verification programme of the soldering process for 

the assembly of micro-D connector to the board inside the 

transceiver of the AOC was performed. Since in order to 

optimize the size of the optical transceiver an approach not 

supported by ECSS[4][5]was needed to be used.. This 

verification produced successful results and the process was 

validated for this application. 

  

Fig. 7.  uD9 soldering assement  

VI. SPW AOC TEST CAMPAIGN 

Four complete SpW AOCs were manufactured and 

submitted to the test campaign. This test campaign was 

performed using representative values and profiles on all test in 

order to cover as much as typical application cases as possible 

for future flight missions. 

 

Fig. 8.  SpW AOC  

Test campaign at AOC level included the following 

tests[6]0: 

- Functional tests 

- Mechanical tests (vibration and shock) 

- TVC: 8 cycles -40/85ºC 

- TID: 150Krad @ 360rads/min 

- Single Events (protons): 60,100,200MeV  

None of the tests comprised in the test campaign produced 

destructive or detectable degradation on the performances of 

the AOC. 

 

Fig. 9.  Errors distribution at 200MeV, flux 1E8 p/cm2/s, fluence 1E11 p/cm2 

For protons irradiation some errors were detected due to 

single events. This experimental data allowed inferring future 
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behavior in flight mission extracting the expected BER figure. 

For a GEO mission (15 years) the expected BER will be from 

3.6E-18 to 1.7E-16 and for a LEO mission (8 years) the 

expected BER will be from 5E-18 to 1E-15. Both values are 

much lower than the requirement for a SpW communication, 

1E-12. 

Radiation tests such as gamma and proton were performed 

upon the transceivers with and without the mechanical package 

in order to measure the different behavior of the AOC. No 

important effects were measured in both tests. 

 

Fig. 10.  TID test, transceivers with and without mechanical package 

VII. SPW AOC PERFORMANCES 

As results of the GSTP activity was generated the first 

commercial version of an AOC for SpW copper cable 

replacement. Following table presents the current 

specifications of a copper cable and the measured values for 

the AOC for an example case of a 1 meter long cable. 

TABLE II.  COPPER SPW CABLE VS AOC 

Especification Copper cable AOC 

Mass 87 grams <30 grams 

Data rate <400Mbps 
<400Mbps by design 

Tested up to 380Mbps 

Jitter/Skew 2000ps 190ps 

Power 
consumption 

NA <700mW @ 200Mbps 

Bending radius >45mm >25mm 

Temperature 
range 

-200 to +180ºC -40 to +85ºC 

The scalability of the AOC allows to improve the mass 

saving with longer cable lengths since the mass cost of a 

copper cable is around 80-100g/m but for an AOC is 4-10 g/m. 

A real study of mass saving was performed comparing 

expected mass figures of harness and connectors. 

 

 

 

 

 

 

TABLE III.  MASS FIGURES OF SPW CABLE AND AOC 

 

Connector mass 

(g) 
Cable mass (g/m) 

Copper cable 
Min 9,5 83 

Max 23,5 100 

AOC cable 
Min 12 1,2 (x 4) 

Max 15 2,4 ( x 4) 

Using this table values the mass of a cable of 1m in copper 

will be around [102, 147]g whereas for optical fiber cable the 

mass is between [29, 39.6]g 

This means a mass saving of more than a 70% per cable.  

For longer cables the mass saving will be higher. For 10 m 

the mass saving could reach the 90%.  

VIII. CONCLUSSIONS AND RECOMENDATIONS 

The results from the GSTP activity were quite positive and 

DAS and Airbus think that the developed AOC could be a 

potential replacement for copper SpW cable for future 

applications for those scenarios where a mass reduction of 

current Spw harness is needed. 

The major drawback of the AOC is the power consumption 

as well as the need of external powering the transceivers since 

there are no spare pins available at uD9 interface connector. 

Next ECSS issue will allow to use different connectors that 

changing minimally the mechanical package and the electrical 

design make possible to use a connector pin as power input to 

the transceiver. 

At this moment DAS continues performing tests with 

debug equipment in order to complete all expected possibilities 

in future missions when connecting onboarded equipments. 

After these tests DAS expects to have a flight opportunity to 

check in real environment the SpW AOC (not only the 

technology as in previous flight opportunities) in order to raise 

TRL level of the solution. 
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Abstract—This paper describes the architecture of a 

SpaceWire (SpW) to SpaceFibre (SpFi) bridge which merges 

multiple SpaceWire links from various communication nodes to 

the virtual channel buffers of a single high speed SpaceFibre link. 

The main goal is to make the bridge highly configurable and to 

allow each SpaceWire links to transmit data packets with full 

throughput and independent of its length without out blocking 

the network even if one is defected.  

Index Terms—SpaceWire, SpaceFibre, high speed serial link, 

bridge, flight compatible. 

I. INTRODUCTION  

SpaceWire has been proven to be one of the most efficient, 

low latent, fault tolerant high speed serial communication 

interface by various missions of space communities around the 

world for years now. With the introduction of the SpaceFibre 

technology which is a spin-off from the existing SpaceWire 

protocol, higher data rates above 2Gbits/s and comparatively 

lesser cable weight is envisaged. With the escalation of highly 

complex network of devices for space environment, the on-

board communication links should also be flexible to the 

devices to support both SpaceWire and SpaceFibre 

technologies with its maximum potential. This proposed 

bridge will expand the possibility of communication between 

instruments which support SpaceWire and instruments which 

support SpaceFibre without any bandwidth loss, minimized 

mass and expenditures for box to box communication. 

II.  ARCHITECTURE  

The architecture of the bridge contains eight SpaceWire 

links which will be merged to eight virtual channel buffers of 

a single SpaceFibre link, of which six spacewire links will be 

used to transmit the data from various instruments. The 

remaining two SpaceWire links will be connected to some 

spacewire compatible micro-processer which will be used to 

control and configure the bridge through the Random Memory 

Access Protocol (RMAP).  For our test the Multi-DSP 

Architecture (MDPA) processor from Airbus DS was used to 

control and configure the bridge. The SpW and SpFi IPs used 

in the bridge are from University of Dundee. The integration 

of the SpW and SpFi IPs is easy, because the SpFi protocol is 

designed to work with the SpW protocol, the structure of the 

data packets of both protocols are almost the same. 

  

 

  

 

 

 

 

 

 
Figure (1). Packet Structure(1)(5)  

 

 

 

The data packet structure is given in the figure (1). The 

destination address will be the first data to be transferred from 

the header following the other necessary information about the 

packet. A single data frame of SpaceWire consists of 9-bits, 

MSB is the control character and the remaining 8-bits are data 

bits. In the SpaceFibre there is a separate 32-bit data bus and 

4-bit control bus. A simple state machine can be used to 

convert the data and the control characters from SpaceWire to 

SpaceFibre format and vice versa. With this state machine one 

data word is transmitted in each clock cycle. The transmit 

clock frequency of the SpFi was set to 125 MHz which will 

transmit with 2.5Gbps and the SpW transmit clock frequency 

was set to 20MHz which will transmit with 200Mbps. The 

system clock frequencies for both IPs were set to 62.5 MHz. 

For different test cases the SpW transmit clock frequency can 

be variable.  

 

The bridge was implemented with all the IPs like the 

RMAP controller, the Spacewire router, eight SpW links, one 

SpFi link and the necessary configuration and status registers 

for the whole design. Various FIFO interfaces were built 

around the IPs for proper flow control and sampling on both 

directions between the IPs. The difficulties of clock domain 

crossing within the design were solved by using dual port 

synchronous FIFO interfaces wherever required. The design 

was verified with Model Sim simulation. The test was 

conducted in various directions for data rate, fault tolerance 

and failure propagation. The design of the whole architecture 

is presented in figure (2). 
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Figure (2). Architecture of the SpW to SpFi Bridge 

III.  ANALYSIS AND IMPLEMENTATION 

The data rates of the bridge was tested for two 

possibilities, all SpW links transmitting in maximum data rate 

of 200Mbps and each links transmitting in varying data rates 

of maximum at 200Mbps to the minimum of 2Mbps. For the 

fault tolerance of the bridge various error cases were 

introduced in the design and verified for non-block operation 

of the bridge. Since the SpW router used in this bridge is 

working with non-blocking worm-hole routing technique, 

even if one link is defective and transmits for infinite time 

period, a timeout mechanism in the router can be implemented 

to recover the defective port from the software level. So each 

SpW link is completely independent from any other and 

would not affect the operation of the bridge.  

 

The general operation of the bridge is configurable 

according to the implementation of the user in the design via 

various generics and configuration registers. For our 

implementation we needed some restrictions in the routing 

table for the communication of each sender and receiver. For 

example the SpW router used in the bridge contains seventeen 

ports, six data SpW links are considered as links coming from 

various instruments connected in the network and they are not 

allowed to communicate with each other. These data SpW 

have only access to transmit data to their respective virtual 

channel buffers of the SpFi or transmit housekeeping data via 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

one of the two control SpW links. The RMAP controller can 

communicate only with one of the control SpW links. One of 

the eight virtual channels was used bi-directional and other 

virtual channels can only receive the data from their respective 

SpW links. The figure (3).shows the detailed routing 

permission table implemented in the bridge.  
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Figure (3). Implemented Routing Permission Table for the bridge 
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TCL 

IV. SYNTHESIS AND HARDWARE EMULATION 

The hardware implementation of the bridge was proved in 

Chip-It hardware emulation systems from Synopsys.  For 

testing the design in the Chip-It systems a synthesizable test 

bench was designed with packet generators, packet checkers 

and a loopback mechanism. The random packet generators are 

capable of generating SpW and SpFi data with a CRC (cyclic 

redundancy check) attached to it before the end of packet 

marker. The packet checkers can receive the incoming data to 

check for the CRC and generate the number of packets 

received and the number of corrupted data in transmission. 

The necessary information about the packet is included in the 

header of the packet. 

 

The Chip-it hardware emulation system uses UMR-Bus 

protocol from Synopsys to communicate with the design under 

test. The design under test (DUT) was connected to the APB 

bus as one of its slaves through a configuration register block 

which acts as the medium to transmit data from the external 

world to the bridge and vice versa. The packet generators and 

checkers were used to emulate the actual instruments 

transmitting SpW packets. A separate SpW FIFO interfaced 

was also attached with the APB bus for the transmission and 

reception of the RMAP packets from the external world 

through the MDPA for the configuration of the bridge. The 

slaves connected to the APB bus can be accessed by the UMR 

bus through an APB to UMR Bridge and the data to be 

transmitted can be given through TCL commands from a PC.  

The transmit and receive interface above the DUT contains 

SpW and SpFi IPs or dual port FIFO interfaces to pass the 

data from the generators and checkers to the DUT. For the 

first set of test in the Chip-it the FIFO interfaces were used 

inside the DUT and in the test bench to transmit and receive 

data in same data rate like the SpW links.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5).  Hierarchy of Chip-it Test Bench 

 The input data for the packet generators will be written to 

the registers in the Chip-it test bench and the outputs from the 

checkers like the number of received, defective packets and 

various other data about the transmission can also be written 

in the register blocks. By accessing those register blocks with 

TCL commands we can know the operation of the bridge. The 

reason for using the FIFO interfaces instead of the SpW links 

is because of reduced availability of the clock buffers in the 

hardware. After the successful implementation of the bridge in 

the hardware and tested for normal operation it transmitted 

without any failure. Then the behavior of the bridge was 

observed with some failure test cases. After all these testing 

the bridge has been proven to be robust, fault tolerant and non-

blocking even with maximum throughput. The second set of 

test was implemented in the Chip-it systems with three SpW 

links for data transfer and one for controlling the bridge 

through the MDPA controller. The behavior of the bridge was 

same like the first test but with little latency. The hierarchy of 

the Chip-it test bench is explained in figure (5). 

 

The Chip-it emulation hardware contains two Xilinx 

Virtex-5 (XC5VLX110) FPGAs. The bridge design uses very 

less resources when synthesized for Virtex-5 FPGA. The area 

summary for Virtex-5 is in the figure (6). 

 

Resources Used Quantity 

I/O Ports 579 

DSP48s 1(64) 

Non I/O Register bits 8314(12%) 

Block RAMS 15(128) 

LUTS 12076(17%) 
Figure (6).  Resource Utilization of the bridge 

 

V. FUTURE ADD-ONS 

The next step of addition in the bridge would be the 

timecode interface. It has been planned to implement a 

separate network from this bridge to transmit the timecodes 

from the SpW to the broadcast interface of the SpFi link.  

 

VI. CONCLUSION 

The results obtained from the implementation of the bridge 

shows that it is highly configurable, robust and fault tolerant 

which is also very easy to adapt in any network with devices 

supporting the SpW and SpFi standards. This architecture will 

comparatively reduce the total mass and costs.  With the 

future add-ons and optimization to this current bridge, it will 

be compliant with most of the radiation hardened FPGA 

technologies.  
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Abstract— Tasks of deterministic packet delivery in 
conventional SpaceWire Networks are considered. The published 
draft of the SpaceWire-D is considered in the general context of 
time division (TDMA) multiplexing in comparison with FlexRay, 
TTP, TTEhernet, ZigBee, etc. Advances for efficient TDMA in 
conventional SpaceWire networks – static and dynamic time-slot 
segments, variable epoch duration, multiple transport protocols 
support, “trusted” end-nodes are considered. 

Index Terms— SpaceWire, Networking, Spacecraft 
Electronics. 

I. INTRODUCTION 

Time Division Multiplexing is a well-known and widely 
used in network technologies channel access method. Time 
division guarantees for nodes of a network predictable 
transmission characteristics with deterministic latency. Such 
industrial networks, as FlexRay, TTCAN, TTEhernet, use 
TDMA principles to obtain guaranteed transmission 
characteristics. St. Petersburg State University of Aerospace 
Instrumentation  investigates time division multiplexing 
support for  SpaceWire transport  protocols developments  in 
correspondence with industry requirements. 

II. TIME DIVISION MULTIPLEXING IN COMMUNICATIONS 

Time multiplexing is actively used in 2G and 3G mobile 
networks, as well as in some wireless personal networks, such 
as Bluetooth, ZigBee, Ubiquiti. However, SpaceWire 
developers are primarily interested in the experience of using 
time division multiplexing applying to wired networks. 

A. TTCAN 

The time-triggered CAN protocol [1] is a higher layer 
protocol on top of the CAN data link layer. TTCAN provides 
mechanisms to schedule CAN messages in a time-triggered 
way as well as in an event-triggered way. It allows using CAN-
based networks for closed-loop control. Also the real-time 
performance in CAN-based in-vehicle networks increases with 
the use of TTCAN. 

The time-triggered control and thus synchronization of the 
involved control units in a network are done via a reference 
message. All participants of the TTCAN network identify the 

reference message by its identifier. As soon as the first bit of 
the frame (Start of Frame: SOF) is recognized, the local time 
unit is synchronized. The accuracy of the local time units 
depends only on the physical signal propagation of the bus line 
and is thus is neglectable. Individual TTCAN participants are 
configured to know when to send their frames after having 
received the reference frame.  
The time between two reference frames is called the basic 
cycle. Basic cycles are not always identical in order to be able 
to transmit messages at different periodic frequencies. The 
system matrix comprises several basic cycles and is repeated 
indefinitely until the vehicle network is turned off.  

B. FlexRay 

FlexRay [2] is a fast, deterministic and fault-tolerant bus 
system for automotive use, based on the experience of 
Daimler-Chrysler with the development of prototype 
applications and the developed by BMW byteflight 
communication system.  

FlexRay works according to the TDMA principles. 
However, the fixed allocation of the bus bandwidth to the 
FlexRay components or messages by means of fixed time slots 
has the disadvantage that the bandwidth is not fully exploited. 
For this reason FlexRay subdivides the cycle into a static and a 
dynamic segment. The fixed time slots are situated in the static 
segment at the beginning of a bus cycle. In the dynamic 
segment the time slots are assigned dynamically.  

In order to implement synchronous functions and optimize 
the bandwidth by means of small distances between two 
FlexRay messages, distributed components in the 
communication network require a common time base (global 
time). For clock synchronization, specific FlexRay messages 
tagged as synchronization messages are transmitted in the static 
segment of the cycle. With the aid of a special algorithm, the 
local clock-time of a component is corrected in such a way that 
all local clocks run synchronously to a global clock. 

C. TTP/С 

The TTP/С [3] frame consists of one byte header, up to 
236 bytes of the payload and 3-byte CRC field. TTP/C 
implements the time-division multiplexing approach based on 
MEDL (Message Descriptor List), which shall be loaded into 
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every node. The MEDL contains predefined static data to 
control when a message shall be sent on or received from the 
communication channels.   

Each MELD string consists of the following main fields: 
the global time when the message shall be sent or received; 
the memory location of the message intended to be sent or 
received; the attributes field that includes the message type 
(input or output), the message length, etc. 

To determine whether a node is operating correctly the 
membership service is used. Each bit in the membership field 
corresponds to a particular cluster node. When a node is 
allocated for data transmission at a particular time unit, all 
other nodes in the cluster analyze the input data so as to 
determine whether this node operates correctly. 

D. TTEhternet 

TTEthernet [6] is implemented on the basis of Ethernet. It 
provides time-triggered communications and global clock 
synchronization as well as a fault-tolerant operation mode. 
TTEthernet offers three types of traffic classes: Time-
Triggered, Rate-Constrained and Best-Effort.  

TTEthernet implements the TT class of QoS by the 
combination of resource reservation in space and time-
division multiplexing. Each TTEthernet device in the network 
shall send TT frames only at predefined points of time to 
avoid collisions. On the other hand, frames, which are 
transmitted over different paths, can be sent to the network at 
the same time. To support this scheme TTEthernet implements 
clock synchronization mechanism. 

In order to prevent error propagation from failed 
components the fault-tolerant TTEthernet network 
configuration deploys two independent channels for each 
connection. Safety-critical TTEthernet controllers shall be 
able to transmit and receive messages using two 
communication channels simultaneously. 

In order to detect a failure of nodes within a cluster, 
TTEthernet provides membership service similar to TTP/C. 

III. SUGGESTIONS 

To develop a Transport protocol conforming space industry 
demands, [5], we propose flexible epoch with static and 
dynamic segments, guarding port operation and redundant time 
master operation. 

A. Epoch ogranization 

Each new time code indicates the beginning of a new time 
slot. Number of time slots in the epoch can vary from 2 to 64. 
The question is – how the node should determine the slot 
number basing on the time-code value. 

Let a network member know a total number of time-slots in 
the epoch. It increments a slot's counter on receiving of the 
next valid time-code. This counter is reset to zero when the 
maximum value is reached. The disadvantage of this method is 
loss of transparency that is pawned in SpaceWire-D draft: the 
time-slot number is equal to the received time-code value. 

Router synchronization problem arises if two routers were 
turned on at different time moments, as it is often done in real 

equipment. When the second router receives the first (his) time 
code, it would be treated as the start point for the first time-slot. 
At the same time this time-code would be subsequent for the 
first router that started before the second one, and the routers 
come out of synchronization. The problem is shown in Fig. 1. : 
the router K1 is the time-master, it distributes time-codes, the 
epoch consists of 4 time-slots. The second router K2 turns on 
two slots later and receives a time-code with value “3”. 
However, it can’t unambiguously determine a place in the 
epoch of the current time-slot using the incoming time-code 
value, because time-code value is not equal to time-slot 
number. 

Fig. 1.  Time-slots counter  

Restriction on the multiplicity is another approach to epoch 
organization. Let’s limit the value of time-slots in the epoch by 
the values that are the power of two: 2, 4, 8, 16, 32, and 64. All 
routers should know the value of power n, for two time-slots 
n=1, for 4 slots n=2, for 8 slots n=3 etc. All network 
participants can identically determine time-slot number while 
receiving new time-code if value n is pre-defined for them. 

B. Port Guardian 

A lot of network technologies, described above, suppose 
port guardian mechanism in order to protect the network from 
faulty nodes that try to transmit data at appropriate time-slots. 
Often such a "watch dog" is implemented as a separate device 
or chip in order to increase fault tolerance. Port guardian 
guarantees that the node would not transmit data during wrong 
time-slots and eliminates «babbling idiot» problem. Port 
guardian mechanism is supposed to be included to SpaceWire 
routers or nodes in order to improve network fault-tolerance of 
a deterministic SpaceWire network. 

The Fig. 2. shows a SpaceWire network with time division 
multiplexing support. Network routers, marked as «Net guard», 
store scheduling table and permit data transfer for nodes only at 
proper time moments. The central part of the router is the 
standard SpaceWire router.  

Fig. 2.  Network with network guardians 

The Fig. 3. shows «Net guard» router's port. This router has 
the ability to block transmission that violates the predetermined 
during configuration time scheduling table. 
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Fig. 3.  Port guardian 

C. Shadow master 

An important task for the time division multiplexing 
protocol is to provide a fault-tolerance mechanism for the time 
markers distribution [4]. Loss of a single time-code with 
«master-slave» time synchronization leads to two time-slots 
loss; full time-master failure leads to the absolute network 
closedown. 

Shadow master is one of possible solutions to increase time 
distribution fault-tolerance. This backup master can send time-
codes in addition to the primary time master. It should be noted 
that this is a violation of the normative part of SpaceWire 
standard, that says that only one channel interface in the whole 
network should actuate an active tick signal. The Shadow 
master continuously checks the status of the primary time 
master by controlling the validity of incoming time code (Fig. 
4. ). If the shadow master does not receive valid time code 
within a certain predefined time, it would start time codes 
distribution itself. 

Fig. 4.  Time backup master 

D. Dynamic and static segments 

It is necessary to integrate scheduled  traffic and event-
triggered traffic to effectively utilize psychical resources of the 
network. An epoch is divided into two parts for it; those parts 
are used for data transmission of scheduled  or event-triggered 
traffic (Fig. 5. ). 

Scheduled data transmission goes during static segment, 
flow control manages epoch division into slots. During 
dynamic segment all TDMA mechanisms are switched off, 
network runs at “classical” SpaceWire mode. The last slot in 
the epoch is designed to clean the routers' buffers of data, 
which has not been sent, to transmit an EEP or EOP symbol 
and to prepare the conversion to the static segment. 

Fig. 5.  Static and dynamic segments 

IV. CONCLUSION 

The paper gives an overview of several network 
technologies, that use time division multiply access for 
deterministic data transmission. Several mechanisms are 
suggested for organization of deterministic  packet delivery 
protocol in SpaceWire networks. It could be used for 
scheduling in new Transport protocol developments based the 
requirements of space industry and in further developments of 
the SpaceWire-D or its successor protocols. . 
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Abstract—Fractionated spacecraft such as system F6, has the 

potential to significantly enhance the adaptability and survivability 

of space capabilities, while also shortening the development time 

for complex space systems. It has become an important trend in the 

development of small sized satellite. 

SpaceWire has been widely adopted in satellite for its high 

throughput in communication and simplicity in design, and it is 

believed that SpaceWire will be deployed as a common standard in 

small satellites. However, it lacks the capability to communicate in 

the fractionated spacecraft scenario. 

In this paper, we propose HANDS, a Heterogeneous Aerospace 

Network architectures for Disaggregated Satellite based on 

SpaceWire. HANDS consists of three parts. First, satellites 

communicate with their fixed identifier and routing among them 

could be realized by identifier. The introduction of identifier 

assures the zero-loss packet during handover process. Second, 

Egress Router(ER) on satellites maintains reachable information of 

onboard equipment and shields the difference of the equipment’s 

location. The introduction of ER helps to keep the SpaceWire 

communication standard in single satellite and strengthens the 

scalability of the network. Third, the equipment’s address is coded 

globally, which benefits the networking between equipment. We 

also perform careful analysis and discussion on characters of 

HANDS and show the benefits of this architecture. 

Index Terms—SpaceWire, Fractionated spacecraft, network 

architecture, identifier. 

I. INTRODUCTION 

System F6 program
[1]

, lead by DARPA, is proposed to 

develop and demonstrate the enabling technologies for 

fractionated spacecraft architectures. As is shown in Fig 1, the 

fractionated spacecraft are a set of disaggregated satellites  

whose function inherit from a single large satellite. Function of 

traditional satellite is divided into several independent parts 

and each of them is realized on certain fractionated satellite. 

These spacecrafts are wirelessly-interconnected and capable of 

seamlessly sharing a variety of resources such as computation, 

storage and so on. Such an architecture has the potential to 

significantly enhance the adaptability and survivability of 

satellite in aerospace, while also shortening the development 

time for complex space systems. More security policies and 

fault tolerance scheme could be realized on satellites and the  

reliability could be improved  at the same time. 

 

Fig. 1.  Notional depiction of the F6 on-orbit demonstration [1] 

Taking into account that SpaceWire lacks the capability to 

communicate in fractionated spacecraft, we propose HANDS, a 

Heterogeneous Aerospace Network architectures for 

Disaggregated Satellite based on SpaceWire which provide a 

solution to integrate wireless network into the wired one. In 

this architecture, satellites communicate with fixed identifier 

and routing among them could be based on identifier. The 

introduction of identifier assures the zero-loss packet during 

handover process. Egress Routers(ER) on satellites maintain 

reachable information of onboard equipment and shields the 

difference of their location. The equipment’s address is 

globally coded and can promote fast routing and switching  on 

satellite network. 

II. APPLICATION SCENARIO 

The proposed application scenario is shown in fig 2. 

Traditional satellite is disaggregated into several wirelessly 
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interconnected modules (S1,S2,S3,S4). Its function is divided 

into several independent parts at the same time. Satellite S1 

provides computing and storage resources. S2 collects 

environmental  information through sensors. S3 is used to 

provide high speed inter-satellite link (ISL). S4 supports high 

speed ground-satellite link (GSL) between fractionated 

satellites and gateway on the earth. Communication inside each 

spacecraft adopts SpaceWire standard but not between 

satellites. All fractionated satellites share information and  

resources through wireless communication which plays an 

important role in providing high speed information exchanging 

between fractionated satellites. 

S2

S1

S3

S4

Traditional Satellite

Fractionated Satellites

Computing & Storage

Sensors

High Speed GSL

High Speed ISL

Ground Gateway

Other Satellite

 

Fig. 2.  Scenario of fractionated spacecraft 

III. SYSTEM ARCHITECTURE 

A. HANDS model 

Wireless Network
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ID1
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Fig. 3.  Model of HANDS 

There are mainly three different roles in HANDS. As is 

shown in Fig 3. Node is the data source on satellite and has an 

independent address. Router is responsible for packets routing 

and switching on satellite. Egres Router (ER) works as an 

gateway between equipment on satellite it belongs to and that 

on other  fractionated satellites. The fractionated spacecraft 

forms an WLAN(Wireless Local Area Network) in space and 

communicate through ER. Communication between satellites 

adopts spacewire standard which is not available in this 

scenario. ER is responsible for processing and switching 

packets in wireless network so that heterogeneous network 

could cooperate to form an unified architecture. 

B. Characters of system 

1) Satellites communicate with fixed identifier: In HANDS, 

each satellite or teminal has a fixed identifier which is used for 

to communicate with other satellites or terminals. Address of 

satellites may change while  identifier remains the same and is 

globally unique. Identifier is also used for rouing between  

satellites when address is invalid during the handover process 

between fractionated satellites and other terminals (e.g. other 

satellite, ground gateway, user terminal). The identifier makes 

sure that the packet be sent to destination instead of being 

dropped. When packet is transmitted to ER and will be sent to 

other terminals which is not within fractionated satellites, 

identifier will be encapulated in the packet header. 

2) ER maintains connection: ER is mainly responsible for 

packet encapsulation and decapsulation when packet passes 

through. As the gateway of satellite, ER not only modifies 

message but also shields the difference of equipment's location 

by NAT(Network Address Translation) which is used to 

translate node's private address into the public(globally 

reachable) one and vice versa. It maintains an mapping table 

which include addresses of node on fractionated satellites and 

related addresses which is used to communicate with other 

satllites or teminal. In this way, communication between ERs 

is transparent to nodes and routers and nodes on different 

fractionated satellites would communicate as if they were in 

the same satellite. 

3) Coding nodes' address globally in fractionated satellites: 

The nodes' addresses are coded globally so that the address 

can be used directly when communicating with nodes within 

fractionated satellites. At the same time, ER could decide  the 

egress port of the packet by its destinated address. Therefore, 

communication between two nodes has no difference with that 

on tranditional statellite.  

IV. SYSTEM SCENARIO AND DISCUSSION 

A. Networking with identifier 

Identifier is used to uniquely identify certain sallite or 

terminal. Satellites in different location access gateway on the 

earth with their identifier and get allocated addresses. Then 

communication packets will be routed based on address while 

the identifier are still encapsulated in packets which can be 

used for routing when addresses are invalid. As shown in fig 4, 

fractionated satellites S1 and S2 has their own identifer ID1, 

ID2. When they access the ground gateway, they will get 

185



address IP1 and IP2 repectively. With the movement of 

satellites, link between S2 and gteway will be interrupted while 

S1 will access the gateway. In this scenario, when there is a 

packet with destination address of IP2(S2) is transmitted to 

gateway, it will be dropped because the link between S2 and 

gateway has already been disconnected. When identifer is 

encapsulated in the packet, gateway will check the identifer 

information and know that the destionation is S2. Then packet 

will be forwarded to S1 according to ceratin policy and arrive 

at S2 correctly. 

S1 S2

Gateway

Moving direction

Data flow

Wireless connetction

ID1 ID2

IP1 IP2

ID3

IP3

 

Fig. 4.  Example of data flow during handover process 

The introduction of identifer helps to avoid loss of packet 

during handover process and improves the utility of the 

network. Networking with identifer makes mobility 

management of satellites straightforward and specific and is 

more suitable to the scenario when network node keeps moving. 

Simply using IP address in network cannot meet the demand of 

constantly dynamic toplogy of satellites. Nodes on satellites 

need some fixed identifier to indicate themselves during the 

movement so that packets can be routed to destination when 

address is invalid.  

B. Egress Rrouter 

Payload Priv Addr

Payload Pub AddrID

Payload Pub Addr

Payload Priv Addr

Payload Priv Addr Payload Priv Addr
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Payload Priv Addr
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Storage
Sensors

Router1 Router2
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Fig. 5.  Packet process in HANDS 

As shown in fig 5, when communication is going on 

between fractionated satellites, ER can decide whether the 

packet is sent to the fractionated satellite based on the 

destination address and will send the packet through ER 

without further operation if it is. Gateway ER of destination 

receives the packet and forward it to the destinated node. When 

the destination is outside the fractionated satellites(gateway as 

an example in fig 5) and packet is passed through ER, ER will 

encapsulate identifier information in the packet and translate  

the private address into a global reachable address. And when 

there is packet received from wireless network, ER will 

decapsulate the identifer information and mapping the 

destination address into the private one. Then the packet will 

be sent to the destinated node. 

Packet flow will be divided into two classes based on the 

private address range. Processing of packets is avoided in 

communication within fractionated satellites which helps to 

realize efficient routing and exchanging in satellites. This 

process is completed in ERs and is transparent to routers and 

nodes on satellites which maintains the compatibility to current 

standard. The modularity of the satllites' function does help in  

the development of satellites and ER plays a crucial role. 

C. Globally addressing 

To code the node address globally in the fractionated 

satellites is advantageous to fast routing and switching within 

satellites. The gateway on satellites could decide the destinated 

node's  location from the destinated address and can forward 

the packet to ceratin egress port directly. Operation that need to 

be performed to packets during routing process is reduced as 

much as possible. Independent addressing surely benefit a lot 

in scalability of fractionated satellites but it involves much 

more operations in routing between them. 

V. CONCLUSION 

In this paper, we propose an heterogeneous architecture 

HANDS in fractionated satellites. The main character of the 

architecture is that it introduces Egress Router as the gateway 

of the fractionated satellites. ER helps to realize networking 

with identifier in satellites and transparent routing within the 

fractionated satellites. The introduction of identifier is a 

innovative way to satellite network and needs further research. 

This architecture made least changes to current communication 

standard on satellite and provide an solution to communication 

in F6 scenario. 
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Abstract—In the recent few years, Software Defined Network 

(SDN) brings a revolution to network technology. Comparing 

with the traditional techniques, SDN has several distinguished 

features, including fine-grained flows management, global view 

of the network and centralized control, etc. Since SpaceWire is 

becoming a standard for high-speed links and networks for use 

onboard spacecraft, we argue that adopting the idea of SDN into 

SpaceWire networks will bring several advantages, including 

open network topology, fine-grained control and QoS, etc. 

In this paper, we propose a new software defined SpaceWire 

network architecture: SDSpW. In SDSpW, the core of 

SpaceWire network contains three roles: controller, router and 

end-nodes. The controller plays a center role in managing the 

routing, switch within the whole network, while SDSpW router 

adopts the control-forward separation philosophy. In the 

forwarding plane, SDSpW integrates a fine-grained flow 

technology by importing a multi-field flow table. With the 

introduction of flow table, SDSpW make it easy to fine grained 

flow control and ensures the end-to-end Quality of Service (QoS). 

In the control plane, SDSpW controller and router run openSpW, 

a customized protocol on top of SpaceWire - RMAP.  

We also conduct several experiments in the environment of 

mininet to evaluate the performance of SDSpW. Experimental 

results show that the controller can monitor the state of whole 

network in real time, which makes the maintenance and 

management more easily. Moreover, the end-to-end QoS is 

guaranteed. 

Index Terms—SpaceWire, Software defined network, SDSpW, 

Quality of Service. 

I. INTRODUCTION 

In the recent years, SDN technology has brought a 

revolution to network technology. The purpose of SDN is to 

make the network dynamic, manageable, adaptable to suit for 

today’s network applications. Different from traditional 

network architecture, SDN architecture decouples the control 

plane from data plane. The basic SDN architecture is shown in 

Fig. 1, which consists of data plane, control plane and 

application plane. The data plane comprises network elements, 

which expose their capabilities toward the control plane via 

southbound interface. And it mainly focuses on packet 

forwarding. The application plane communicates with control 

plane via northbound interfaces in charge of network 

management.  The control plane is a logically centralized entity 

which mainly focuses on (i) translating the applications’ 

requirements to data plane and (ii) providing the real-time 

status of network to application plane. 
[1]
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Fig. 1.  Basic SDN architecture 

Comparing with the traditional network techniques, SDN 

has several distinguished features, including fine-grained flows 

management, global view of the network and centralized 

control, etc. 

And in the area of space, SpaceWire is becoming a standard 

for high-speed links and networks for use onboard spacecraft. 

But there still exists some problems in the SpaceWire network. 

1) With the development of On-board system, the scale of 

SpaceWire network is increasing. 2) The congestion of 

network is still a problem caused by wormhole routing 

mechanism. 3) The tasks of spacecraft sometimes change, so 

the priority of nodes should change with the tasks to guarantee 

the QoS of high priority tasks. The SpaceWire network lacks 

feasible mechanism to support the changing. 

In this context, we would adopt the idea of SDN into 

SpaceWire networks. And we propose a new software defined 

SpaceWire network architecture: SDSpW. There will bring 

several advantages, including open network topology, fine-

grained control and end-to-end QoS guarantee, etc.  

The rest of the paper proceeds as follows. Section 2 

describes the architecture of SDSpW. Section 3 presents the 
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design and implementation of SDSpW. In section 4, we 

evaluate the performance of SDSpW. And section 5 concludes 

the paper. 

II. AN OVERVIEW OF SDSPW 

The overview of our software defined SpaceWire network 

is shown in Fig. 2.  

...

...

SpW

SpW

SpW

SpW

SpW

SpW

SpW

SpW

SpW

SpW

SpW

Controller

openSpWNodes

Nodes

SpaceWire Networks

Downlink

Processor

Sensor

Storage

Router

Control 

flow

 

Fig. 2.  Architecture of SDSpW 

The SDSpW architecture contains three roles: controller, 

router and end-nodes. The controller plays a center role in 

managing the routing, switch within the whole network, while 

the router and nodes take the role of data plane to forward 

packets. In the control plane, SDSpW controller and router run 

openSpW, a customized protocol on top of SpaceWire - RMAP. 

And in the forwarding plane, SDSpW integrates a fine-grained 

flow technology by importing a multi-field flow table. With the 

introduction of flow table, SDSpW make it easy to fine grained 

flow control and ensures the end-to-end Quality of Service 

(QoS). 

III. THE DESIGN AND IMPLEMENTATION OF SDSPW 

In this section, we will give a detail description of the 

design and implementation of SDSpW. 

A. Data Plane 

The data plane consists of SpaceWire router and nodes. The 

packets in  SpaceWire networks can be routed based on either 

path address (range 0 to 32) or logical address (range 32 to 

254).  Considering the standard of SpaceWire network, we 

would make litte modification to make the router and nodes 

much more feasible and fine-grained control. We will consider 

both the situation of path address logical addresss. 

1) Path Addresses (PA) 

The routing mechanism using path addresses is also called 

wormhole routing. The SpaceWire networks use wormhole 

routing to deliver packets as fast as possible with low-level 

flow control. Wormhole routing has the advantages of 

minimizing the amount of buffers and transmission latency. 

However, the low-level flow control leads to link congestion 

when a long packet occupying the router. 

In SDSpW, the controller has an abstract view of the 

network status. It can dynamically configure the node’s path 

addresses to choose a better route. And the router in data plane 

has the ability to support multi priority flows distinguished by 

the ports, which also can be configured by the controller. The 

combination of nodes and router will meet the requirements of 

QoS. 

The processing of a SpaceWire packets by nodes and 

routers following the above functions is shown in Fig. 3. In this 

redundant SpaceWire network, the packets are transferred from 

node2 to node4 with the path addresses <4, 2, 1>. When the 

controller monitors that router1 is congested, then it can 

configure the path addresses of node2 to <5, 2, 1>. So the 

packets can be transferred in real-time with multi-path 

wormhole routing, which can ease the congestion phenomenon 

and increase the bandwidth utilization. 
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Fig. 3.  Multi-path wormhole routing 

On the other hand, the modified router forwards packets 

based on priority, as shown in Fig. 4. In Fig. 4(a), the packets 

from low-priority port 2 are occupying the output port 3 while 

the packets from high-priority port 1 are arriving. Different 

from traditional priority mechanism, in which the high-priority 

packets have to wait for an existing low-priority packet to 

complete, the high-priority packets are immediately transferred 

out, as shown in Fig. 4(b). This mechanism guarantees the high 

priority traffic transferred in real-time.  Moreover, the priority 

of ports can be dynamically configured by the controller based 

on tasks. 

 

Router1

1 2 3

4 5

LH

Pay
lo

ad

E

3

Router1

1 2 3

4 5

LH

(a) (b)

E
3

E

E
3

E

E

 

Fig. 4.  Priority scheduling 

2) Logical Addresses (LA) 

The routing mechanism using logical addresses is similar to 

the algorithm used in ground routers. The complexity of path 

addressing is mainly handled by the source nodes and the 

routers are relatively simple. To support logical routing, each 
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router contains a routing table to forward packets which 

simplifies the function of nodes. For a larger network, the 

bandwidth utilization of wormhole routing is low since the path 

addresses increases. On the contrary, the logical addresses 

mechanism is suitable for a larger network. 

In the conventional SpaceWire router, the routing table 

contains two fields (Logical destination, Physical output port). 

The router forwards packets only based on logical destination, 

which cannot identify different flows. In SDSpW, the router 

adopts a multi-field flow table as shown in Fig. 5, which 

contains source address, destination address, priority, action 

and counter. 

 

Src Dest Priority Action Counter
 

Fig. 5.  Multi-field flow table 

  The router matches source and destination addresses to 

identify different flows, and obtains the priority and output port 

of the flow. The counter is used to record the status of the 

network in different grain, such as flow level and port level. To 

support this mechanism, the nodes should also be made little 

modification. The header logical addresses add source address 

following the destination address.  
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Fig. 6.  Multi-field forwarding 

The multi-field forwarding mechanism is shown in Fig. 6.  

Packets are transferred form node 2 (logical address is 42) to 

node 4 (logical address is 51). When receiving the packets, the 

routers lookup flow table, and forward the packets based on the 

output port and the priority. From the above figure, we can see 

that the priority of flow <42, 51> is higher than flow <43, 51>. 

The forwarding mechanism based on priority is familiar with 

the algorithm shown in Fig. 4. The flow table and node can 

also be dynamically configured which makes the SpaceWire 

network more feasible and controllable. 

B. Control Plane 

In the control plane, SDSpW controller and router run 

openSpW, a customized protocol on top of SpaceWire - RMAP. 

The customized openSpW has an abstract view of the whole 

SpaceWire network, and monitors the network’s status (such as 

congestion, nodes’ failure). It can dynamically configure the 

routers and nodes both in the situation of path addresses and 

logical addresses. 

IV. EVALUATION 

In this paper, we evaluate the performance of SDSpW in 

the environment of mininet. Our evaluation seeks to: 1) the 

controller can monitor the state of whole network in real time, 

2) the QoS of end-to-end is guaranteed. The topology of the 

simulated network is shown in Fig. 7. 
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Fig. 7.  The topology of evaluation SpaceWire network 

As shown in Fig. 8, we establish the topology of simulated 

network.  

 

 

Fig. 8.  The topology of established in Mininet 

From the experiment, we find out that the controller can 

real-time monitor the status of whole network by reading the 

counters of the data plane. Moreover, as the bandwidth of link 

is limited, the performance of SpaceWire network   degrades 

with the throughput increase of end-nodes.  But in the priority 

mechanism, the performance of high-priority flow is 

guaranteed.  

V. CONCLUSION 

In this paper, we bring the thoughts of SDN technology into 

SpaceWire network which has several advantages, including 

open network topology, fine-grained control and QoS, etc.  

Then we propose a new software defined SpaceWire network 

architecture - SDSpW, which contains three roles: controller, 

router and end-nodes. The dynamically routing mechanism 

proposed in this paper achieves an adaptable, controllable 

network. As the evaluation results show, the controller can 

monitor the state of whole network in real time, and the end-to-

end QoS is guaranteed. 
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Abstract—The STAR-Dundee SpaceWire Physical Layer 

Tester (SPLT) features hardware which enables it to perform 

tests across the SpaceWire standard from the physical and signal 

layer right up to the network and protocol layer.  By 

incorporating components from other established STAR-Dundee 

products, including the Link Analyser Mk2 and Conformance 

Tester, the SPLT is the perfect tool that can be used throughout 

all stages of SpaceWire development from planning requirements 

through to production testing of flight components. 

The SPLT transmits SpaceWire LVDS signals at 

programmable swing and common mode voltages, slew, skew and 

bit speeds to test the capability of the Unit Under Tests (UUT) to 

maintain a SpW link without disconnecting.  To do this, the 

SPLT can be configured as a SpaceWire interface on a SpW 

router.  Alternatively, the SPLT can be configured to be placed in 

the middle of a SpW link between two SpW ports under test and 

manipulate the SpW signals in both directions. 

Software running on a host Personal Computer (PC) is used in 

conjunction with STAR-Dundee’s STAR-System device drivers 

and software to control the SPLT. 

Index Terms—SpaceWire, Physical Layer, Signal Layer, Star-

System, Spacecraft Test and Development Equipment 

I. INTRODUCTION 

Throughout the specification, design, development and 

testing of a SpaceWire system, it is important that the system is 

tested and verified to the various levels of the standard.  A 

number of tools already exist for testing a system’s behaviour 

and performance at these levels, as is illustrated in Figure I-1.  

Any problems in the physical and signal layer of the SpW 

system can be hard to detect and diagnose.  This may be due to 

underlying problems not manifesting themselves in consistent, 

reliably reproducible symptoms.  The SPLT’s specialised 

hardware provides the capability to test and verify SpaceWire 

systems at these levels [1] [2]. 
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Figure I-1: Testing across the SpaceWire Standard 

II. OVERVIEW OF THE SPLT 

The front panel of the SPLT is shown in Figure II-1. 

 

 

Figure II-1: Front panel of the SPLT 

The SPLT features two Physical Layer Test SpaceWire 

ports, capable of performing tests at the physical and signal 

layers, as well as two normal SpaceWire ports.  The 

configuration of these ports is shown in Figure II-2. 
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Figure II-2: Overview of the SPLT 

The Physical Layer Tester is controlled by a USB 2.0 

interface from a Host PC.  This features two channels to the 

SpaceWire Router, allowing one channel to be used for control 

and configuration of the device and the other channel dedicated 

to SpW traffic data.  

The outputs of the Physical Layer Test SpaceWire Ports (1 

and 2) feature aberration circuitry, which is able to control the 

in-pair and data-strobe skew and jitter, as well as the slew, 

amplitude and common mode voltage of the LVDS signals. 

The inputs from the Physical Layer Test SpaceWire ports 

are connected to high speed analogue buffers that allow easy 

interface of an oscilloscope to record the eye pattern of the 

SpaceWire LVDS signal received from the UUT. 

III. SPLT SYSTEM OVERVIEW 

The Physical Layer tester can be set up to interface to a 

UUT in three basic modes.  In all three modes, the SpaceWire 

signals received from the UUT(s) can be buffered onto an 

oscilloscope.  If the Link Analyser capability is selected, then a 

Logic Analyser may be interfaced to the mictor connector on 

the rear of the device to read the decoded SpaceWire traffic in 

a similar fashion to the STAR-Dundee Link Analyser Mk2 [3]. 

A. In-Line Margin Analysis 

 

 

Figure III-1: In-Line Margin Analysis 

The SPLT is placed in line with a SpaceWire link between 

two UUTs, or two SpW ports of the same UUT, as shown in 

Figure III-1.  The SpaceWire data is passed transparently 

through the SPLT, allowing the two UUTs to communicate 

normally.  Aberrations can be applied to the output SpW 

signals of the SPLT in one, or both, directions to explore the 

margins of either, or both, UUT devices. 

B. Loop-Back Margin Analysis 

 

Figure III-2: Loop-Back Margin Analysis 

A test can be performed where a UUT’s transmitted SpW 

data is looped back to the same port through port 1 of the 

SPLT.  Aberrations can be applied to the transmitted data to 

explore the receive margins of the UUT. 

C. Interface, Routing Margin Analysis 

 

Figure III-3: Interface & Routing Margin Analysis 

The SPLT can be configured in a similar way to the STAR-

Dundee Brick Mk2 with the USB 2.0 port interfaced either 

directly to the four SpaceWire ports, or through a SpaceWire 

router, as illustrated in Figure II-2.  This allows SpW data to be 

transmitted and received from the Host PC. 

D. Conformance testing Analysis 

If the Conformance testing option is selected on the SPLT, 

then the full suite of SpaceWire conformance tests can be 

performed from SpW link 1 [4].  The equipment is set up in the 

same way as shown in Figure III-2.  This arrangement will be 

able perform a more comprehensive range of tests on the UUT 

than the existing STAR-Dundee Conformance Tester by taking 

advantage of the LVDS aberration capabilities of the SPLT. 
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IV. TESTING WITH THE SPLT 

The SPLT Software provides Margin and Production 

testing modes, which were discussed in [2].  The control 

software now features graphical representations of the 

aberrations that are being applied.  The user interface is shown 

in Figure IV-1. The graphical representations are described in 

sections IV.A and IV.B. 

 

Figure IV-1: SPLT Control Software 

A. Graphical representation of single aberrations 

In order to assist the user in understanding the aberrations 

that they are applying to the signals, a graphical representation 

of the aberrations is provided in software.  Figure IV-2 shows a 

SpaceWire link running with Nulls. 

 

 

Figure IV-2: SPLT configured without aberrations 

 

The top two waveforms in Figure IV-2 show a software 

representation of some SpaceWire transitions based on no 

aberrations being present.  The bottom screenshot shows a 

measurement of the SpaceWire signal transmitted out of the 

Physical Layer Test Port, measured at the termination resistor 

on the other end of the link.  Two vertical cursors have each 

been placed on adjacent transitions of the Data and Strobe. 

In all oscilloscope screenshots in this paper, the Data is 

shown at the top of the oscilloscope screenshot, and the Strobe 

is shown at the bottom.  The timebase is 2 ns per division, and 

the voltages are all shown at 200 mV per division.  The scope 

is 1MΩ AC coupled.  Measured Voltages must be divided by 2 

to correct for the ×2 gain of the SPLT buffers that were used to 

obtain these waveforms. 

A Skew of -2 ns is then set up in the software.  The 

graphical representation of this aberration is shown in Figure 

IV-3.  A dotted outline of the waveform shows how far from its 

ideal position it’s being moved.  In interactive mode, as the 

skew slider is moved sideways, the graphical representation is 

updated in real-time with the value of aberration and cursors to 

demonstrate the magnitude of aberration being applied.  The 

user then commits this aberration to the SPLT by clicking “Set 

Values”.  In automatic mode, the graphical representation is 

updated in real-time as the increasing value of the aberration is 

sent to the SPLT. 

 

 

Figure IV-3: SPLT configured with 2 ns Skew 

B. Graphical representation of combined aberrations 

Labelling multiple aberrations with cursors and markers 

clutters the graphical representation.  A second window is used 

to show the effects of combined aberrations.  This window, 

along with the captured waveform, is shown in Figure IV-4 
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Figure IV-4: SPLT driving combined aberrations 

The SPLT was configured to drive the following 

aberrations in Figure IV-4: 

 -1 ns Data to Strobe Skew 

 -3 ns of Strobe Plus to Strobe Minus in pair skew 

 1.16 Volts Common Mode 

 200 mV of Swing 

The Graphical representation at the top of Figure IV-4 

shows the many different ways in which the LVDS signal 

is now being deviated from its ideal parameters.  The 

oscilloscope confirms the poorly degraded signal that is 

being driven out from the SPLT.  Occasional disconnects 

are observed under these conditions. 

V. USER CALIBRATION OF THE SPLT 

The SPLT’s physical layer test ports feature several 

analogue components that are calibrated from the factory for 

each individual unit.  Users may wish to check this calibration, 

which may need updating as the environment in which the 

device is operated may vary, and as the components age.  Users 

may also wish to calibrate the SPLT to a particular cable that 

they will be using with the SPLT. 

The Software supplied with the SPLT includes a calibration 

application.  In order to use this, the SPLT must be configured 

with a SpaceWire cable between ports 1 and 2 of the SPLT, 

and an oscilloscope connected to the analogue buffers on the 

receiver of the SPLT.  This is shown in Figure V-1 

 

 

Figure V-1: SPLT Calibration Software 

In Figure V-1, the LVDS Swing driven by Port 2 is being 

calibrated by the Calibration software.  The SpaceWire cable 

loops this data into Port 1 so that these signals can be 

monitored on an oscilloscope.  The calibration software steps 

through a number of linear data points to increase the swing.  

Measurements taken from the oscilloscope are entered into the 

appropriate boxes indicated by the green arrow on the left hand 

side of the current data point.   

Once all of the data points are entered, the Software shows 

the calibration constants taken from these measurements 

against the factory calibration constants that the device was 

initially despatched with.  The user calibration data can be 

uploaded to the SPLT for future use. 

VI. CONCLUSION 

The SPLT performs production and margin tests at the 

physical and signal layer in addition to higher level tests on a 

SpaceWire system.  Protection against single point of failure in 

the device makes it suitable for interfacing to sensitive flight 

hardware.  Such capability makes the SPLT one of the most 

comprehensive pieces of SpaceWire test equipment on the 

market. 
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Abstract — The steadily increasing demand of high-throughput 

interfaces, e.g., in satellite payload processing systems, drives the 

development of faster data transmission systems. The emerging 

SpaceFibre standard offers a multi-gigabit serial connection 

which is specified on the physical and data link layer while 

reusing the SpaceWire protocol specification on the higher 

protocol layers, thus enabling compatibility on the software 

layer. The AXI SpaceFibre IP core presented in this paper 

combines the SpaceFibre CODEC IP core developed by STAR-

Dundee, a TLK2711 WizardLink Transceiver (meeting the 

SpaceFibre specification with up to 2.7 Gbit/s), and a DMA 

interface that connects the IP core to any AXI-based 

reconfigurable system-on-chip using FPGAs. The IP core 

configuration and initialization registers for the SpaceFibre RX 

and TX channels are accessible via AXI4-lite slave interfaces 

while the payload data is handled by a dedicated scatter/gather 

AXI-DMA core, which is connected to AXI-Stream FIFOs to 

provide the maximal possible payload transaction performance. 

The SpaceFibre IP core can be configured to implement 1 to 8 

virtual channels. To evaluate the performance of the SpaceFibre 

IP core, we integrated it into the "Dynamically Reconfigurable 

Processing Module" (DRPM), a multi FPGA platform for 

satellite data payload processing. The AXI-based SpaceFibre IP 

core was synthesized on a Xilinx Spartan-6 LX150, utilizing in 

total 2668 slices and 36 BRAMs. For data segments larger than 

1 kByte, a bandwidth of approximately 1.9 Gbit/s was achieved, 

corresponding to 95 % of the possible bandwidth. The IP core 

will be part of the ESA IP core repository. 

Index Terms—SpaceFibre, SpFi, AXI, FPGA, IP core, DMA, 

SoC, DRPM 

I. INTRODUCTION 

The continuous improvement and innovation in satellite 

payload processing systems, often driven by advancements in 

the data acquisition systems like synthetic aperture radar (SAR) 

or hyperspectral imaging (HSI) systems, demands high 

bandwidth communication interfaces suitable for applications 

in the harsh space environment. An HSI frame with a typical 

resolution of 4000x4000 or 4000x8000 has a data size 

proportional to its resolution multiplied by its spectral 

bandwidth (typically 80 channels), resulting in high bandwidth 

requirements between the instrument and the processing 

system. An SAR frame is constituted by sending out a directed, 

pulsed radio wavefront and collecting the time delay, 

amplitude and angle of the backscattered signals. The amount 

of data per sample is comparatively small, but a complete SAR 

frame is many times larger than one HSI frame, requiring a 

high performance downstream payload processing system. 

To meet this growing performance requirements, a new 

SpaceWire [1] based specification called SpaceFibre was 

developed by the University of Dundee together with the 

European Space Agency (ESA) over the last years (currently 

specification is Draft E1, [2]), offering serial high-speed data 

transmission (2.5 to 10 Gbit/s) by changing the physical and 

data-link layer of SpaceWire. Thus, SpaceFibre is compatible 

to SpaceWire on the upper layers. On the data-link layer, 

SpaceFibre introduces virtual channels (VCs). Each VC can be 

seen as a SpaceWire link; therefore, a bundle of up to 256 

SpaceWire links can be replaced by a single SpaceFibre link 

resulting in a considerable mass reduction and a compacted 

system setup. The physical layer of SpaceFibre is implemented 

by utilizing high-speed Serializer/Deserializer (SERDES). 

Many modern FPGAs integrate these SERDES as Hard-IP-

Blocks in their fabric. Additionally, discrete transceivers 

implementing this functionality are available, e.g., Texas 

Instruments provides a SpaceFibre compliant WizardLink 

Transceiver ASIC (TI-TLK2711A [3]) that is also available in 

a radiation tolerant package suitable for flight use.  

The AXI SpaceFibre IP core, presented in this paper, 

integrates the STAR-Dundee SpaceFibre CODEC IP-Core [4] 

while using the TI-TLK2711A to implement the physical 

interface. The system interface is realized using an 

AXI4 [5] based interconnect. The AXI SpaceFibre IP core has 

been developed in the scope of the “Dynamically 

Reconfigurable Processing Module” (DRPM), a scalable 

platform for satellite payload processing deploying dynamic 

partial reconfiguration of FPGAs [6]. The DRPM is a 

heterogeneous embedded multiprocessor system composed of 

multiple external communication modules and processing 

modules as depicted in Fig. 1. The DRPM system was built 

based on the modular FPGA-based prototyping platform 

RAPTOR [7]. The flexibility of the RAPTOR system allows 
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scaling the DRPM system by adding additional modules 

(called daughterboards (DBs)) to the system. 

The processing modules are equipped with a Xilinx 

Virtex‑4 FX100 FPGA and a DDR2-SODIMM-Socket for 

DDR2-Modules with up to 4 GByte. These daughterboards 

represent the main payload processing modules of the DRPM 

system. The FPGA available on a processing module can be 

dynamically reconfigured to adapt the processing module itself 

to changing environmental conditions. Furthermore, dynamic 

run-time reconfiguration is used to detect and correct errors 

caused by radiation (i.e., SEUs) by implementing a readback 

scrubbing scheme. Up to five processing modules can be 

connected in a DPRM to scale the processing power of the 

system. 

Fig. 2 depicts the main components of the communication 

module, also referred to as DB-SPACE, which consists of a 

SpaceWire-RTC AT7913E [13], based on a LEON2-FT CPU 

(radiation hard, 50 MHz working frequency) as a fail‑safe 

system controller, a Xilinx Coolrunner-II CPLD (XC2C384) 

combined with a 1 Gbit NOR-FLASH device (Numonyx 

PC28F00AP33EFA) acting as a configuration controller, and 

two Xilinx Spartan-6 (XC6SLX150/100) as EXT/INT-COMM 

FPGAs, which implement the external and internal 

communication controllers. In the context of this paper we 

focus on the external communication controller, which extends 

the interfaces available on the SpaceWire-RTC (adding a 

SpaceFibre link, four additional SpaceWire links, a MIL-STD-

1553B connection and 32 additional GPIOs). 

To the best of our knowledge no AXI-based SpaceFibre IP 

Core exists. In [8] and [9], pure implementations of the 

SpaceFibre CODEC IP-Core on a Xilinx Virtex-5 FPGA have 

been used to get performance evaluations and to do 

interoperability tests. In [10], the SpaceFibre CODEC IP-Core 

has been extended with a DMA controller on a Xilinx Virtex-4 

FPGA which is directly connected to a commercial DSP. These 

implementations are not suitable for reuse in other target 

applications/embedded systems. 
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The following section (Section II) describes the architecture 

of the AXI Spacefibre IP core as well as its integration in the 

DRPM system. Section III is dedicated to the evaluation of the 

IP core regarding performance and power. Section IV 

concludes the paper. 

II. ARCHITECTURE OF THE AXI SPACEFIBRE IP CORE 

The AXI SpaceFibre IP core has been developed using 

Xilinx EDK, which offers a top-down approach for the 

implementation of an embedded system, comprising hardware 

as well as software development. The complete EDK system 

overview of the EXT-COMM FPGA is shown in Fig. 3. The 

different IP cores in an EDK-based system design are called 

PCores, they can be easily connected to an internal system bus 

like the Processor Local Bus (PLB) or the Advanced 

Microcontroller Bus Architecture (AMBA)-Advanced 

eXtensible Interface (AXI) bus without the need to use a 

hardware description language (HDL). Due to the advantages 

of independent read/write channels, configurable register slices 

and a powerful implementation of the interconnect matrix, the 

EXT-COMM system uses the AXI4 interconnect solution. The 

bus width is set to 32 Bit with a 100 MHz system clock 

resulting in an internal bandwidth of 3.2 Gbit/s. 

The AXI4 interconnect is represented by the bus in the 

middle of Fig. 3. Both, the external rad-hard SpaceWire-

RTC [13] and the embedded MicroBlaze processor can work as 

the central system controller. To connect the SpaceWire-RTC 

to the system bus, two independent IP cores are bridging the 

memory and FIFO interface of the SpaceWire RTC to the 

AXI4 interconnect, whereby the FIFO Bridge mainly forwards 

interrupts and mail-box messages. A central DMA (CDMA) 

controller offloads the system controllers from copying data 

between the external interface IP cores and the system 

memory. Two instances of 64 kByte BlockRAM are available 

as buffer memory for incoming and outgoing data streams. 

 

 

Fig. 1 Overview of the Dynamically Reconfigurable Processing Module 

Fig. 2 Components on the communication module DB-SPACE 
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As an alternative to the AXI SpaceFibre IP core 

implementation described in this paper, a WizardLink IP core 

has been implemented. The WizardLink interface is a simple 

FIFO-based streaming communication core with minimal 

protocol overhead utilizing the TI-TLK2711A. It implements 

neither virtual channels nor bandwidth preservation or fault 

detection mechanisms. It is used as a reference IP-Core for 

later bandwidth evaluation and comparison. 

In Fig. 4 a block diagram of the AXI SpaceFibre IP Core is 

shown. The AXI-lite slave interface provides access to a 

register bank for configuration and initialization as well as to a 

broadcast process that transmits or receives broadcast (BC) 

messages. BC receive messages are buffered in a FIFO, to 

avoid loss of messages. A control/status register is mapped to 

the TI-TLK2711A control and status signals to access all its 

functionalities. The management and status interface of the 

CODEC IP core signals is connected to a set of registers for 

initialization and configuration purposes. Additional registers 

are provided for interrupt handling. 

Payload data is processed by a dedicated DMA 

controller [11] with an integrated scatter/gather engine. This 

allows achieving maximal performance using descriptor chains 

filling the outgoing (MM2S) and reading the incoming 

(S2MM) AXI-Streams. Two (data and control/status) streams 

are implemented for transmit and receive directions. The 

control/status stream is used to pass header information to/from 

the SpaceFibre IP core, i.e., start and length of routing and 

payload data as well as the VC to be used. Two finite state 

machines take care of writing (S2MM-FSM) and reading 

(MM2S-FSM) data to or from the FIFO buffers that connect 

the SpaceFibre clock domain clocked at 62.5 MHz with the 

AXI4 system clock domain at 100 MHz. 

The MM2S-FSM handles the sequence of SpaceWire 

routing path bytes, control/status and data streams into the 

CODEC IP core. SpaceWire path routing bytes are defined in 

the very first DMA descriptor chain element (D0) of each data 

stream. Since the SpaceWire protocol allows an arbitrary 

number of routing bytes in front of each packet, but the 

receiver requires a 32 Bit aligned stream, a ReAlign unit shifts 

all following control/status and data words. This is necessary 

because D0 cannot simply be filled up with zeroes since routers 

will delete their path information out of the stream byte by 

byte. The aligned stream is forwarded to a virtual channel (VC) 

selectable through the A0 app-field in the control stream, 

whereby A1 contains the number of routing bytes and A4 the 

number of payload data bytes. App-fields A2 and A3 are 

reserved for future use. All app-fields registers are accessible 

through the AXI-Lite interface. Fig. 5 shows the VC stream as 

a composition of MM2S-Ctrl and Data Streams as discussed. 

D1 to Dn are the descriptors for payload data. 

AXI SpaceFibre Interface 

AMBA AXI4

TLK2711 Wizardlink Transceiver

DMA Interface 

AXI_LITE FIFO

MM2S-FSMS2MM-FSM

Config. RD/WR FSM

ReAlign

TLK2711 Interface

CONTROL-PROC

SpaceFibre

Control

Register

APP-

Field-Reg

S2MM/MM2S AXI-Stream FIFOs

D
M

A
-I

F

BROADCAST-PROC

SpaceFibre-CODEC IP Core

MGMT-IF BROADCAST-IF Virt. Channel IF (1-256)

TX_SERRX_SER

RX-REG-FSM

R
X

_SER
R

X

TX-REG-FSM

TX
_S

E
R

T
X

STATUS-FSM

 

Fig. 3 Xilinx EDK-based architecture of the external communication FPGA 

Fig. 4 Overview of the SpaceFibre EDK PCore 
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The S2MM-FSM is directly connected to the VC receive 

port of the SpaceFibre CODED IP core to fetch incoming data 

and to split up the stream into DMA controller data and status 

streams. 

The TLK2711 Interface block connects the RX and TX 

channels of the SpaceFibre CODEC IP Core to the WizardLink 

Transceiver-IC. The data path is pipelined and utilizes FPGA-

specific registers in the input and output blocks (IOBs) close to 

the pads to guarantee a small, deterministic input and output 

delay/skew. Additionally, this implementation relaxes the 

placement of the IP core relative to the IOs. Furthermore, the 

32 Bit wide interface of the CODEC IP core is mapped to the 

16 Bit wide interface of the TI-TLK2711A transceiver. Due the 

different data path widths, the PHY interface needs to be 

clocked at 125 MHz. Two different source synchronous clock 

domains at 125 MHz for RX and TX channels are 

implemented. While the TX clock is sourced by the FPGA, the 

RX clock is recovered from the incoming data stream by the 

internal PLL of the TI‑TLK2711A transceiver. A Status-FSM 

monitors the Loss of Signal (LoS) condition of the TI-

TLK2711A. 

The software API of the AXI SpaceFibre IP included in 

the PCore allows configuring it in an easy way. Additionally, it 

enables the user to properly configure the DMA for 

scatter/gather transactions. Before a SpaceFibre read/write 

operation, the user sets up multiple linked transfer descriptors 

(a descriptor chain is created) which are then processed by the 

DMA engine. The main advantage of the scatter/gather 

transfers is the possibility to update the chain of descriptors 

during an ongoing DMA transfer. Therefore, the time taken by 

the processor for managing the descriptors can be hidden, 

reducing communication overhead. Furthermore, the utilization 

of the scatter/gather mechanism can be efficiently used to 

exploit the virtual channel (VC) feature of the SpaceFibre core, 

as it enables direct multiplexing of multiple SpaceWire 

connections. 

Resource Usage: The required FPGA resources of the AXI 

SpaceFibre IP core are depicted in Table 1. The core has been 

implemented with two, four and eight VCs, including the 

dedicated AXI DMA IP Core that has been configured with a 

maximum stream length of 8 MByte. The AXI SpaceFibre IP 

Core configuration implementing eight VCs utilizes 12 % of 

the 23,038 slices available in the used Xilinx Spartan-6 LX150. 

68 % of these slices are used by the embedded CODEC IP 

Core. For the implementations using 2 and 4 VCs, the number 

of slices used by the enwrapped CODEC IP Core is also larger 

than 60 %. Together with the dedicated AXI DMA IP core, the 

AXI SpaceFibre IP core configured with 8 VCs uses a total of 

4408 slices, consuming almost one fifth of the available slices 

of the used Spartan-6 LX 150. In contrast to the resource 

utilization of the SpaceFibre IP core, the WizardLink IP core 

implementation requires only 480 Slices, summing up to 2097 

slices including the AXI DMA IP core, which is less than one 

tenth of the total available slices. The overall utilization of the 

EXT-COMM FPGA implementing all components shown in 

Fig. 3 is more than 92 %. 

Table 1 FPGA resources of the AXI SpaceFibre IP core 
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III. EVALUATION OF THE AXI SPACEFIBRE IP CORE 

For performance evaluation of the AXI SpaceFibre IP Core, 

the core, embedded into the EXT-COMM FPGA of the DRPM 

system [6], has been analyzed, as discussed in the following. 
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Fig. 5 MM2S stream composition 

Fig. 6 Test environment used during evaluation 
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Fig. 6 shows the test setups used during benchmarking. 

Two DRPM systems (DRPM 1 and DRPM2) were used. Apart 

from a direct connection of the two DRPMs using SpaceFibre, 

a StarFire Analyser [12] was used to check the correct behavior 

of the link as well as the integrity of the SpaceFibre packets. 

Additionally, each DRPM has a SpaceWire link connected to 

the StarFire unit in combination with a SpaceWire USB brick 

to enable easy SpaceWire/SpaceFibre interoperability testing, 

i.e., testing of the SpaceFibre VC functionality. 

The physical transmission of a SpaceFibre signal is based 

on high-speed serial data transmission. In the DRPM system, 

the transmission line comprises PCB traces as well as 

connectors and twinax cables. Although each part of the 

transmission line is impedance matched to a characteristic 

impedance of 100 Ohms, the transition from one transmission 

line to another causes signal reflections, reducing the opening 

of the data eye. 

 

Additional insertion loss, caused by the dielectric and 

copper losses, is responsible for further reduction of the 

vertical and horizontal data eye opening. To characterize the 

signal degradation across the transmission line, the data has 

been measured at four different positions, as indicated in Fig. 

7. Position 1 is located directly at the sender, while position 2 

and 3 are at the beginning and the end of the twinax cable. 

Position 4 is located directly at the receiver. The different 

horizontal and vertical eye openings are listed in Table 2 

Table 2 Eye measurement data 

 

0.5 m cable 1 m cable 3 m cable 

Hor 

eye 

Ver 

 eye 

Hor 

eye 

Ver 

 eye 

Hor 

eye 

Ver 

 eye 

TLK2711 

[Pos 1] 
309 ps 1180 mV 300 ps 1120 mV 299 ps 1100 mV 

FrontPanel 

[Pos 2] 
302 ps 619 mV 298 ps 644 mV 285 ps 617 mV 

FrontPanel 

[Pos 3] 
200 ps 197 mV 236 ps 167 mV 196 ps 116 mV 

TLK2711 

[Pos 4] 
N/A N/A N/A N/A N/A N/A 

 

The length of the cable, represented by the increased 

insertion loss, (difference between Position 2 and Position 3) is 

clearly visible across the three different cables. Apart from the 

cable itself, the transmission lines on the PCBs and the 

connection from DB-SPACE to the frontpanel on both DRPM 

systems have a considerable impact on the total loss of the 

transmission line. In fact, the total additional length sums up to 

1.5 m (excluding the cable length in Table 2), explaining the 

additional losses. Although the data eye is completely closed at 

the receiver for each cable, there are no data errors observed in 

the system using a PRBS-7 (BER < 1E-14). This is due to the 

use of equalizer techniques (i.e., decision feedback equalizer) 

in the receiver. 

The bandwidth utilization of the system depending on the 

packet size is shown in Fig. 8. For packets bigger than 1 kByte, 

a utilization of more than 90 % is archived. The utilization 

saturates at about 95 % of the maximum bandwidth for large 

packets. For packets with a size of less than 256 Bytes, only 

half of the possible bandwidth is utilized due to the protocol 

overhead of the SpaceFibre protocol. Compared to the 

WizardLink implementation, the SpaceFibre implementation 

shows a significant higher protocol overhead. The WizardLink 

implementation however, as explained in Section II, only 

implements a protocol for point-to-point connections, and does 

not include features like virtual channels or error detection. The 

WizardLink implementation converges to 98 % bandwidth 

utilization for large packets. 

 

The power requirements of the AXI-based SpaceFibre IP as 

well as the WizardLink IP core are summarized in Table 3. The 

values represent the power consumption of the IP cores under 

working and idle conditions operating at a signaling rate of 

2.5 GSPS (2 Gbit/s net data rate). While the power 

consumption of the FPGA logic (Core Power) is reduced 

during idle conditions, the IO-Power of the FPGA and the 

power of the transceiver (TI-TLK2711A) stay nearly the same. 

This is due to the transmission of alignment patterns when no 

data is transferred. The small difference between the 

SpaceFibre IP core and the WizardLink IP core reflects the 

relatively large amount of power used by static infrastructure 

inside the FPGA. The clock circuitries of the FPGA alone 

(PLL and DCM) consume about one fourth of core power 

listed in Table 3. 

Fig. 7 Measurement positions the data eyes in the system 

Fig. 8 Bandwidth utilization depending on packet size of SpaceFibre and 

WizardLink packets 
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Table 3 Power requirements of the SpaceFibre IP core implementation  

 
WORKING IDLE 

SpFi Wizard SpFi Wizard 

Core Power (FPGA) 0.28 W 0.20 W 0.18 W 0.14 W 

IO Power (FPGA) 0.20 W 0.15 W 

Transceiver Power 0.38 W 0.37 W 

Total 0.86 W 0.78 W 0.7 W 0.66 W 

 

The overall power consumption of the complete EXT-

COMM FPGA implementing all components shown in Fig. 3 

is about 3.3 W. The complete DB-SPACE daughterboard, 

including all components shown in Fig. 2 consumes 9.6 W 

under full load conditions. 

IV. SUMMARY 

The AXI SpaceFibre IP core combines a WizardLink 

Transceiver (TI-TLK2711A) suitable for flight use, the STAR-

Dundee SpaceFibre CODEC IP core, and an AXI4‑based 

DMA controller. The IP Core is available as a Xilinx EDK-

based PCore, allowing easy system integration and software 

development using the supplied API, maximizing IP reuse. The 

AXI4-based implementation allows the usage of the IP core in 

any AXI-based reconfigurable system-on-chip using FPGAs. 

As detailed in Section II, the DMA-based implementation 

features a scatter/gather unit for maximum performance and 

efficiency. Synthesis results based on the Xilinx Spartan-6 

LX150 FPGA shows a total usage of 4408 slices (almost one 

fifth of the available slices) and 48 BRAMs (7 % of available 

BRAMs) implementing a full featured version including 8 

virtual channels (VCs). A comparison with a minimal 

implementation using the WizardLink IP core results in only 

2097 slices (about one tenth of the available slices) and 22 

BRAMs. 

As presented in Chapter III, the IP core has been tested and 

characterized using third party analyzer tools, ensuring 

interoperability with other SpaceFibre equipment. The IP core 

has shown a sustained bandwidth of 1.88 Gbit/s for data 

segments larger than 1 kByte, which corresponds to 95 % of 

the theoretical bandwidth (2.0 Gbit/s). The power requirement 

for the complete core including the external transceiver is 

considerably less than 1 Watt. 
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Abstract—In order to improve the reliability of SpaceWire Bus, 

this paper makes a study of SpaceWire redundancy. In a 

spacecraft where SpaceWire is used, Redundancy is an important 

fault-tolerant technology to improve the reliability of the system. 

However, the regulation of redundancy does not be involved in 

the current standard of SpaceWire, so, it is necessary to study 

redundancy technology of SpaceWire. In this paper, without 

changing SpaceWire bus protocol, SpaceWire bus node with 

redundant functions is designed and redundant switching 

function is achieved on the node boards, routers and backbone 

links. IP logic of SpaceWire node is implemented in the FPGA. 

The scheme presents an Auto-Protection-Switch (APS) module 

which makes two independent SpaceWire nodes linked as mutual 

backup to achieve standby redundant switched function of 

SpaceWire bus. Redundancy switching process is as follows: APS 

continuously detects the working state of two mutual backup 

SpaceWire nodes in one board. When the Loss of Signal for Node 

A (LOS-A) is detected, APS uses Remote Defect Indicator for 

Node B (RDI-B) to send switching request code to the remote end 

through the altemate link. After receiving the switchover request 

data code, spare receiver module in the remote end generates 

switching signal to APS module at the same board and APS 

module immediately switches to the standby SpaceWire bus. At 

the same time, the confirming data is send to the local standby 

node. Then, local APS switches to the standby SpaceWire bus. 

Test results show that the switch time is 33us under the 

conditions of 200MHz transmission rate. 

 

Index Terms— Redundancy, Reliability, FPGA, node, Auto-

Protection-Switch. 

I. INTRODUCTION 

With the development of space technology, the width and 

depth of space exploration is increasing, which requires 

increasingly more higher performance of spacecraft. Some 

low-speed buses like RS-422/485, CAN and MIL-STD-1553 

cannot meet the growing demand for bandwidth of data bus as 

the growth of satellite remote sensing data and payload data. In 

order to achieve a kind of high-speed and universal payload 

data processing system, a kind of high-speed, high reliability, 

low power consumption, long life and universal bus 

architecture, namely, SpaceWire bus is needed. 

SpaceWire is a high-speed, point to point and full-duplex 

serial bus network, which is based on two commercial 

standards of IEEE 1355-1995 and LVDS. The standard of 

SpaceWire is based on the advantages of 1394 technology, 

ATM technology and Ethernet technology and takes into 

consideration the characteristics of the space applications at the 

same time. In addition to having a good EMC characteristic, 

SpaceWire shows better performance in aspects of exception 

handing, time deterministic, fault protection and detection.  

However, technical specification of redundancy is not 

involved in the standard of SpaceWire bus. In order to improve 

the reliability of SpaceWire, this paper makes a study of 

redundancy technology for key equipment of SpaceWire. In 

this paper, the technical solution will be given to introduce how 

it can be designed and implemented. Then, with the test and 

analysis, the conclusion of redundancy will be given. 

In fact, some experts have made some research on 

redundancy of SpaceWire. In [1], a variety of fault-tolerant 

methods are designed through the link, node and router in the 

baseband data processing network of the fourth geostationary 

meteorological satellite named FENGYUN. [2] shows that in 

spite of the deficiencies such as some issues about link 

bandwidth waste, bulky and power consumption, the 

redundancy application can tolerates single point of failure. A 

SpaceWire-based fault-tolerant solution with dual redundant 

link is proposed in [3]. A redundant program that manages to 

activate the correspondent backup link according to the error 

cause is proposed in [4] and [5]. 

II. TECHNICAL SOLUTIONS 

In the present SpaceWire bus protocol, there is not 

specification about redundancy, so traditional SpaceWire bus 

board, even though with two SpaceWire nodes, can only work 

alone that either one node fails will leads the communication  

failure directly. In order to achieve redundancy feature of 

SpaceWire bus, another SpaceWire bus nodes with redundant 
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functions will be designed without changing SpaceWire bus 

protocol. 

A. Redundant node  

In order to achieve redundancy of SpaceWire bus, an Auto-

Protection Switch (APS) is proposed, which links the two 

mutual backup SpaceWire nodes in one board to achieve 

standby redundancy switchover function. This scheme greatly 

improves the reliability of SpaceWire bus, as shown in 

Figure.1. 
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Fig. 1.  SpaceWire bus board with APS 

In this board, two independent SpaceWire nodes are linked 

with an APS module. When the board is working, APS 

continuously detects the working state of two mutual backup 

SpaceWire nodes in one board. When Loss of Signal for Node 

A (LOS-A) is detected, APS uses Remote Defect  Indicator for 

Node B (RDI-B) to send switching request data code to the 

remote end through the alternate link. After receiving the 

switching request data code, the receiver module in the remote 

end generates switching signal to APS in the same board and 

APS module in the remote end immediately switches 

SpaceWire bus to the standby one. At the same time, the spare 

sending module in the remote end sends switching 

confirmation code to the local standby node and the standby 

node generates local switching signal to local APS after 

receiving  switching confirmation code. At last, the local APS 

immediately switches local SpaceWire bus to the standby one. 

A redundancy switch is completed as shown in Figure.2. 

When the link from the main sending module downstream 

to the main receiving module upstream or the two-way link 

between the master node upstream and the master node 

downstream has a fault, the principle of switching process is 

the shown in Figure 2. It is worth noting in the switching 

process when the two-way link between the master node 

upstream and the master node downstream has a fault, 

switching interlock circuit is provided to preventing repeated 

switching in bidirectional link. 
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Fig. 2.  Schematic diagram of  APS switchover 

B. Redundant network 

According to the characteristics of SpaceWire bus protocol 

and redundancy techniques existed, this paper makes a routing 

switch-selected redundancy scheme of SpaceWire bus, as 

shown in Figure.3. 
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Fig. 3.  Redundant network solution 
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Fig. 4.  Redundant network solution 

As shown in Figure.4, when the network is working, 

redundancy switchover process is basically consistent with the 

switchover process shown in Figure 2. The only difference is 

that the switching request data code should be transmitted 

through the backup router to the appropriate switching node. 

When the switching is finished, actuator working mechanism 

remains the same as before. 
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III. DESIGN AND IMPLEMENTATION 

if redundant network of SpaceWire wants to be set up, the 

network equipment must be designed. The network equipment 

of SpaceWire bus include network function node with 

SpaceWire bus interface and SpaceWire router. 

A. SpaceWire node 

This scheme adopts a hierarchical design method. The 

bottom-level includes all kinds of functional modules. On the 

bottom-level, it is signal-channel node IP which includes all the 

features of node and a highly versatile HCI host interface. It 

doesn’t care about what kind of bus and processor host system 

uses so that the signal-channel mode IP can be referred to as 

SpaceWire node interface IP core. On the top-level, based on 

the node IP, dual-channel SpaceWire interface logic with 

LVDS signal-level is designed, which makes it convenient for 

testing and usage. The cooperation of this three levels achieves 

the protocol from physical layer to application layer of 

SpaceWire terminal node completely, as shown in Figure.5. 
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Fig. 5.  Functional block diagram of node interface 
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Fig. 6.  Overall block diagram of node interface 

In Figure.6, transceiver pins of each link are configured as 

LVDS mode. Each node IP contains following sub-modules: 

Host Control Interface (HCI), Transmitter (with Credit-Counter 

Module), Receiver (with Outstanding Counter Module), FSM, 

Receive FIFO, Transmit FIFO and Time Code Module. Two 

channels share a pll clock unit. The host system reads and 

writes each register of each node through PCI bus to achieve 

the control and data transmission of link state. 

SpaceWire node device use card design with PCIEx1 

interface, which can be plugged into the PCIEx1 slot of PC 

board directly. PEX 8311chip of PLX Technology Company is 

selected as PCIE bridge chip. IP logic of SpaceWire node is 

implemented in the FPGA. Cyclone Ⅱ ’s EP2C20F484 of 

Altera Company is selected as FPGA. MAX9152 chip is used  

to drive LVDS signals and standard serial DB9 connector is 

used as SpaceWire connectors.  

 

Fig. 7.  SpaceWire node card 

B. SpaceWire router 

Since this scheme is only used to verify redundancy of 

SpaceWire, the router can be designed as a static manner. Each 

router provides 8 bidirectional portsand one mirror port. The 

mirror port is designed as one-way operation to detect the state 

and instruction of node and the information of data 

transmission in the network, as shown in Figure.8. 
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Fig. 8.  block diagram of SpaceWire router 

the core part of SpaceWire router is implemented in the 

FPGA. Virtex5’s XC5VLX50T-667BGA of Xilinx Company 

is used as FPGA and MPC852T_50MHz is selected as CPU. 

 

Fig. 9.  SpaceWire router 
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IV. TEST AND ANALYSIS 

The test includes two parts. One is to verify the 

performance of node card designed in this paper and the other 

is to verify the redundancy of SpaceWire. 

Since the node and router have used Cyclone Ⅱ ’s 

EP2C20F484 of Altera Company and Virtex5’s XC5VLX50T-

667BGA of Xilinx Company, in addition to using traditional 

high-speed oscilloscope to test signals, this paper also uses two 

kinds of embedded logic analyzer from Altera Company and 

Xilinx Company and Modelsim, a kind of professional 

simulation tool. 

After testing, the node board itself is turned out to work 

properly and it can achieve the basic functions of SpaceWire 

bus protocol. The test results of node board is not mentioned as 

it is more important to focus on the analysis of redundancy test. 

A. System Recovery Time 

System RecoveryTime: the time test nodes uses to return to 

normal working state after the overload. 

 

Fig. 10.  SpaceWire bus system recovery simulation test chart 

The actual test result:  

System Recovery Time = 54.24us (under the conditions of 

200MHz transmission rate).  

B. Bus Switching Time 

When a fault is detected by the master bus, the bus can 

switch automatically from the master bus to the alternate bus. 

Bus switching time is the time interval between detecting the 

fault and switching completely to make the communication 

recovery. Bus switching time’s realistic expectation will be 

milliseconds and less than 1ms. 

 

Fig. 11.  SpaceWire bus switching time actual test chart 

The actual result: 

Bus Switching Time = 33us (under the conditions of 

200MHz transmission rate). 

C. Latency Time 

Latency Time: the time interval from test nodes receiving 

the data to be transmitted to encapsulating the data as 

SpaceWire data packet and forwarding it out. 

 

Fig. 12.  SpaceWire bus latency time actual test chart 

The actua test result: 

Latency Time = 5.97us (under the conditions of 200MHz 

transmission rate).  

D. Reset Time 

System Reset Time: the time interval from test nodes 

software reset or power off restart to working normally. 

 

Fig. 13.  SpaceWire bus reset time simulation test chart 

The actual test result:  

Reset Time = 88.9us (under the conditions of 200MHz 

transmission rate).  

From the test result, the SpaceWire node designed in this 

paper fully meets redundancy requirements of SpaceWire. 

Redundancy scheme used in this paper not only be feasible, but 

has a good performance. 

V. CONCLUSION 

This paper achieves dual redundancy of node interface. The 

system redundancy switching time arrives millisecond and the 

data measured is 33us@200MHz; the actual transmission 

distance arrives 33m@200MHz. The redundancy scheme in 

this paper is feasible. Test results show that APS protection 

switching function is efficient to the upper application, which 

verifies the feasibility of APS on redundancy function of 

SpaceWire. As a result, the scheme further improve the 

reliability of SpaceWire bus. 
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Abstract—SpaceWire is used on FY4 meteorological satellite as 

on-board data-handling network. Based on SpaceWire, this 

paper provides a design using two FPGAs and AT7911 chips for 

the dual-channel data processing of a payload on FY4 to ensure 

that data can be transported efficiently and reliably. This design 

has proved to be feasible when tested on the ground. 

Index Terms—SpaceWire, AT7911, data-handling, dual-

channel 

I. INTRODUCTION 

SpaceWire has been used on many space missions for its 

high performance, and also be employed on FY4 weather 

satellite. The atmospheric vertical interferometric detector, 

one of the payloads of this satellite, has two data channels 

transporting data separately at different speeds. Both channels 

together with other science instruments communicate using 

SpaceWire. In order to facilitate the usage of SpaceWire 

protocol, and enhance the reliability of data transmission link, 

two FPGAs are used on the data-processing board for 

sampling, processing, and packing data, writing package to 

DPRAM chips and notifying corresponding AT7911, a 

radiation-tolerant chip developed by Atmel to support 

SpaceWire, of where to transmit. The link status information 

read from internal registers of AT7911 can be help to decide 

whether to resend data or not, for the link between two nodes 

can break off, as ensures the continuity of the transfer of data 

packets. The link information are exposed to both FPGAS to 

help the two channels exchange link information, and to help 

operators know the real-time status of the two SpaceWire 

links. Furthermore, superfluous data can be stored in free 

FIFOs and DPRAMs temporarily when data transmission is 

jammed in a short time, which increases stability and 

flexibility of the system. 

 

II. ARCHITECTURE OF DATA-PROCESSING SYSTEM 

The atmospheric vertical interferometric detector is an 

infrared Fourier spectrometer designed for meteorological 

detection. It contains two channels named channel1 and 

channel2 in the following paragraphs. Channel1 deals with the 

data from the detector and transports the data in SpaceWire 

format. At the same time, it throws the infrared data gained 

from the detector directly to channle2 which compresses the 

data for functional verification for the following satellites. 

Data from all of the units will be processed in the data-

processing system showed in Figure1. 

 
Fig. 1.  Data-Processing System 

The data-processing board, the core processing board, is 

mainly made up of two FPGAs, two AT7911 chips, three 4 GB 

mass SDRAMs and other appendages like clock generator, 

storage chips, power module, and so on. Figure2 shows the 

architecture of this data-processing system. The main FPGA 

works for channel1 while the other compression FPGA 

controlled by the main FPGA works for channel2.  

This system chooses anti-fuse FPGA as main FPGA to 

ensure its reliability when working in space. An external 

SRAM is connected with the main FPGA to cache visible data. 

An external DPRAM is used to cache packaged data for 

AT7911. AT7911, also known as SMCS332SpW, provides an 

interface between three SpaceWire links according to the 

SpaceWire standard ECSS-E-50-12A specification and a data 

processing node consisting of a Control Processing Unit and a 

communication data memory [1]. All the chips mentioned 

above are at high radiation hardened level.

207

mailto:johnrita@163.com
http://dict.youdao.com/w/verification/


Main FPGA

V
isib

le lig
h

t d
etecto

r 

d
riv

e

Spacewire

RS422 
26C31/26C32

TxRx

RS422

satellite house-keeping 
computer

ADC

ADC

ADC

ADC

2-order 

filter

SDRAM2

Main 

amplifier

Main 

amplifier

Main 

amplifier

Main 

amplifier

miduim wave 

driver

Compression FPGA

V_mw1

V_mw2

V_mw3

V_mw4

MWIR
Detector

&
front 

amplifier

Instrument 
management 

unit
Interferometer

Infrared data

SPACEWIRE
AT7911

Spacewire

Long wave 
driver

Long wave circuit 1-16

SRAM

RS422 
26C32

Rx

SDRAM1

SDRAM3

Long wave circuit 17-32

Long wave circuit 33-48

Long wave circuit 49-64

Long wave circuit 65-80

Long wave circuit 81-96

Long wave circuit 97-

102

Long wave circuit 103-

138

LWIR
Detector

&
front 

amplifier

Visible data 

cache

Read in order

Scan mirror 
controller

Real-
time

signal

RS422 
26C31/26C32

TxRx

RS422

Visible light detector

DAC

Infrared 
data 
cache

Calibration 

analog signal

Main 

amplifier

2-order 

filter

AD

Single-ended 

to 

differential

R
ea

d
 i

n
 o

rd
er

AD 
Control

EEPROM

RS422

PROM

Configration

Telemetry

SPACEWIRE
AT7911

DPRAM

2-order 

filter

2-order 

filter

2-order 

filter

DPRAM

SelectMAP

Real-
time

signal

Calibration 

analog signal

 
Fig. 2.  Architecture of the Data-Processing System 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           

Channel2 does the data compress job for which many 

complicated algorithms need to be done, so SRAM FPGA 

with plentiful resources, even enough to supply a large 

internal DPRAM, is chosen as the processing chip. In addition, 

plenty remote sensing data need to be cached, so three large-

capacity SDRAMs with 4Gbit capacity make up the Ping-

Pong buffer. High radiation performance would be considered 

when chosen the chips, but there’s also a possibility that 

components without anti-fuse structure will be faulty 

radiated by high energy particles. In order to recover from 

fault and update compression algorithm, configuration of 

SelectMap mode is chosen as the configuration way. 

Configuration is controlled by the main FPGA. PROM or 

E2PROM is used for storing configuration information for the 

compression FPGA. Data of channel1 and channel2 output 

through the respective space-qualified 9-pin connectors. 

Another part of this system is the detection data acquisition 

and controlling unit. Long wave has 128 independent 

detectors. It’s not the IRFPA architecture so front amplifiers is 

needed to improve SNR (Signal to Noise Ratio). The long 

wave circuits contain main amplifiers, AD and filter, which is 

not shown in detail in figure. The visible light detector is 

CCD-array detector and the medium wave detector is IRFPA 

detector so they do not need front amplifiers as long wave 

detector. Actually they have similar architecture except visible 

light has a Single-ended to differential module. All the 

detectors controlled by the main FPGA, and their detection 

data read in order to the main FPGA. 

RS422 is selected as the serial communication interface 

between different components for its usability. 

III. FUNCTIONAL DESCRIPTION 

FY4 weather satellite is a geostationary meteorological 

satellite. The atmospheric vertical interferometric detector 

carried on FY4 weather satellite collects interference data 

obtained by its core component Michelson interferometer. The 

usage of long-wave and medium-wave panel detectors allows 

the sounder gain three-dimensional remote sensing data [2], 

and this would greatly increase data size. Data processing is 

mainly handled on data processing board. As motioned above, 

this board contains two channels. Its main function contains 

data processing, telemetry and control, SpaceWire, and 

configuration. These would be introduced in detail in the 

following paragraphs. 

A. Data Processing Tasks 

1) Channel1 

The main FPGA generates sampling sequence for medium 

wave detector and long wave detector, receives the infrared 

sampling data, and then caches the data in internal FIFOs. 

Visible data receives from visible-light detector and it would 

be stored in external SRAM. At the same time, auxiliary data 

contains telemetry information produced by interferometer unit, 

instruments management unit and scan control unit is gathered 
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by the main FPGA and packed together with the detection data.  

Figure 3 shows the data flow of channel1. 
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Fig. 3.  Data Flow of Channel1 

Detection data and auxiliary data are packed twice before 

sending outside. First time, infrared data read from long or 

short wave FIFO, visible data read from SDRAM, and together 

with auxiliary information are packed into CCSDS package. 

The packages will be stored in a FIFO before packing into 

short package in SpaceWire package format.  

2) Channel2 

As the core processor of channel2, the compression FPGA 

deals with all the compression algorithms. It receives detection 

data from FPGA1, and stores it in sdram. Because data 

compression is implemented for several frames, large sdrams 

with 4Gb capacity are employed. Figure4 shows the data flow 

of channel2. 
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Fig. 4.  Data Flow of Channel2 

The strategy of SDRAM1 and SDRAM2 ping-pang cache 

infrared data allows data transfer and compress to perform 

simultaneously. SDRAM3 stores the half-compressed and 

compressed data. For example, when data buffered in 

SDRAM2, algorithm processor reads preprocessed data from 

SDRAM1 and half-compressed data from SDRAM3, and these 

two kinds of data would be calculated by the algorithm 

processor. Compressed data or half-compressed data would be 

written to SDRAM3. At the same time, compressed data is 

read out from SDRAM3 to long wave FIFO and medium wave 

FIFO respectively, and then sent to package module before 

transfer to SpaceWire connector through AT7911. Data 

package and sending process of channel2 are similar to 

channel1, so they are not described in detail here for brevity. 

Channel2 receives control instructions and some of the 

telemetry informations from  Channel1 through a serial port at 

rate of 1Mbps, and returns its internal states through another 

serial port every one second. 

B. SpaceWire 

The two channels both use SpaceWire interfaces in order to 

obtain high speed and reliable data communications. Figure5 

excerpted from reference [2] shows the block diagram of the 

protocol chip, AT7911E. Both of the channels have their own 

AT7911 chips, so it’s easier to control the SpaceWire data 

transmission.

 
Fig. 5.  AT7911E Block Diagram [2] 

In this data-processing system, both channels use the same 

application as Figure6 shows. The chips communicate with 

other receivers using SpaceWire protocol. After power-up, the 

two ends connect automatically, then they both enter the Run-

state and get ready to receive and send data. The processor, 

here is the FPGA chip, write data to the registers of the chips 

through the HOCI to command where and how many data 

should be sent from DPRAM. Then a following judgement will 

be made to determine whether resend or not. 
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Fig. 6.  Application for AT7911 [2] 

For more reliable control of the chip, several methods are 

made to enhance robustness. First, if any errors are detected 

during data transfer, full reset of the chip will be made. 

Second, if register read acton lasts for too long, the FPGA 

forces the chip to initial state. Third, if the DPRAM is almost 

full, the FPGA stores the coming data into FIFO temporarily, 

this strive for extra time for the receivers. 

C. Configuration 

Channel1 use FPGA with anti-fuse architecture as its 

processor, so its configuration is done on ground. However, 

channel2 implement its configuration under the control of 

channel1 in SelectMap mode. Configuration data of channel2 

is uploaded from ground to channel1, and stored in the 

E2PROM before writed to the compression FPGA. This kind 

of configuration ensuring that the compression FPGA, which is 

a kind of SRAM FPGA, can be totally reconfigured when it 

faulty radiated by high energy particles. And it will be also 

easy updated. Original configuration information is stored in 

PROM, so it’s another kind of configuration for channel2.  

IV. CONCLUSION 

This design which is based on two FPGA chips uses a 

SpaceWire protocol chip AT7911 to manage the data 

transmission and flow control. The test results prove that with 

a good design on PCB layout, wiring and grounding, plus the 

function of re-sending of a lost packet, this design works 

efficiently and reliably. 
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Abstract—A new SpaceWire router architecture with packet 
segmentation and multiplexing capability is presented. The aim is 
to resolve a blocking phenomenon, or an increase of packet 
transfer latency, that can happen in a SpaceWire network 
formed by ordinary SpaceWire routers. To resolve the blocking 
of packet transfer in a router caused by worm-whole routing of a 
preceding packet, we designed, implemented, and tested, a non-
blocking packet transfer mechanism that uses the SpaceWire-R 
protocol for segmentation of packets, acknowledgement, 
multiplexing of segments, and management of an end-to-end 
communication channel. The mechanism is implemented as an 
extension to an existing SpaceWire router. The SpaceWire-R 
part is implemented as an extension module to the existing 
SpaceWire router VHDL IP core, and we do not modify 
SpaceWire router specification at all. Details of the architecture, 
implementation result, and performance evaluation result are 
shown in the present paper.   

Index Terms— SpaceWire-R, packet segmentation, latency-
constrained network.  

I. INTRODUCTION 
The worm-hole routing mechanism specified in the 

SpaceWire standard can cause a so-called blocking when two 
(or more) packets flowing into a router share the same out-
going SpaceWire port; one of the packets can go through the 
port first, and only after completion of transmission of the first 
packet, the "blocked" packet(s) can be transferred. This could 
lead to an unlimited increase of packet transfer latency of the 
blocked packet because the maximum packet length is not 
constrained in the standard, making the whole network 
undeterministic in the worst case. 

To maintain the worst-case latency below an acceptable 
level, the maximum length of SpaceWire packet transfered in 
an onboard network is usually defined as a system-level 
specification. This is an approach taken by the SpaceWire-D [1] 

to complete a packet transfer within a single time slot, and thus 
to create a deterministic data transfer network. 

In the present paper, we describe a new SpaceWire router 
architecture with a built-in capability of the maximum packet 
length limitation based on a packet segmentation mechanism 
and non-blocking data transfer mode where multiple packets 
can share the same out-going SpaceWire port. This new router 
architecture provides a “gateway” functionality which 
separates a SpaceWire network into an ordinary blocking 
SpaceWire subnetwork and a maximum-latency-constrained 
non-blocking subnetwork. The basic idea of this architecture 
was presented as [2] in the 18th SpaceWire Working Group 
meeting. Figure 1 shows a conceptual diagram of the gateway 
router and the network separation. 

In the following sections, details of the proposed 
architecture and its implementation in VHDL are described 
followed by the performance measurement result showing how 
the worst-case latency is reduced by the architecture. 

Latency-constrained
subnetwork

Ordinary SpaceWire network

Gateway

Existing 
SpaceWire
Router

 

Fig. 1.  Conceptual diagram showing an ordinary blocking SpaceWire 
subnetwork and a maximum-latency-constrained non-blocking 

subnetwork separated by a gateway router  of which functionality 
the present paper descibes. 

213



II. SEGMENTATION AND VIRTUAL CHANNELING 
Packet segmentation is a key to achieve the worst-case 

latency constraint in a SpaceWire network as noted above. 
Therefore, the gateway router that sends a payload packet  
coming from the ordinary SpaceWire network to the non-
blocking network should have capability to segment a packet 
into multiple relatively small segments, and the receiving 
gateway has to unsegment the segments forming a complete 
SpaceWire packet. To avoid congestion within the non-
blocking subnetwork, an end-to-end (i.e. gateway-to-gateway) 
flow control should be carried out by the gateway modules. 

To realize these within the SpaceWire standard, we applied 
the SpaceWire-R upper-layer protocol [3] which is a successor 
of the NASA GOES-R Reliable Data Delivery Protocol 
(RDDP) and the Sandia Natinal Laboratory Joint Architecture 
Standard RDDP [4,5]. SpaceWire-R provides a packet 
segmentation function and end-to-end flow control, as well as 
communication channel control, i.e. Open/Close of a segment 
transmission channel between a pair of gateway modules.  

Since SpaceWire-R is an upper-layer protocol of 
SpaceWire, all necessary communication between a pair of 
non-blocking gateways is performed using SpaceWire packets. 
Within the non-blocking (segmented packet transfer) 
subnetwork, all links operate as ordinary SpaceWire links but 
packet transfer is performed with segmented packets whose 
size does not exceed the predefined maximum segment length, 
thus allowing system designers to estimate the worst-case 
packet transfer latency in the subnetwork. Management of 
communication channel and packet segmentation/un-
segmentation take place automatically in the “gateway” routers 
at the entrance and the exit of the non-blocking subnetwork, 
and therefore, no modification is required to existing standard 
SpaceWire devices connected to the non-blocking network.  

Hereafter, we refer a packet tranfer using the SpaceWire-R 
segmentation and the end-to-end channel control mechanisms 
as the non-blocking packet transfer mode. The ordinary packet 
transfer using the existing SpaceWire routers is referred to as 
the blocking-mode packet transfer. 

A functional block diagram of the gateway router is shown 
in Figure 2. In addition to ordinary SpaceWire ports, there are 
several additional modules to achive SpaceWire-R based 
packet transfer; SpaceWire-Conversion module which consists 
of the Framing and the De-Framing submodules. The Framing 

submodule carry out a segmentation  of a SpaceWire packet 
creating multiple SpaceWire-R Data packets, and the De-
Framing module unsegments them into a SpaceWire packe, 
and transfers to a destination SpaceWire port in the same router. 
All communication including channel control 
(Open/Close/Control Ack) and data transfer (Data/Data Ack) 
are performed using SpaceWire-R packets of which packet 
format is shown in Figure 3. The SpaceWire-R packet is a 
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Fig. 2.  Block diagram of the gateway router which transfers SpaceWire 
packets using the SpaceWire-R segmentation and end-to-end channel 

control mechanisms. 
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Figure 4-2: Structure of an SpW-R Packet 

4.2.3. SPW-R PACKET HEADER 

4.2.3.1. General 

The Header of an SpW-R Packet shall consist of the following fields, positioned contiguously, in the following 
sequence: 

a) Destination SLA (1 octet); 

b) Protocol ID (1 octet); 

c) Packet Control (1 octet); 

d) Payload Length (2 octets); 

e) Channel Number (2 octets); 

f) Sequence Number (1 octet); 

g) Address Control (1 octet); and 

h) Source Address (N+1 octets). 

For all the Packet types specified in 4.2.1, the same Header shall be used. 

4.2.3.2. Destination SLA 

As specified in 5.2.1 of [A5], the first octet (octet 0) of the Header shall contain the SpaceWire Logical Address 
(SLA) associated with the TEP to which the Packet is being sent.  

4.2.3.3. Protocol ID 

As specified in 5.2.2 of [A5], the second octet (octet 1) of the Header shall contain the Protocol ID of this 
protocol, which is to be assigned by the European Cooperation for Space Standardization (ECSS) at a later time. 

4.2.3.4. Packet Control 

4.2.3.4.1. General 

Octet 2 of the Header shall contain the Packet Control field. 
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D e s t i n a t i o n l o g i c a l 
address taken from the 
original (unsegmented) 
packet.

Data Frame (Data/Data Ack),
Control Frame (Open/Close)

Sequence number of the 
data segment.

Pseudo logical address of source SpaceWire-R port which performed 
segmentation of this packet. This logical address will be used to return 
Ack packet from the destination SpaceWire-R port to the source 
SpaceWire-R port. Prefix (= path address) will not be used.

 

Fig. 3.  Packet structure of the SpaceWire-R data transfer protocol [3]. All the packets transferred within the Non-blocking SpaceWire network have this packet 
structure, being either of Open Command, Close Command, Control Ack (Open/Close Ack), Data, and Data Ack. 
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subclass of the SpaceWire packet, and can be tranfered using 
existing SpaceWire routers without any modification inside the 
non-blocking subnetwork. 

Figure 4 schematically shows the packet transfer procedure 
in the non-blocking mode. Below, we describe it by breaking 
down it into multiple steps. 

1. A SpaceWire packet arrives, from the ordinary 
SpaceWire network, at the gateway router, and it is routed to a 
port connected to the non-blocking subnetwork. The gateway 
router constructs destination information based on the logical 
and path address in the header of the SpaceWire packet, and 
route the packet to one of the SpaceWire-R Conversion module 
of the outgoing SpaceWire-R ports. When a packet is written to 
the Sliding Window of the Framing module (Figure 2 lower 
panel), the module creats and send an Open command  to a 
destination gateway router. The Open command packet, and 
also following Data-segment packet and a Close command 
packet, are routed within the non-blocking subnetwork based 
on the path address and logical addresses like ordinary 
SpaceWire packets. The Open command will be written to the 
De-Framing module of a SpaceWire-R Conversion module 
which corresponds to the destination SpaceWire port of the 
packet. The De-Framing module returns a Control Ack packet 

to acknowledge the command. To route this returning packet to 
the correct Framing module, it is necessary to identify the 
source Framing module that emtited this Open command using 
the source SLA (SpaceWire Logical Address) field. In the 
present architecture, we assign pseudo logical addresses to 
each SpaceWire-R Conversion module, and fill its specific 
value when a Framing module sends SpaceWire-R packet. A 
receiving gateway router and interleaving routers should have a 
look-up table entry corresponding to the pseudo logical address 
so that they can properly route Ack packets sent from a De-
Framing module with logical addressing; the pseudo logical 
address filled in the SLA field is used as the logical address 
values of Ack packet, and the packet is returned to the Framing 
module using logical addressing. 

2. Following the establishment of a communication channel 
between two SpaceWire-R Conversion modules, the Framing 
module starts sending Data segments. The segment size and the 
depth of the Sliding Window are parameters that should be 
determined in the system-level design as summarized in the 
SpaceWire-R specification document [3].  

3. On receive of a Data segment, the De-Framing module in 
the destination SpaceWire-R Conversion module reconstruct 
the original SpaceWire packet, and outputs it to routed 
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In the De-Framing module of the 
d e s t i n a t i o n S p a c e W i r e - R 
Conversion,   Received Data 
packet will be unsegmented to 
form a SpaceWire packet. 

Reconstructed SpaceWire packet has the 
same destination logical address as the 
original SpaceWire packet. Some path 
addresses might have been stripped when 
routed in the non-blocking network.

Each segment holds the same path 
address and logical address as the 
o r ig ina l SpaceWi re packet . Pa th 
addresses may be stripped by interleaving 
routers in the non-blocking network.

Multiplexer alternatively sends segments 
from each SpaceWire-R Conversion 
modules when they have ready-to-send 
segments.

 

Fig. 4.  Block diagram of the gateway router which transfers SpaceWire packets using the SpaceWire-R segmentation and end-to-end channel control 
mechanisms. 
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SpaceWire port selected based on a path address or a logical 
address available in the Data packet. If interpretation of the 
Data packet and reconstruction of payload data are successuful, 
a Data Ack packet will be returned making Sliding Window 
pointer to slide.  

4. When all outstanding Data segments were transferred 
and acknowledged, the Framing module sends a Close 
command to finalize the opened channel. When a Close Ack 
packet returns to the Framing module, procedure for transfer of 
a single SpaceWire packet completes. The Framing module can 
start processing another incoming SpaceWire packet. 

These procedures can be concurrently proceeded by 
multiple SpaceWire-R Conversion modules in a SpaceWire-R 
port of a gateway router unless the same destination 
SpaceWire-R Conversion module is targeted. Thus, multiple 
large SpaceWire packets sent via the same SpaceWire link do 
not block each other except for short blocking period caused by 
transmission of Data segment. Duration of the short blocking 
can be controlled by changing the segmentation size 
parameterso as to fulfill the system requirement on the worst-
case latency. 

III. IMPLEMENTATION 
We performed an R&D study on this non-blocking network 

architecture from 2013 to 2014. After the conceptual study, the 
above described mechanism was implemented as additional 
modules for the existing open-source SpaceWire router VHDL 
IP core. The major functionalities of the added modules include 
SpaceWire-R packet generation and interpretation, sliding 
window, transmission/receive-end-point control. Since the 
purpose of the present implementation is to validate the 
concept of the non-blocking packet transfer, the number of 
SpaceWire ports was limited at 3; two ports are ordinary 
SpaceWire ports, and the other is a port which transfers 
SpaceWire-R packets (segments). The SpaceWire-R port 
should be connected to a SpaceWire network where the worst-
case latency is guaranteed by the tranfer of segmented 
SpaceWire-R packets. This routing switch can be regarded as a 
gateway from the ordinary SpaceWire network to the latency-
guaranteed segmented network.  

We confirmed that this newly developed IP core properly 
work on an FPGA (Xilinx Spartan-6 in our case), achieving the 
maximum SpaceWire link frequency of 100MHz (with a 50-
MHz internal system clock for routing and SpaceWire-R-
related processes). The logic footprint increase from the 
original router IP core is dominated by the memory used in the 
Sliding Window module and the crossbar switch structure; note 
that the number of cross-bar end points significantly increases 
because each SpaceWire-R port needs to implement 
SpaceWire-R Conversion modules for ports other than itself. 

Technically, there is no limitation other than the maximum 
port number limitaion in the SpaceWire standard, and the 
number of SpaceWire and SpaceWire-R ports can be increased 
as long as the logic elements are available. The segment size is 
a parameter of the IP core, and selectable from available 
options of 128, 256, 512, and 1024 bytes in our implementation.  

IV. PERFORMANCE 
To measure data transfer performance of the Non-blocking 

architecture, we simulated packet transfer using the newly 
implemented Non-blocking-mode SpaceWire routers in a 
VHDL testbench. Figure 5 shows a simulation configuration, 
and Table 1 lists parameters used therein. In the simulation, 
two packets are simultaneously generated by the Packet Source 
nodes, and transferred to the first router via 100-MHz 
SpaceWire links. The packets are routerd to Port 3 of the router 
which is connected, via a 100-MHz link, to the other router 
which the Packet Sink nodes are connected via 100-MHz link. 
For referring to the data transfer path between a pair of Source 
and Sink nodes, we use Channels 1 and 2 (see figure). We also 
performed the similar simulation using the existing ordinary 
SpaceWire router IP core same as the one used to implement 
the present Non-blocking architecture. It is obvious that the 
router-router link is shared by the two channels, a simultaneous 
transmission of packets from the two Source nodes will cause 
the blocking phenomenon in the first router. 

“Latency” is defined, in the present analysis, as the time 
duration between the start of packet transmission in the Packet 
Source node (more specifically, first write to the Tx FIFO of 
SpaceWire CODEC) and the start of the receival in the 
corresponding Packet Sink node (receive of the first byte from 
the Rx FIFO of SpaceWire CODEC).  

Figure 6 shows waveforms obtained in the blocking mode 
and non-blocking mode simulations with a packet size of 1024 
bytes. A segment size of 256 bytes was utlitied in the non-
blocking mode. Time duration where Packet Source and Packet 
Sink nodes are sending/receiving packets are indiacted with 
horizontal arrows. In the blocking mode, upper panel of Figure 
6, transmission of the second packet (packet transferred from 
Source 2 to Sink 2) is suspended while the first packet (from 
Source 1 to Sink 1) is passing through the router-router link. 
This is a simple example of the blocking phenomenon. 

Packet Source

100 MHz

Router

Router

100 MHz 100 MHz

12
Packet Sink

12

3

12

3

12

100 MHz 100 MHz

Channel 1Channel 2

 

Fig. 5.  Configuration of the simulation. Green and blue arrows show data 
transfer paths used by Packet Source 1 and 2. As the “Router” 

components in the diagram, a pair of ordinary SpaceWire routers or the 
newly implemented rouers with the Non-blocking data transfer mode 

was used depending on the simulation cases (see text). 
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In the non-blocking mode simulation, however, two packets 
are concurrently received by the two Sink nodes. A single 
packet is segmented into four 256-byte segments and 
alternatively transferred via the router-router link. This is why 
data are received intermittently (and alternatively) in the Sink 
nodes. Although the horizontal scales are not the same in these 
two pictures, one can note that smaller latency is achieved in 
the non-blocking mode. 

We executed multiple simulations of these two cases with  
different packet sizes ranging from 16 bytes to 16kBytes. 
Observed latency values are summarized in Table II and 
plotted in Figure 7. Since the present non-blocking data 
transfer architecture requires an end-to-end Open/Close control 
before and after trasmitting a packet, and this is an overhead of 
this archtecture. Impact of this overhead time is particularly 
large for latency of preceing (first outgoing) packets shorter 

Packet Source 2
sending a 1024-byte packet

Packet 
Source 2

Packet
Sink 2

Packet 
Source 1

Packet
Sink 1

Packet Sink 1
receiving the 1024-byte packet

Packet Sink 2
receiving the 1024-byte packet

Latency

Wait due to “blocking” in the router

Packet Source 2
sending a 1024-byte packet

Packet Source 1
sending a 1024-byte packet

Packet Sink 2
receiving the 1024-byte packet

Packet Sink 1
receiving the 1024-byte packet

Two packet are multiplexed and simultaneously 
transferred via the shared router-router link.

Latency

Packet Source 
2

Packet
Sink 2

Packet Source 
1

Packet
Sink 1

Blocking transmission

Non-blocking transmission

Packet Source 1
sending a 1024-byte packet

 

Fig. 6.  Latency obserbed when two packets were simultaneously routed to the same port of a router in the Blocking mode (top) and the Non-blocking mode 
(bottom). In the bottom panel, the same results for the Blocking mode are also shown, in lighter colors, for easier comparison. 
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than a segment size; e.g. in the case of 16-byte packet, the non-
blocking mode resulted 1.8µs of latency, but it increases to 
10.44µs in the non-blocking mode (a factor of 5.8 increase. 

On the other hand, in packet sizes that are larger than that 
of the segment size (256 bytes in this case),  latency saturates 

at a constant value (68.2 µs and 102.44 µs for the two packets), 
and reduction from the blocking mode result is significant; e.g. 
in the 16-kByte packet case, a factor of 20 reduction is 
achieved, and higher for longer packets. 

 Figure 8 shows a reduction of latency achieved when the 
segment size is halved to 128 bytes. In the blocking mode 
(ordinary SpaceWire router), latency observed in a blocking 
phenomenon linearly scales with the total size of the packet 
that impeding the transmission of the blocked packet. The non-
blocking mode shows latency that is proportional to the 
segment size, and the worst case latency can be easily 
configured by setting an appropriate segment size to the 
gateway routers although this is not easily possible in the 
ordinary (unsegmented) SpaceWire networks requiring 
modifications of individual packet sending and receiving nodes. 

To compare efficiency of bandwidth utilization of the 
shared link, we calculated throughput by dividing the total 
payload size (i.e. sum of the two packets) with a duration 
between the data send start time (when the first byte is written 
to the Source Tx FIFO) and the data receive end time (when 
the EOP is received by the Sink node). Results are tabulated in 
Table III and plotted for the blocking and the non-blocking 
cases in Figure 9. In short-payload cases, reduction is 
significant as expected, and reaches e.g. ~80% in the 16-byte 
case. This is explained as the overhead caused by extra time 
necessary for SpaceWire-R Open, Data Ack, and Close control. 
As the payload size increases, throughput reduction saturates at 
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Fig. 7.  Latency obserbed when two 1024-byte packets were simultaneously 
routed to the same output port of a router in the Blocking mode (top) and 
the Non-blocking mode (bottom; the same results for the Blocking mode 

are also shown, in lighter colors, for easier comparison). The segment 
size of 256 bytes was used in the Non-blocking mode simulation. 
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Fig. 8.  Reduction of latency observed between segment sizes of 256 byts and 
128 bytes. In the Non-blocking mode, latency is proportional to the 
segment size (c.f. it is proportioanl to the total packet length in the 

Blocking mode). 
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Fig. 9.  Throughput calculated for each packet transferred between the 
Source-Sink pairs. Green and blue lines are for the blocking case, and 

red and orange lines are for the non-blocking case (256-byte 
segmentation). 

�PARAMETERS USED IN THE SIMULATION 

Parameter Value 
Segment size 256 bytes 

Sliding window depth 3 
Incoming packet size 16, 64, 256, 1024, 4096, and 16384 bytes 

Link frequency all links operated at 100 MHz 
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~6.8% and ~9.6% of the blocking-mode case, and depending 
on the system requirement these values could be acceptable.  

V. CONCLUSION 
The non-blocking packet transfer architecture based on the 

SpaceWire-R upper-layer protocol is presented. VHDL 
simulation showed that the implementation works as designed, 
transfers multiple SpaceWire packets concurrently avoiding the 
blocking phenomena observed in the ordinary SpaceWire 
router. The worst-case latency reduction is effective in 
particular for relatively large SpaceWire packets for example 
longer than 10 kB. The worst-case latency is a controllable 
parameter that is proportionally dependent on the segment size 
and the link frequency.  

This architecture is appilicable to those systems that carries 
sensor modules which output large telemetry data as a single 
(long) packet, and transferred to a mass memory via a shared 
network. If SpaceWire-D is applied to the network to maintain 
the determinism, the sensor nodes  should implement time-
division multiplexing. However the presented non-blocking 
architecture offloads the costs necessary to modify the sensor 
nodes, and the gateway routers assure the determinism by 
liming the worst-case latency. Thus, this architecture could be 
an option where there is a requirement to reuse existing devices 

and components with a network that is required to be highly 
reliable. 
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 RESULTS OF PACKET TRANSFER SIMULATION WITH THE BLOCKING AND THE NON-BLOCKING MODES. VALUES ARE IN MICRO SECONDS. 

 Blocking mode Non-blocking mode 
256-byte segment 

Non-blocking mode 
128-byte segment 

Payload Channel1 Channel2 Channel1 Channel2 Channel1 Channel2 
16 4.3 1.8 10.4 48.6 10.4 32.4 
64 10.4 1.8 30.3 20.2 30.3 20.2 

256 34.7 1.8 102.4 68.2 53.8 35.8 
1024 131.7 1.8 102.4 68.2 53.8 35.8 
4096 521.1 1.8 102.4 68.2 53.8 35.8 

16384 2077.6 1.8 102.4 68.2 53.8 35.8 
 
 

TABLE III.  THROUGHPUT CALCULATED FOR EACH PACKET TRANSFER. VALUES ARE IN UNITS OF MBYTES/S. 

 Blocking Non-blocking mode Reduction 
from Blocking mode 

Payload  256B 128B 256B 128B 
16 4.88 0.62 0.98 87.3% 79.9% 
64 6.84 3.32 3.32 51.4% 51.5% 

256 7.60 3.78 4.78 50.4% 37.1% 
1024 7.84 6.02 6.34 23.2% 19.1% 
4096 7.88 7.04 6.9 10.7% 12.4% 

16384 7.90 7.36 7.14 6.8% 9.6% 
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Abstract—SpaceWire-D is a deterministic extension to the 

SpaceWire protocol designed to satisfy hard real-time constraints 

on a SpaceWire network. This allows a single SpaceWire 

network to be used for both control applications and payload 

data-handling. 

The Atmel AT6981 Castor device is a LEON2-FT based 

system-on-chip with multiple integrated peripherals including an 

eight-port SpaceWire router and three internal SpaceWire 

engines each containing three DMA channels, an RMAP 

initiator, and an RMAP target. 

This paper describes the SpaceWire-D protocol; the design of 

RTEMS networking software to test the protocol using the 

AT6981 system-on-chip; and the results of those tests. 

Index Terms— SpaceWire, SpaceWire-D, deterministic 

networks, spacecraft onboard processing, AT6981 

I. INTRODUCTION 

SpaceWire-D is a deterministic extension to the SpaceWire 

on-board data handling network [1] being designed by the 

University of Dundee for ESA [2] [3]. To provide a 

deterministic capability, SpaceWire-D uses time-division 

multiplexing and slices network time into a series of time-slots 

in which RMAP [4] transactions are executed. These 

transactions are grouped into a virtual bus system, where each 

bus consists of an initiator node, one or more target nodes, and 

the set of links that make up the paths between the nodes. 

Figure 1 shows an example of a virtual bus with an 

initiator, three targets, and five links. The semi-transparent 

nodes and links are not part of the virtual bus. 

Due to the wormhole routing used by SpaceWire enabled 

routers, if there are multiple data-flows in a SpaceWire 

network there is a possibility of a packet being blocked if one 

of the SpaceWire links it requires is already in use. There may 

be more than one initiator operating in a SpaceWire-D network 

at the same time, so a set of initiator schedules is required to 

constrain traffic such that no two virtual buses are active in the 

same slot if there is a chance that they could have a colliding 

transaction i.e. if they have any shared links. 

II. SPACEWIRE-D 

The following subsections briefly describe the features of 

SpaceWire-D. For more in-depth coverage, see the standard 

draft [2] and [3]. 

A. Time-Division Multiplexing 

In a SpaceWire-D network, the end of the current time-slot 

and the beginning of the next time-slot is signaled by the 

arrival of the next valid time-code. SpaceWire time-codes 

contain a 6-bit time value, so there are 64 slots in a SpaceWire-

D schedule beginning at slot 0 and ending at slot 63. 

Additionally, a local timer can be used to synchronise with the 

arriving time-codes to provide redundancy in case a time-code 

fails to arrive. 

Each time-slot can be assigned a single virtual bus. 

However, this is not a symmetric relationship because 

depending on the type of virtual bus, a bus may be assigned to 

multiple time-slots or adjacent sequences of time-slots called 

multi-slots, as described in the following sections. 

When a new time-slot begins, if there is a virtual bus 

assigned to the time-slot, the group of transactions associated 

with the virtual bus is executed. 

B. Static Bus 

The SpaceWire-D protocol provides services to open, load, 

execute, and close four different types of virtual buses. The 

first and simplest virtual bus is the static bus. 

Each static bus is assigned to a single time-slot or single 

multi-slot. Once opened, the user application can then load the 

static bus with a group of RMAP transactions. During the 

loading operation, the transaction group’s worst-case execution 

time (WCET) is checked before the transaction group is 

accepted into the static bus. If the WCET of the transaction 

 

Fig. 1. Example of a virtual bus with three targets and five links 
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group exceeds the duration of the time-slot or multi-slot it may 

interfere with the next slot’s transactions, so the transaction 

group is not loaded and an erroneous response is sent to the 

user application. 

A transaction group can be loaded as a repeating group in 

which case it is repeated every time the bus’s time slot occurs 

until the bus is reloaded or closed, or as a single shot group 

where the transaction group is unloaded after a single 

execution. 

C. Dynamic Bus 

A dynamic bus can be assigned to multiple time-slots or 

multi-slots. When a transaction group is loaded, its WCET is 

checked, like the static bus, before it is accepted. If a 

transaction group is accepted and loaded into a dynamic bus, it 

is executed in the next time-slot or multi-slot assigned to the 

bus. This results in less predictability than a static bus because 

a transaction group could be executed in one of multiple time-

slots. 

D. Asynchronous Bus 

As with a dynamic bus, an asynchronous bus can be 

assigned to multiple time-slots or multi-slots. 

However, unlike the static bus and dynamic bus, which are 

based around loading groups of transactions, the asynchronous 

bus works on a single transaction basis. When a user 

application loads an asynchronous bus, it sends a data structure 

describing a single transaction along with the transaction’s 

priority. The asynchronous bus maintains a prioritised queue of 

transactions, and in each available time-slot or multi-slot 

assigned to the bus, a subset of the highest priority transactions 

is removed from the queue and executed. The subset of 

transactions to be executed in the next available time-slot or 

multi-slot is updated whenever the user application loads a new 

transaction. 

E. Packet Bus 

The packet bus is a bi-directional channel between an 

initiator node and a target node. Receiving packets from and 

sending packets to a target are controlled by the initiator via 

RMAP read and write operations, respectively. 

An initiator node can open multiple channels to targets and 

a target can open multiple channels to initiators. When the 

channel has been opened on both the initiator and target side, 

the packet bus is ready to handle RMAP transactions between 

the two nodes. 

When a packet bus’s time-slot or multi-slot begins, the 

status of all channels is checked to make sure a channel is not 

busy before it is used by the packet bus. This allows multiple 

initiators to open a channel to the same target and reserve it for 

exclusive use. 

Optionally, the packet bus can use segmentation to split the 

transmission or receiving of a large packet over multiple time-

slots or multi-slots. 

F. Schedules 

The source of unpredictability in a SpaceWire network is 

the possibility of packets being blocked by wormhole routing. 

Wormhole routing enables a packet to be switched from an 

input port to an output port quickly, but only if the output port 

is not already in use. If it is in use, the packet is blocked until 

the output port is released. 

In order for traffic in a SpaceWire-D network to be 

deterministic, the possibility of blocking must be removed. 

This is done by ensuring that in each time-slot, the set of links 

used by an initiator’s virtual bus is distinct from the set used by 

every other initiator’s virtual bus operating within the same 

time-slot. If no link is used by two buses at the same time, then 

the blocking of SpaceWire packets cannot occur. This means 

that for each initiator, a schedule must be created that 

simultaneously satisfies this constraint and meets the 

bandwidth demands of a mission. 

Research into the configuration of schedules for 

SpaceWire-D networks is ongoing at the University of Dundee 

and elsewhere [5] [6]. 

Figure 2 shows an example schedule for a single initiator 

with 64 time-slots and a combination of different virtual bus 

types [3]. 

III. AT6981 CASTOR SYSTEM-ON-CHIP 

The Atmel AT6981 Castor system-on-chip [7] is a LEON2-

FT (SPARC V8 ISA) based flight processor with multiple 

integrated peripherals including extensive SpaceWire support. 

Figure 3 shows a photo of the cPCI variant of the prototype 

AT6981 board, with three SpaceWire cables connected to the 

router 

 

Time-Slot Bus 

0 Static 0 

1 Dynamic 1 

2 Static 2 

3 Async 3 

4 Static 4 

5 Async 5 

6 Async 5 

7 Dynamic 7 

8 Empty 

9 Dynamic 1 

10 Dynamic 7 

11 Packet 11 

12 Packet 11 

13 Packet 11 

14 Packet 11 

…  

61 Static 61 

62 Dynamic 7 

63 Static 63 

Fig. 2. Schedule for a single initiator with 64 time-slots [3] 
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The following subsections briefly describe the relevant 

SpaceWire peripherals, and features in the prototype board 

used for this research. 

A. SpaceWire Router 

The SpaceWire front-end for the AT6981 board is a 

SpaceWire router with eight external ports and three internal 

ports connected to the SpaceWire engines. The internal ports 

have physical addresses 9, 10, and 11 which connect to 

SpaceWire engines 1, 2, and 3 respectively. 

B. SpaceWire Engines 

Connected to the SpaceWire router, the three SpaceWire 

engines each contain three DMA channels, an RMAP initiator, 

and an RMAP target. The SpaceWire-D tests described in this 

paper use only the RMAP functionality in the engines. 

In order to allow a SpaceWire packet to address individual 

DMA channels, RMAP initiator, or RMAP target, the 

SpaceWire engines use a de-multiplexer. The de-multiplexer 

matches up to four bytes of the incoming packet against a 

pattern and mask configured by the user in the engine’s 

registers. It then uses this matching to filter the packet into the 

correct DMA channel, RMAP initiator, or RMAP target. This 

allows the RMAP initiator and target to have their own logical 

addresses. 

The execution of RMAP commands are offloaded to the 

SpaceWire engines, reducing the demands on the LEON2-FT 

processor. The user application holds a list of data structures in 

memory describing the required RMAP commands and then 

writes the memory address of the list to the RMAP initiator’s 

registers. Consequently, if the list of commands is unchanging 

over time as in the case of a static bus with a repeating 

transaction group, the processing required to begin executing 

the transactions is minimal. 

C. Memory and Processor 

The prototype AT6981 board has 128Kbyte of SRAM and 

256MByte of DRAM and the LEON2-FT processor clock rate 

is 33MHz, while the production board will run at 200MHz. 

D. Debug Support Unit 

Loading and debugging a program is done via the LEON2-

FT debug support unit (DSU). The DSU provides a simple 

protocol to read and write to memory on the board directly 

through hardware. This allows software running on the 

development machine to load a program directly into the 

AT6981’s memory without the requirement of a bootloader. To 

debug a program, a STAR-Dundee software module on the 

development machine acts as a GDB remote protocol server 

and translates GDB commands into interactions with the DSU, 

allowing a simple method for debugging. The AT6981 

prototype board provides a USB to UART bridge for 

connecting a computer to the DSU. 

IV. RTEMS SUPPORT 

The tests described in this paper use version 4.10.2 of the 

RTEMS real-time operating system, which is an open-source 

project being used in many space applications as well as in 

other industries [8]. The following subsections describe our use 

of RTEMS and its relevant features. 

A. Board Support Package 

A board support package (BSP) was designed to port 

RTEMS to the AT6981 board [9]. The basic BSP consists of 

the minimum requirements to run the basic RTEMS tests and 

examples. This includes the board initialisation code, a UART 

console driver, a clock driver, and support files such as a linker 

script file. There exists a BSP for an existing LEON2 device in 

the RTEMS source tree, however, the AT6981 is sufficiently 

different that it requires a separate BSP. 

The AT6981 BSP uses the LEON2-FT’s on-chip UARTs 

and timers with slightly modified drivers from the existing 

LEON2 BSP. Like the DSU UART, the LEON2-FT on-chip 

UARTs are accessible through USB to UART bridges on the 

prototype board. 

As the AT6981 shares an interrupt between SpaceWire 

DMA and RMAP engines in the primary interrupt controller, 

the interrupt handling has been extended to allow an interrupt 

service routine (ISR) to be registered for either DMA or 

RMAP interrupts. When an interrupt is raised on the primary 

controller, the interrupt handler then filters it to the relevant 

ISR. This allows for separate device drivers for DMA and 

RMAP engines. 

B. RTEMS Features 

RTEMS is a real-time multi-task operating system with a 

unified address space. It provides features common in most 

operating systems such as tasks, interrupt handling, inter-

process communication, synchronisation, standard data 

structures, and a device driver framework. RTEMS also 

provides in-depth compile time customisation. 

A real-time operating system is designed to value 

predictability above other features [10]. As RTEMS is a real-

time operating system, it provides task scheduling algorithms 

relevant to a real-time environment. In our case, we are using 

the default priority based pre-emptive scheduler which will 

 

Fig. 3. cPCI  variant of the prototype AT6981 board 
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switch context to a higher priority task if one becomes 

available at any time. 

V. NETWORKING SOFTWARE 

RTEMS based networking software is responsible for 

providing the SpaceWire-D API to the user application, 

managing the virtual buses, managing the transition between 

time-slots, and dispatching RMAP commands. 

The following subsections describe the different modules of 

the SpaceWire-D test software. 

A. SpaceWire-D API 

The SpaceWire-D API provides a public interface to the 

user application and enables an application to initialise the 

other SpaceWire-D modules, open a virtual bus, load a virtual 

bus, and close a virtual bus. During initialisation, the API 

creates tasks for the other modules as well as a task for itself 

and uses the RTEMS message queue manager in order to listen 

for requests from user applications. These requests are then 

handled by the virtual bus manager. 

B. Virtual Bus Manager 

All functionality related to the opening, loading, and 

closing of virtual buses is controlled by the virtual bus 

manager. It also contains the data structures describing the 

parameters of a virtual bus and its transactions. 

C. Time Manager 

The time manager is responsible for transitioning between 

time-slots, based on the arrival of valid time-codes. In this 

version, we are using only time-codes to signal the beginning 

and end of time-slots. However, the standard also describes the 

use of local timers to synchronise with the arrival of time-codes 

for redundancy in case a time-code fails to arrive. 

During initialisation of the time manager, we enable 

interrupts for the receiving of time-codes using a simple device 

driver for the AT6981 SpaceWire router. We then install a 

callback function which is called during the router driver’s 

ISR. The callback function uses the RTEMS event manager to 

send an event to the transaction dispatcher, signalling the start 

of the next time-slot. 

D. Transaction Dispatcher 

When the SpaceWire-D API initialises the other modules, a 

task is created for the transaction dispatcher. This task begins 

and then blocks, waiting for an event to be received from the 

time manager. The task wakes up when the event is received 

and, if there is a virtual bus assigned to the time-slot, executes 

the virtual bus. For example, if there is a static bus assigned to 

the time-slot, the bus’s transaction group will be executed, 

assuming one is loaded. 

A simple RMAP driver was designed to provide three 

features: the first is a function to start a group of RMAP 

transactions, the second is an ISR to handle RMAP initiator 

interrupts, and the third is a function to initialise one of the 

AT6981’s RMAP targets to act as a target node for the purpose 

of the experiments. 

VI. EXPERIMENTAL SETUP 

For our experiments we used two different network 

architectures. The following subsections describe and illustrate 

both architectures, and the additional supporting hardware and 

software used. 

A. Single Initiator Architecture 

The single initiator architecture as shown in Figure 4, uses 

a single AT6981 board as an RMAP initiator and RMAP 

target. The AT6981 is connected to a development machine for 

loading and debugging programs. The board’s router loops 

back to itself with a STAR-Dundee SpaceWire Link Analyser 

Mk2 in the middle, to view the transactions and time-codes 

flowing through the links. A STAR-Dundee SpaceWire-USB 

Brick Mk2 is connected to the AT6981 and acts as the time-

code master. The Link Analyser Mk2 and the Brick Mk2 are 

connected to a second laptop for ease of use. The Brick’s time-

code generation is controlled via STAR-Dundee’s STAR-

System software [11]. In this architecture, all SpaceWire links 

are operating at 100Mbps. 

VII. MULTIPLE INITIATOR ARCHITECTURE 

The multiple initiator architecture shown in Figure 5 is 

similar to the single initiator architecture shown in Figure 4 

with the exception that the loopback through the Link Analyser 

is removed and replaced by a link between both AT6981 

boards, again through a Link Analyser. In this architecture, the 

first AT6981 board’s SpaceWire links are operating at 

100Mbps and the second board’s links are running at 50Mbps. 

 

Fig. 4. Single initiator architecture 
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Figure 6 shows a photo of the hardware used in the multiple 

initiator architecture setup. From left to right, the hardware is 

the first AT6981 prototype board, a STAR-Dundee SpaceWire 

Link Analyser Mk2, the second AT6981 prototype board, and a 

STAR-Dundee SpaceWire-USB Brick Mk2 

VIII. EXPERIMENTAL RESULTS 

The following subsections describe the experiments carried 

out to test the SpaceWire-D static bus with both single and 

multiple initiator architectures, and presents the results 

obtained. 

A. RMAP Driver 

The first iteration of the RMAP driver used by the 

transaction dispatcher utilised the UNIX-like device file driver 

framework provided by RTEMS. Within this framework, every 

device is treated as a file and a driver provides initialise, open, 

close, read, write, and ioctl functions to be used with standard 

system calls. 

After performing some initial tests and measuring the 

performance of the driver, it was found that the overhead 

required by opening a device file and using an ioctl system call 

when dispatching a transaction group was too expensive. By 

allowing the transaction dispatcher to call the driver functions 

directly instead of through the ioctl system call interface, the 

processing time between a time-code being received and the 

first RMAP transaction leaving the router was reduced from 

741µs to 389µs. 

Further optimisation was introduced by simplifying the 

event handling when a time-code is received. Originally, the 

time manager would receive an event from the router ISR, then 

forward the event to the transaction dispatcher. By sending the 

event directly from the time manager’s callback function, the 

processing time was further reduced from 389µs to 201µs. 

Reducing the initiator processing time between a time-code 

being received and the first RMAP transaction leaving the 

router from 741µs to 201µs allows the SpaceWire-D network 

to run at the minimum slot duration of 1ms. With the 

production version of the AT6981 running at 200MHz, 

compared to the prototype’s 33MHz, and with additional 

software optimisations, the initiator processing time should be 

further reduced. 

B. Single Initiator Experiments 

In the single initiator architecture, the AT6981 board acts as 

both the RMAP initiator and the RMAP target. During the test 

setup, the SpaceWire-D API is initialised, the RMAP target is 

initialised, and the test static buses are opened and loaded with 

a transaction group. 

The first experiment involved opening a single static bus in 

slot 0 and loading it with a transaction group containing 32 

RMAP write-with-reply commands with a data size of 1KB. 

The Brick is generating time-codes every 10ms. 

Figure 7 shows a screenshot of the Link Analyser status 

counter display interface for the first experiment. In this 

interface, the number of various types of characters received 

per second are displayed. The first column is the Link Analyser 

port that the RMAP headers are transmitting through, and the 

second column is the RMAP replies. We can see that there are 

32 RMAP transactions being executed by viewing the number 

of EOP characters and confirming that the commands were 

executed successfully by viewing the packet display interface 

within the Link Analyser software. The number of data 

characters being transmitted per second can be verified by 

calculating the size of the RMAP headers and replies. For the 

header, there is 1 physical address at the head of the packet, a 

21 byte RMAP header, and 1024 bytes of data. This results in 

1046 data characters multiplied by 32 which is 33472 data 

characters per second. The reply has 1 physical address at the 

head of the packet, and an 8 byte reply, which results in 9 data 

characters multiplied by 32, giving 288 data characters per 

second. 

 

Fig. 6. Photo of the multiple initiator architecture 

 

Fig. 5. Multiple initiator architecture 

224



Next, we opened a static bus on all 64 slots and loaded 

them with the same transaction group as the previous 

experiment. 

Figure 8 shows the results from opening a static bus on all 

64 slots. Again, the number of data characters transmitted can 

be verified by multiplying 1046 data characters by 3200 in this 

case, which is 3,347,200 data characters per second. Similarly 

the data characters per second for the replies is calculated by 

multiplying 9 data characters by 3200 which is 28800. 

In both cases of the single slot and the 64 slot schedule, the 

observed WCET of the transaction group is 4182µs. The 

observed worst-case processing time of 201µs can be added to 

this to give a total static bus execution time of 4383µs. 

C. Multiple Initiator Experiments 

In the multiple initiator architecture, there are two AT6981 

both acting as initiators and as targets for each other. The 

schedule in this experiment is split between the two boards. In 

all of the even numbered time-slots, the first board opens a 

static bus. The second board opens a static bus in all of the odd 

numbered time-slots. Each static bus is loaded with the same 

transaction group as the single initiator experiments, 32 RMAP 

write-with-reply transactions with a data size of 1KB. 

Figure 9 shows a screenshot of the Link Analyser status 

counter display for the multiple initiator architecture 

experiment. In this case, both RMAP headers and RMAP 

replies are travelling bidirectionally through both links. To 

verify the number of data characters being transmitted per 

second for each side of the Link Analyser, we can add the data 

characters for both the RMAP headers and the replies. In this 

case, there are 1600 transactions being executed every second 

by each initiator. This results in 1600 multiplied by 1046 data 

characters for the RMAP headers, which is 1,673,600 data 

characters per second. For the RMAP replies, there is 1600 

multiplied by 9 data characters, which is 14400 data characters 

per second. Summing the two gives 1,688,000 as supported by 

the screenshot. 

IX. FUTURE WORK 

The experiments described in this paper were focused on 

parts of the static bus of SpaceWire-D networks. Further work 

is required to test the remaining features of the static bus such 

as transaction group execution time calculation and multi-slot 

buses. Additionally, the remaining virtual bus types: the 

dynamic bus, the asynchronous bus, and the packet bus require 

similar experimentation and testing. Future research will be 

carried out to fulfil these goals. 

As mentioned in Section 2, the schedulability of 

SpaceWire-D networks is an important problem. Research is 

being carried out to investigate scheduling methods for the 

latest draft of the standard. 

X. CONCLUSIONS 

This paper has briefly described the latest version of 

SpaceWire-D [3] and presented the results from experiments 

using the AT6981 [7] prototype board, an RTEMS port for the 

AT6981 [9], and RTEMS based networking software to test the 

static bus functionality of SpaceWire-D. 

The results show that the AT6981 prototype board can be 

used to operate a SpaceWire-D network using the static bus 

with schedules utilising single slots and all 64 slots. An 

experiment was successfully carried out to test a SpaceWire-D 

network with two AT6981 boards acting as RMAP initiators 

operating in alternating time-slots. 
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Abstract— SpaceFibre is the next generation of high speed 

interconnects for spacecraft communication networks. However 

the high performance and advanced features mean that 

SpaceFibre interfaces have an inherently high level of 

complexity, rendering implementation in some FPGA systems 

difficult due to limited hardware resources. This paper presents 

an investigation into the hardware resource characteristics of 

SpaceFibre through an experimental evaluation using the 

StarDundee IP core, including discussion of functionality 

tradeoffs that can be made when designing an interface for a 

limited number of hardware resources. A simple SpaceFibre 

interface optimised for a high-throughput instrument is 

subsequently described, with a specific focus on resource savings 

achieved when implementing for the RTAX2000 FPGA. 

Index Terms— SpaceFibre, Networking, FPGA, Spacecraft 

Electronics. 

I. INTRODUCTION  

SpaceFibre [1] is a multi-gigabit spacecraft network 

standard supporting the future of high performance spacecraft 

communication network requirements. It improves on 

SpaceWire by offering data rates of up to 5Gb/s, several 

channel interfaces per link via a Virtual Channel (VC) service, 

support of mixed mode networks through Quality of Service 

(QoS) mechanisms and error free data reception through the 

use of a retry scheme. 

Naturally these additional features result in an interface that 

is significantly more complex than a standard SpaceWire 

interface. As the SpaceFibre development matures this will 

eventually result in standalone SpaceFibre interface products 

implemented as an Application Specific Integrated Circuit 

(ASIC) (e.g. [2]), where this increased complexity is not an 

issue due to the high density of logic elements available in an 

ASIC technology. In the meantime, and always available as an 

additional option for system designers, the interface can also be 

integrated as part of a System on Chip (SoC) within Field 

Programmable Gate Array (FPGA) technology. Such 

implementations are typically designed for a radiation 

hardened FPGA, coupled with a space qualified 

Serialiser/Deserialiser. An issue with this approach is that 

currently available FPGAs suitable for spaceflight (for example 

the RTAX-S family [3]) lack the high number of logic 

elements required to implement the full interface and ensure 

that a sufficient amount of FPGA resources are still available 

for the implementation of other elements of the data handling 

SoC.  

 This paper describes a series of tasks undertaken with the 

SpaceFibre IP core developed by StarDundee to gain 

understanding of how features of the SpaceFibre standard 

affect FPGA resource requirements, followed by an 

experimental exploration into how the standard can be 

implemented to minimise resource requirements.  

An investigation architecture based on Microblaze and 

implemented on a Virtex-6 FPGA is used to undertake analysis 

of the FPGA resource usage and performance of the IP core. 

Experimental data on how key parameters of the IP (e.g. 

number of virtual channels) relate to resource requirements is 

presented. These findings are then used to guide some 

experimental modifications to the IP core that explore reducing 

functionality of the interface with the prospect of achieving a 

considerable reduction in the amount of hardware resources 

required. 

Finally an implementation of the SpaceFibre standard is 

presented that uses the previous findings to produce a minimal 

adaption optimised to the typical interface requirements of a 

high data rate spacecraft instrument. This results in an 

specialised interface that is better suited for implementation 

within the current generation of flight FPGAs, whilst still 

maintaining compatibility with standard SpaceFibre interfaces. 

II. HARDWARE RESOURCES EVALUATION 

To facilitate investigation into the hardware resource 

requirements of the SpaceFibre interface, a test architecture 

based on Microblaze and implemented on a Virtex-6 FPGA 

was created as detailed in Fig 1. This system provides versatile 

manipulation of the Management and Virtual Channel 

interfaces of the SpaceFibre IP, allowing a range of test 

parameters to be set on the Management interface and full 

loading of the virtual channels at a net data throughput of 1.94 

Gbps from a 2.5Gpbs line rate with 8b/10b encoding. The IP 

core also provides several hardware parameters that allow the 

core to be customised; the number of virtual channels and the 

size of the retry buffers are of particular interest to resource 

requirements.  
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Several designs were implemented to explore the range of 

each hardware parameter in turn, with the resource 

requirements for the SpaceFibre IP taken from the Xilinx 

mapping report.  

A. Number of Virtual Channels 

Each virtual channel provides a “FIFO-style” external 

application interface, requiring each virtual channel to include 

a transmit buffer and a receive buffer. The QoS is responsible 

for multiplexing the transmit buffers together according to the 

QoS scheme configured. Therefore we expect each virtual 

channel added to the interface to require two memory elements 

and an increasing amount of logic to integrate with the QoS. 

Fig 2 illustrates the resource requirements for interfaces with 2, 

4, 8 and 16 virtual channel interfaces. 

 

 

Figure 2 Scaling of FPGA resource with number of Virtual Channels 

From this graph we see the expected increase in the number 

of buffers, implemented as Block RAMs (BRAMs). As the 

number of virtual channels is increased from 2 to 16, the 

number of BRAMs required also increases by a difference of 

28 from 9 to 37. This is of note as it confirms that each virtual 

channel will require two distinct memory elements, with the 

observation that the size of the buffer may as well be set to the 

maximum size of the BRAM element as any size smaller will 

result in wasted memory resource that cannot be used in any 

other buffer.  

The sharp increase in registers and Look Up Tables (LUTs) 

required is due to the QoS logic required for each virtual 

channel; this includes not only the monitoring of QoS 

parameters for each VC (such as the bandwidth used), but also 

the large interconnect between all of the virtual channels and 

the logic that uses the QoS parameters to select which virtual 

channel to transmit from. Thus an effective minimisation is to 

ensure that the number of virtual channels is optimised to the 

needs of the application. 

B. Size of Retry Buffers 

There are three retry buffers on the transmit side of 

SpaceFibre which are necessary to facilitate prioritised retry of 

broadcast frames, Flow Control Tokens (FCTs) and data 

frames that all could be corrupted during transmission. Each 

primitive has a different unit size: broadcast frames are four 

words, FCTs are a single word and a data frame is up to 66 

words (including the Start of Frame and End of Frame control 

words: SDF and EDF). Therefore there is a lot of scope for 

individual retry buffer size optimisation. However, as with the 

virtual channel buffering, a fundamental issue is that if a 

memory element is used then the minimum size is bounded by 

the size of the embedded memory element on the 

implementation device. This is illustrated by Fig 3, whereby an 

increase in virtual channel retry buffer size does not increase 

resource requirements until the buffer is larger than one Block 

RAM element. 

 

Figure 3 Scaling of FPGA resources with size of VC Retry Buffer 

The characteristics for the broadcast and FCT buffers are 

the same, but they can benefit from their small unit size. If only 

a small broadcast buffer is used, say two broadcast frames (8 

words) as the user application rarely sends broadcasts, then this 

can be implemented into Look-Up Table RAM (LUTRAM) 

instead of requiring a full memory element. A similar 

optimisation exists for the FCT buffer, in a system with a small 

amount of virtual channels it is unlikely that more than a few 

FCTs will be waiting for acknowledgement at any one time 

(aside from directly after link start-up).  

 

III. EXPERIMENTAL MODIFICATIONS 

From the evaluation above we can see that there are several 

optimisations that can be made by simply modifying the 

hardware parameters of the SpaceFibre IP. To further this 

work, it was considered that modification of the IP itself could 

gain more significant resource reductions by reducing the 

performance of the interface. The following modifications were 

explored: 
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A. Heterogeneous VC Buffer Sizes 

B. Single Virtual Channel Interface 

C. Unbuffered Retry Scheme 

 

All modified interfaces were compared to the resource 

requirements of the IP core set to the minimal hardware 

configuration suggested by StarDundee [4]; this minimal 

interface was also used as base implementation for each 

modification. 

A. Heterogeneous VC Buffer Size 

The SpaceFibre IP has the restriction that all virtual channel 

buffers are set to the same size, removing the opportunity of 

optimising the buffer size to the nature of the traffic using the 

virtual channel. This would typically not be an issue as if an 

embedded memory element has to be used for the buffer then 

the whole memory element may as well be used. However if 

we consider the case where a virtual channel is used 

exclusively for small and infrequent control packets, then a 

small virtual channel buffer would be more optimal and could 

be implemented as a small LUTRAM instead of using 

embedded memory resources (where most of the embedded 

memory block would be wasted anyway as only a small buffer 

is required).  

This proposition was examined by modifying one of the 

virtual channels to use a sub-frame size of only 8 words for its 

transmit virtual channel buffer (the sub-frame size is allowed 

on the transmit side if each small packet is terminated with an 

EOP within the 8 words). Unfortunately as each FCT 

represents a frame of data (64 words), the receive buffers are 

bounded to this size. Regardless, this modification resulted in a 

saving of a Block RAM resource over the reference minimal 

interface at the expense of a 37% increase in LUTRAM 

required (from 64 LUTRAMs to 88). 

B. Single Virtual Channel 

As we saw with the scaling of the number of virtual 

channels in the interface, the logic for the QoS functionality is 

inherently complex. Therefore if a SpaceFibre interface was 

reduced to a single virtual channel then we would not require 

this complexity, but we would keep the flow control and high 

priority broadcast capabilities; such an interface could be 

suitable for high data-rate instruments that only require a single 

high speed link to a processing unit or mass memory. The 

interface was fixed to a single virtual channel and the QoS and 

multiplexing was removed. This resulted in savings of 16% in 

sequential logic, 33% in combinatorial logic and of course the 

two Block RAMs that the second virtual channel required 

previously.  

C. Unbuffered Retry Scheme 

Another source of buffering in the interface is within the 

Retry layer. Three seperate buffers exist to store data frames, 

broadcast frames and FCTs when transmitted until an 

acknowledgement token (ACK) is received from the remote 

side. If instead a negative acknowledgement token (NACK) is 

received then the data within these retry buffers is re-sent. In 

the case where the application can handle some loss of data 

frames, then this retry buffer is not strictly required. Indeed if a 

data source is generating data at a similar rate to the line rate of 

the interface, then some data loss is unavoidable while the retry 

is being undertaken unless sufficient buffering is provided 

upstream to handle the pause in transmission. 

Instead of resending the frames on receipt of a NACK, the 

unbuffered retry scheme sends an Error End of Packet (EEP) 

and spills the data from that virtual channel until an EOP is 

encountered. This eliminates the need for the virtual channel 

retry buffer without sacrificing compatibility with a remote 

interface that may implement the whole codec.  

Whilst this modification did remove the virtual channel 

retry buffer and its associated Block RAM, a small buffer was 

also required to keep track of which virtual channels had been 

waiting for acknowledgement when the NACK was received 

and so which should be spilling. Therefore we see a 3% 

increase in the amount of sequential elements required, 

however the simpler retry mechanism does succeed in reducing 

the number of the combinatorial elements by 14%.  

IV. A MINIMAL SPACEFIBRE INTERFACE FOR INSTRUMENTS 

A. Interface Functionality Requirements 

The results from the experiments above show that we can 

modify some parts of the interface to save hardware resources, 

but simply modifying resource heavy parts of the interface 

does not drastically reduce enough resource requirements to 

warrant the reduce in functionality. Therefore a more 

substantial modification to the investigated interface 

implementation will be required to produce an even smaller 

interface. If we consider a minimal interface required for a high 

data-rate instrument, the functional requirements could be 

fulfilled using only two virtual channels: one for the high 

throughput instrument data and a second, much smaller buffer 

for transmitting housekeeping data and for the instrument 

commanding. With such a virtual channel partition it can also 

be seen that only a single channel would be sufficient on the 

receive side for receiving command packets, eliminating the 

need for the receive buffer on the high throughput instrument 

data virtual channel.  

Some degree of QoS is required within this interface to 

ensure that command and housekeeping channel data can be 

transmitted even if the high throughput channel is saturating 

the link. We saw previously that the full QoS functionality 

requires a large amount of resources and so a much simpler but 

less flexible scheme could be used to cover this requirement, 

especially as housekeeping data typically only requires a small 

proportion of the link bandwidth. A similar issue applies to the 

retry layer; supporting lossless transmission is desired as the 

application is unknown, but the buffering and control logic 

requires a considerable amount of hardware resource.  

A caveat of any substantial modification of these layers is 

that they still have to be fully compatible with the full 

SpaceFibre standard as the remote node has to be assumed to 

implement a fully featured interface. Most of the modifications 

discussed involve the higher levels of the transmit side and so 

we can keep as much as of the lower levels of the interface 
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unmodified as possible to ensure link-level compatibility with 

other interface implementations. The receive side of the 

interface shall also stay largely intact to ensure compatibility, 

the only modification shall be the reduction of the receive 

virtual channel level to a single virtual channel. As there are 

cases where there is no need for an instrument to transmit 

broadcast packets, the broadcast transmit logic and the 

associated retry buffer shall also be removed, although by 

keeping the receive side intact we do not sacrifice the ability to 

receive broadcast frames. 

In summary, these restrictions lead to a transmit interface 

with the following specifications:  

1. A high throughput, single ended data virtual channel. 

2. A low throughput command virtual channel. 

3. Simple QoS between these channels. 

4. Retry scheme to resend data from these channels. 

5. No broadcast transmit functionality. 

6. FCT transmit and retry support as specified in the 

standard. 

B. Architectural Design 

From these specifications, a transmit interface was 

designed to perform the specified functionality for a minimal 

hardware resource requirement. A major architectural feature is 

the combination of the virtual channel and the retry buffers, 

allowing efficient storage of virtual channel retry data and 

optimal storage of frames as they are stored pre-framing, 

removing the need to store an SDF and EDF word for each 

frame. This results in a retry functionality distributed between 

the virtual channel and retry layers, requiring a slight 

modification to the dataflow through the interface as retried 

packets must also pass through the framing layer, as displayed 

in Fig 4. 
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Figure 4 Dataflow of transmit side of instrument SpaceFibre interface 

To keep the quality of service as simple as possible it is 

accepted that all data to be sent from the command and 

housekeeping virtual channel is of a higher priority than the 

high throughput instrument data, therefore whenever 

housekeeping packets are ready to be sent they are always 

selected over instrument data frames. In the case of the data 

virtual channel failing as a babbling idiot, this priority scheme 

ensures that data from the housekeeping channel will always 

dominate over this babbling idiot data. 

Each virtual channel buffer now has three pointers to 

manage dataflow into and out of the channel: a write pointer, a 

read pointer and a retry pointer. The read and write pointers are 

used as a standard FIFO implemented in a circular buffer, the 

retry pointer however shows how much of the buffer is being 

used for storage of retry frames; as illustrated in Fig 5. The 

retry pointer is set by a separate retry pointer buffer. This 

buffer is appended to by the framing layer each time a SDF is 

added at the start of a new frame with the start address of the 

packet. The buffer is popped every time an ACK is received by 

the difference between the ACK sequence number and the 

previous ACK'd sequence number, thus the retry pointer 

always points to the start address of the oldest frame that has 

not been ACK'd yet.  

In the case of a NACK, the buffer is popped by the 

difference in NACK value as with the ACK case and then all 

stored addresses but the current value of the buffer are flushed, 

as they will be reinserted into the buffer by the framing layer 

during the retry. Now the read pointer is set to the address of 

the retry pointer (i.e. the start of the last frame not ACK'd) and 

transmission is performed as with a standard data frame. This 

has the side effect that contiguous small packets may be 

repacked into a single frame when they may have been 

originally sent as separate frames, which is why it is important 

that the retry pointer buffer is flushed. Data sequence within a 

virtual channel is preserved however, with priority given to 

retry operations on the housekeeping virtual channel (as with 

nominal operation).  

Flow Control Tokens are also subject to retry requests, but 

to eliminate the need for a buffer only one at a time is sent, 

buffered and the sequence number stored. When an ACK is 

received covering this sequence number, the interface can now 

handle the next FCT request. In the case of a NACK that 

covers the FCT sequence number, the buffered FCT is re-sent 

and the stored sequence number updated. This is unlikely to 

cause performance limitations on the link as FCTs are typically 

sent periodically, and with only two virtual channels it is 

unlikely that multiple FCTs will be requested to be sent in a 

small time frame; the only time this happens is directly after 

link initialisation where such a performance drop in FCTs is 

assumed to be tolerated.  
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Data waiting to be sent
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Figure 5 Combined virtual channel and retry buffer structure 
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C. Implementation Results  

The proposed architecture was implemented and integrated 

into the SpaceFibre IP, replacing all the transmit circuitry up to 

the CRC inserter of the existing retry layer (the CRC inserter is 

the last step before the lane layer). The receive side was also 

restricted to only include a single virtual channel and the FCT 

arbitration removed. A number of functionality tests were also 

carried out, in simulation at first but then in hardware with the 

adapted IP interfaced to the StarFire test unit. This verified that 

the nominal and retry functionality of the minimal interface 

behaves correctly and that compatibility with the standard 

implementation is maintained. 

As with the earlier modifications the investigation interface 

resource requirements are compared with the reference 

minimal implementation of the SpaceFibre IP core. Table 1 

shows these results for the Virtex-6 implementation, where the 

required numbers of each logical element type are presented: 

 

 Sequential 
Logic 

Combinatorial 
Logic 

LUTRAM Block 
RAM 

Reference 
Minimum 

2409 2993 64 7 

Investigatio
n Minimum 

1569 1749 12 5 

Reduction  35% 42% 81% 29% 

Table 1 Instrument interface resource requirements for Virtex-6 

These results show that the lightweight optimisation of the 

interface was successful, both in terms of reducing the 

buffering required in the interface (shown by the reduction in 

Block RAM and LUTRAM) and in terms of simplifying more 

complex parts of the codec (represented by the reduction in 

sequential and combinatorial elements). 

As the primary motive for this study was to propose an 

minimal interface suitable for implementation within a current 

space qualified FPGA, implementation for a Virtex-6 is not a 

realistic use case. Therefore the investigation interface and the 

minimal standard interface were also synthesised for the 

MicroSemi RTAX2000 radiation-tolerant FPGA. This FPGA 

has a significantly smaller number of logic resources available 

than the Virtex-6 [3] [5] and so it is crucial that the fraction of 

the overall FPGA resource dedicated to the high speed 

interface is minimised. Table 2 shows the raw logic resource 

usage and the percentage of the RTAX2000 total resources 

required for each interface implementation. 

 

 Sequential 

Logic 

Combinatorial 

Logic 

Embedded 
RAM 

Reference 
Minimum 

2692 5156 10 

RTAX2000 
Resource % 

25% 24% 15% 

Investigation 
Minimum 

1633 3052 6 

RTAX2000 
Resource % 

15% 14% 9% 

Reduction  39% 41% 40% 

Table 2 Instrument interface resource requirements for RTAX-2000 

Due to differences in the FPGA architectures, some 

variance between the resource requirements are to be expected. 

Being an antifuse based FPGA, the RTAX does not support 

small memories embedded within look-up tables, therefore all 

buffers are implemented in Embedded RAM blocks. This 

results in a significant saving of RAM blocks in the 

investigation architecture, with only six buffers required for the 

SpaceFibre interface. The sequential and combinatorial 

elements show a similar reduction to the Virtex-6 results, but 

when this reduction is compared to the total number of 

resources available in the device we see a very significant 

reduction in the required resources: from 25% to only 15% of 

the sequential logic elements and from 24% to 14% of the 

combinatorial logic elements  available on the RTAX2000.  

V. CONCLUSIONS AND FUTURE WORK 

The SpaceFibre standard contains a number of parameters, 

such as the number of virtual channels, that can be tailored in 

an implementation while still maintaining compatibility with 

other SpaceFibre implementations. This can be used to reduce 

to the implementation complexity of the SpaceFibre interface. 

This tailoring was further extended to demonstrate an interface 

architecture targeting a simple high-speed instrument requiring 

only one high throughput downstream data channel and one 

high priority channel for commanding and housekeeping data. 

The resulting SpaceFibre interface implementation uses only 

15% of the RTAX2000 hardware resources.  

There are still further optimisations that could be made to 

the interface however. These primarily concern the receive side 

of the interface. A buffer exists for holding data frames whilst 

the CRC is checked before being passed out of the retry layer. 

Closer integration with the receive virtual channel buffer could 

be performed here to remove the need for this buffer. Likewise 

a design could be undertaken to also merge the elastic buffer 

into the virtual channel buffer, but care must be taken when 

communicating with the transmit side of the retry layer as the 

receive side would then be clocked by the recovered clock. 

Alas the extent of any modifications to the CRC functionality 

or lane layer (other areas of high complexity) is very limited as 

these layers are fundamental for compatibility with remote 

interfaces. 

It is important to acknowledge that the reference IP core 

from StarDundee was created to aid the development of the 

SpaceFibre standard, and is not as yet optimised to minimise 

hardware resource requirements. 
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Abstract— The SpaceFibre standard has appeared relatively 
recently. Also SpaceFibre standard supports several “Quality of 
Service” mechanisms. It includes best effort, bandwidth reserved, 
scheduled and priority based qualities of service. It is implemented 
by means of virtual channels. Standard does not fully describe 
network layer in the latest version (ECSS Draft F3). The rules for 
transferring data at the network layer also affect the quality of 
service.  

In this paper we present analysis and an implementation of the 
SpaceFibre network layer. The switch matrix’s channels quantity 
connected to port (connection point) is one. Low priority packet 
transmission can be interrupted, if a packet with a higher priority is 
received. Interruption rules will be described, data transmission 
latency characteristics and performance will be evaluated. Analysis 
and modeling of the proposed network level implementation will be 
demonstrated. Data packets of different sizes were used during 
simulation. Number of virtual channels is 4 for the research. 

Index Terms— SpaceFibre, Quality of service (QoS), Network 
level. 

I. INTRODUCTION  
Performance of modern embedded systems depends on 

network architecture and structure. Existing embedded 
networks support data transmission with Quality of Service 
(QoS) [1]. Currently many different standards are widely used 
in design of network. For example – RapidIO [2], SpaceWire 
[3] and etc. 

For our research we chose different approaches to 
implementation technology of virtual channels [4]. The first 
allows transferring data at the same time from different virtual 
channels of a port. The second – only one virtual channel of a 
port can transfer data. The third - virtual channel with higher 
priority can interrupt the transmission of data with lower 
priority. These approaches are not associated with a specific 
standard. It can be used in the construction of different 
embedded networking technologies [5].   

We will use SpaceFibre in our case study. SpaceFibre is the 
modern standard in space industry. This technology also can be 
used for construction embedded networks. 

SpaceFibre provides a coherent quality of service (QoS) 
mechanism able to support best effort, bandwidth reserved, 
scheduled and priority based qualities of service [6]. Quality of 
service parameters [7] that can be provided by routers with 

SpaceFibre ports depend not only on the SpaceFibre protocol 
characteristics and port specific implementation but also on a 
network layer implementation. In this article we analyze 
different implementation of network layer SpaceFibre. 

II. DIFFERENT APPROACH OF NETWORK LEVEL 
IMPLEMENTATION 

In this paper we will compare some approaches of network 
level implementation.  They differ from each other in hardware 
costs and data transmission principles. 

In 1st way of router’s network layer structure switch matrix 
includes a separate channel for connection of each input virtual 
channel with the correspondent output virtual channel. 
Quantity of connection points to the switch matrix (hereinafter 
– connection points) for every port of a router is equal to the 
virtual channels number in this port, Fig. 1 (only one data 
transmission direction is represented). This way was 
recommended by the SpaceWire-RT specification draft [8]. In 
such router structure data flows can compete with each other 
only within one virtual channel in output port of router. In this 
case timing characteristics in the network layer depend only on 
arbitration rules. In all other cases timing characteristics of data 
flows are not influenced by the router network layer. However, 
such router structure results in an essential hardware cost. 

 
Fig. 1 The first way of router’s network layer implementation 

According to 2nd way of router’s network layer structure, 
the quantity of connection points for every port is less than 
number of virtual channels in the port. There is one connection 
point. In our research we suppose that data flows from every 
virtual channel can be transmitted via one connection point of 
the correspondent port, Fig. 2. Hardware cost of this router 
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structure is essentially less, than hardware cost of the previous 
one. But in this way, data flows from different virtual channels 
share switch matrix channels. Therefore, an impact between 
data flows and corresponding disturbance of its timing 
characteristics in this case in this router structure is more 
essential than in the previous one. 

 
Fig. 2 The second way of router’s network layer implementation 

The 3rd way of router’s network layer structure is similar to 
2nd way. The difference between these ways is possibility of 
lower priority data transmission interruption. Condition of data 
transmission interruption can be different. Packet transmission 
can be interrupted after N byte transfer or special time interval 
after the start of transmission. The following situations can 
cause interruption of packet transmission:  1) frame with higher 
priority comes to virtual channel buffer or 2) no data is  
transmitted during K clock. K and N are software installed 
parameters. Output ports unavailability or empty virtual 
channel buffer in specified port can cause data transmission 
impossibility. When setting N or K parameter, it is necessary to  
avoid situations when too frequent lower priority data 
transmission interruption occurs. For example, at the beginning 
1 byte of lower priority packet is transmitted, than higher 
priority packet is transmitted. Thereafter 1 byte of lower 
priority packet is transmitted and lower priority data 
transmission interruption occurs again. Interval of data 
transmission interruption should be comparable to time of 
channel reset. 

III. NETWORK MODEL 
Timing characteristics estimation was done on the basis of 

the models, which are depicted in Fig. 3. 

 
Fig. 3 Network model 

The Network model comprises a router with 4 ports, each 
of which can work with 4 virtual channels. Terminal nodes 
generate packets in a random time moments. At these random 
moments the terminal node sends the generated packets to each 
virtual channel. The destination nodes for each virtual channel 
are also chosen randomly and can be different for the virtual 
channels. This configuration can lead to a potential possibility 
of data packets flow concurrency in the output port. 

IV. SIMULATION RESULTS 
The network was simulated on the adapted DCNSimulator 

model [9]. In this case we used the router and node models 
which comprise only the Virtual Channel and the Network 
Layers (this gave an opportunity to reduce the simulation time 
and to obtain more detailed results). The link bandwidth in the 
model is set to 1 Gbit/s.  

The results of the simulation can significantly depend on 
the router model implementation features such as local clock 
frequency and link capacity within the router.  

Let us consider the case when each virtual channel has its 
own particular priority level, which corresponds to the virtual 
channel number: VC1 – the highest priority, VC4 – the lowest. 
The packet length does not exceed the frame length. Fig. 4- 
Fig. 8 shows the simulation results for the 1st, 2nd and 3rd way 
of router implementation for each virtual channel, when size of 
data packet is 250 bytes. Fig. 9 - Fig. 13 shows the simulation 
results for the 1st, 2nd and 3rd way of router implementation for 
each virtual channel, when size of data packet is 750 bytes. In 
these cases packets for VC4 were sent first, then for VC3, 
VC2, VC1 successively. The time between packets generation 
for different virtual channel is 100 ns. N is 256 bytes. Average 
data transmission delay of high priority (VC1) packets is 
similar when we use 1st and 3rd way of router implementation. 

The 2nd implementation of network layer differs by a large 
delay value of high priority packet as you can see on figures. 

Fig. 14 shows the simulation results for the 1st, 2nd and 3rd 
way of router implementation for virtual channel 1, when size 
of data packet is 750 bytes and there are interruptions the 
transmission of data with lower priority in 3rd way with 
different N. In this case packet generation time has exponential 
distribution. Delay is bigger for the 2nd way of the router 
implementation than for 1st, 3rd way. The smallest average data 
transmission delay of high priority (VC1) packets is observed 
in situations where packet transmission with lower priority is 
interrupted after 32 or 64 bytes transfer. 
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Fig. 4 Comparison of the packet transmission time via VC1 (the packet 
size = 250 bytes) in case of different implementations of network layer 

 
Fig. 5 Comparison of the packet transmission time via VC2 (the packet 
size = 250 bytes) in case of different implementations of network layer 

 
Fig. 6 Comparison of the packet transmission time via VC3 (the packet 
size = 250 bytes) in case of different implementations of network layer 

 
Fig. 7 Comparison of the packet transmission time via VC4 (the packet 
size = 250 bytes) in case of different implementations of network layer 

    

Fig. 8 Bar chart of the average packet transmission time via VC1, VC2, 
VC3,VC4 (the packet size = 250 bytes) 

 
Fig. 9 Comparison of the packet transmission time via VC1 (the packet 
size = 750 bytes) in case of different implementations of network layer 
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Fig. 10 Comparison of the packet transmission time via VC2 (the packet 
size = 750 bytes) in case of different implementations of network layer 

 
Fig. 11 Comparison of the packet transmission time via VC3 (the packet 
size = 750 bytes) in case of different implementations of network layer 

 
Fig. 12 Comparison of the packet transmission time via VC4 (the packet 
size = 750 bytes) in case of different implementations of network layer 

    

Fig. 13 Bar chart of the average packet transmission time via VC1, VC2, VC3, 
VC4 (the packet size = 750 bytes) 

 

Fig. 14 Bar chart of the average packet transmission time via VC1 (the 
packet size = 750 bytes). Exponential distribution of packet generation 

time. 

V. CONCLUSION 
The comparison of the achievable timing characteristics for 

different ways of router implementation showed that if the 
packet size is smaller than the frame size then the average 
packet transmission time for 3rd way is almost similar to 1st 
way. The 1st way of router structure hardware is essentially 
constrained [10]. 

Delay of the high priority traffic grows faster for the 2nd 
way of the router implementation.  Therefore, the 2nd way of 
the router implementation can be used for the networks with 
the packet length shorter than frame size. In this case it will 
provide scheduled, bandwidth reserved and priority qualities of 
service. The packet lengths larger than the frame size while 
using the 2nd way of the router implementation result in 
degradation of the timing characteristics in comparison with 
the 1st and 3rd way. This degradation of characteristics grows 
proportionally to the packet’s length of the virtual channels of 
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low priorities. Consequently, the 2nd way of the router 
implementation in networks where long packets are transmitted 
is possible only when there are no hard real time requirements. 
The 3rd way of the router implementation essentially decreases 
these disadvantages. The average packet transmission time and 
achievable link utilization in this case are almost similar to the 
1st way of the router implementation. 

Delay is 10% bigger for the 2nd way of the router 
implementation than for 1st way, when the packet length 
shorter than frame size and delay is 1% bigger for the 3rd way 
of the router implementation than for 1st way.  Delay is 50% 
bigger for the 2nd way of the router implementation than for 1st 
way, when the packet length longer than frame size and delay 
is 17% bigger for the 3rd way of the router implementation than 
for 1st way. Therefore, the achievable characteristics for the 
scheduled service and delay value for this 2nd way of router 
implementation are lower. 
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Abstract — Currently Astrium GmbH and Intergrated Systems 

Development (ISD) S.A. are planning the development of a 

demonstrator for SpaceFibre. The SpaceFibre demonstrator 

will be used to execute functional performance tests and EMC 

(Electro Magnetic Compatibility) tests. University of Dundee 

is program prime contractor and provides Astrium with the 

SpaceFibre IP core. 

 

The work is shared between the two partners in the following 

way: 

 Astrium: Prime Contractor and Technical Coordination; 

FPGA Design; EMC Testing 

 ISD: Development of Demonstrator Board including 

housing, development of test bed and functional 

performance testing 

The driving requirements for this development are: 

 SpaceFibre performance, while implementing it into 

space equivalent components 

 Design and MAIT of the demonstrator in such a way 

that representative EMC testing is possible 

I. DEMONSTRATOR TEST-BED 

The demonstrator test-bed will include the following items:  

 STAR Fire unit from STAR-Dundee Ltd,  

 personal computer connected to the STAR Fire unit 

via USB executing the SpaceFibre Link Analysis 

software,  

 standard logic analyzer providing PODs able to 

interface standard connectors,  

 oscilloscope able to monitor the eye diagram of the 

receiving differential signals using contact-less 

probes and  

 clock generator used to provide an external clock 

signal 

The STAR Fire embedded link analyser that exposes the 

decoded 8B/10B signals on the respective connector and the 

Logic Analyser that will capture these signals will enable 

monitoring of frame transfers and analysing traffic. The 

external clock generator will allow system validation under 

various traffic conditions. 

Each test will utilize one or more pieces of the above 

mentioned equipment. Moreover, each test may utilize either a 

single demonstration board or multiple demonstration boards 

in a daisy chain configuration. 

The test-bed configuration for board-level, functional and 

performance testing is shown in figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Demonstrator Test Bed 

II. FUNCTIONAL AND PERFORMANCE TESTS 

For the functional and performance tests three different test 

modes will be implemented: 

 Virtual channel loopback 

 Packet generator and packet checker 

 External host interface 
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The functional testing will be done in several steps using the 

different test modes. 

The performance test will show the upper limit of the speed of 

the SpaceFibre Demonstrator. 

III. EMC TESTING 

The diagram of the test setup for the EMC testing is shown in 

figure 2. The board located in the EMC chamber is 

accommodated in a mechanical housing (box), which is just 

penetrated by the SpaceFibre and power supply connector. 

The data traffic is generated by the setup externally of the 

EMC chamber, which can be controlled via the STAR Fire 

test equipment. The Demonstrator Board within the EMC 

chamber just loops back the data. In this way, data traffic is 

generated in each direction, without the need for another 

external interface. Therefore, no additional external interface 

is required on the demonstrator board, penetrating the housing. 
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Figure 2: EMC Demonstrator Test Setup 

 

The following EMC tests are planned: 

 Conducted Emission tests 

 Radiated Emission tests, Electric field 

 Conducted Susceptibility Test 

 Radiated Susceptibility Test, Electric field 

 Electro-static Discharge 
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Abstract — The SpaceFibre provides numerous advantages 

over the SpaceWire: QoS, FDIR, high transmission rate, galvanic 

isolation, lower cable mass. At moderate speeds, e.g. 

10-200 Mbps, the SpaceFibre interface implementation can be 

significantly simplified with oversampling techniques, which does 

not require PLLs and analog CDR blocks. It makes possible fully 

digital implementation of the SpaceFibre interface in a simple 

ASIC or FPGA. 

This paper presents an oversampling technique based on 

digital signal processing. The technique allows to enhance 

transmission rate, operational distance, phase/amplitude 

distortion tolerance and higher noise immunity in compare with 

the traditional edge detection method. 

Index Terms — SpaceWire, SpaceFibre, oversampling, clock 

and data recovery. 

I. INTRODUCTION 

The successor of the SpaceWire – SpaceFibre [1], a.k.a. 

SpaceWire2 - brings a number of advanced features to the 

spacecraft aboard networking: Quality of Service, Fault 

Detection, Isolation and Recovery, Low-latency signaling, 

Multi-lane connection, High speed, Low mass cable. Many of 

the above features are provided by the usage of single 

differential pairs (Rx and Tx) per lane direction with the NRZ 

signaling and 8b/10b encoding at the physical level.  

Typical implementation of the NRZ signaling requires 

specially designed analog circuits, e.g. PLL-based clock-data 

recovery [2-4]. Unfortunately, these circuits are not always 

available for space-grade FPGAs and ASICs technologies. To 

avoid this limitation, an oversampling SpaceFibre mode was 

suggested at lower speeds (up to 200-400 Mbps) [5]. The 

oversampling technique can be designed as a digital domain 

circuitry, which simplifies SpaceFibre implementation and  

allows to combine the functionality of the SpaceFibre and the 

design simplicity of the SpaceWire in the space-grade FPGAs 

and ASICs. 

Another benefit of the suggested oversampling mode is that 

it opens room for digital signal processing of oversampled data 

to enhance performance of the communication in terms of 

transmission distance, transmission rate, immunity to EMI 

noise or immunity to transmission media quality. An advanced 

approach based on digital signal processing of single-bit 

oversampled data is presenter in this paper. 

II. DIGITAL OVERSAMPLING TECHNIQUE 

The digital oversampling technique for the NRZ signaling 

is presented on Fig.1 (architecture block diagram) and Fig.2 

(waveform). 

Fig. 1.   Oversampling architecture block diagram 

Fig. 2.  Oversampling waveform 

The differential receiver converts analog transmission line 

signal to digital domain, so all further processing is performed 

with digital circuitry. The key element of the circuitry effecting 

on the receiver performance is the transition detector.  

In the simplest case, the transition detector treats signal 

transitions as a time base for next data samples using known 

oversampling ratio – the relation between transmission bit rate 

and sampling rate. For example, if the transmission rate is 

200 Mbps and the sampling rate is 1 GHz then the 

oversampling ratio is 5, so once a transition is detected next 3rd, 

8th, 13th etc samples are selected as data samples as long as next 

transition is detected. A slight modification of this method does 

not use data selection, as time intervals between the 

consequence transitions are enough to reconstruct data bits. 
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As almost everything simple and straight forward, the 

above methods are not good on practice because of transition 

jitter and multiple transition at bit interval boundaries caused 

by inter-symbol interference and signal noise. Robust digital 

oversampling methods suggest different techniques for 

transition filtering and bit interval boundaries calculation [6]. 

One of the most important question is oversampling ratio, 

which is a trade-off between transmission bit rate, transition 

performance (distance, noise immunity, BER) and transition 

detector complexity. Larger oversampling ratio provides more 

options for transition detector to achieve better performance 

and/or have simpler implementation. At other side, the 

maximum sampling rate depends on the technology used for 

implementation, so it directly limits transmission bit rate. The 

minimum oversampling ratio can be estimated using the eye 

diagram, as it shown on Fig.3 for the SpaceFibre – there have 

to be at least one sample in the eye opening. 

 

 

Fig. 3.  SpaceFibre oversample ratio 

As it can see from the figure, the minimum SpaceFibre 

oversampling ratio should be greater than 2.5 in the ideal case 

(zero-noise differential receiver, jitter-less generator). In the 

real world, the minimum oversampling ratio of up to 6 is 

required, depending on real values of the differential receiver 

noise and generator jitter. 

III. SUGGESTED DIGITAL SIGNAL PROCESSING TECHNIQUE 

Let the following assumptions: 

 The transmitter sends 8b/10b (or any other DC-

balanced code with the limited run length of 0's and 

1's) data Bn at the transmission bit rate Fbit; 

 Transmission media is described by the linear causal 

operator whose pulse response function is h(t). 

 Reasonably good initial estimate of h(t), h'(t) is 

provided: h(t)=0, t<0; h(t)<, t>Th.. Since h(t) never 

becomes identity zero, we chose some finite 

reasonably small . 

 The receiver samples the output of the media at the 

sample rate Fs, returning the sign of its input Vin, so 

that '0' denotes Vin<0 and '1' – Vin ≥ 0, Fs>Fbit; 

 Nominal relation Fbit/Fs is known, but the exact ratio is 

unknown in advance and is time-varying. 

 Optionally, the receiver input is affected by the 

additive Gaussian noise with the standard deviation σ. 
 

 

Then the signal at the input of the receiver I(t) is the unity 

amplitude rectangular pulse of width 1/Fbit modulated by Bn 

convolved with h(t): 
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is rectangular pulse and “*” denotes the convolution. 

The example of the measured U(t)*h(t) sampled with the 

frequency of 128 Fbit is shown on Fig.4. 

 

 

Fig. 4.  Bit response relative to the bit interval 

The receiver determines the sign of its input at frequency 

Fs, resulting in the sequence C={cn}:  



cn=S(I ,n , τ)≡sign(I (
n

Fs
+ τ))

 

Where:  



sign (x )={
0, x<0,

1, x≥0 . }
 

Let denote the concatenation of two sequences A={xn}n=a

b

 

and B={yk }k=c

d

 by {A, B}, i.e.:  


{A,B}={xa, ..., xb , yc ,... , yd}  

The goal is, given the C and the hint {bk, ..., bk+p}, to 

determine {bn} starting with n=p+1. 
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Let define the error functional:  
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A. Noiseless case. 

In the absence of noise, E(I, C, 0) = 0 and E(I, C, d) > 0 for 

|d| >  > 0. Also: 

    00ˆ
:1:0 >,c,c,cI,E n+kkk  

for any k, provided that B and h(t) are “good enough” in some 

sense. 

B. Initial phase estimate. 

As previously mentioned, before we can start receiving data 

bits, we need a hint {bk – bk+p}. In practice, this is the case, 

because the communication begins with the known sequence of 

symbols, “comma”, in the case of SpaceFibre. What we need to 

do is to determine the initial phase of the sequence, i.e. to 

determine the position of the next bit to decode relative to C. 

 This can be done in the following way. As h'(t) is given, a 

fragment of the signal P'(t) input to the receiver can be 

constructed as the convolution of the rectangular pulse of 

duration 1/Fbit, modulated by the {bk, ..., bk+p}, and h'(t) 

(operator Ξ’ is similar to Ξ in (1), but uses h'(t) instead of h(t)):  

     
p+kk b,,Bt,Ξ'=tP' ...  

Since Th can span many bit intervals 1/Fbit, the beginning of 

P'(t) is affected by the unknown bits bn, n<k. Similarly, the tail 

of the P'(t) is affected by bm where m>k+p. Let Nh is Th 

expressed in the bit intervals: Nh = [Th Fbit]. To get the pattern 

P(t), that is defined only by the known bits from {bk, ..., bk+p}, 

just cut off the head of length Nh/Fbit and the tail of the same 

length from P'(t): P(t)=P'(t+Nh/Fbit), t<p/Fbit. Since we need 

reasonably long useful bit pattern to reliably determine initial 

phase, say, 20 bits, it follows than p should be p>20+Nh/Fbit. 

Let u=p-Nh/Fbit is the number of “useful” bits that define the 

pattern P(t). Then the number of the receiver samples for the 

duration of P(t) is: 

 









bit

s

F

F
u=l  

With P(t) at hand, find the minimum E(P, {cs, ..., cs+l},τ) , 

where 0 ≤ τ ≤ 1/Fbit  and 0 < s < Dsrch, Dsrch being the depth of 

the search. Then, τ and s define the position of the start of the 

1'st bit in P(t) in terms of index in C and time offset. 

C. Next bit extraction. 

To extract the next bit from the sequence C, let consider the 

two families of hypotheses: 

    dk T,'',Bt,ΞtH 00   

    dk T,'',Bt,ΞtH 11   

Td denotes all the 2d combinations of d bits.  

Since the operator h(t) is causal, we need only finite d. In 

practice, with realistic h(t), we only need d equal to 1 to 3, 

since later bits influence rapidly vanishes. The following cases 

are possible: 

1. There exists exactly one n and the corresponding 

sample cn, such that all hypotheses in H0(tn) have the 

same sign, and all hypotheses in H1(tn)  have the 

opposite sign. Then, the value of cn unambiguously 

identifies the right family of hypotheses and the value 

of the next bit. 

2. There are no n the above is true. It means that no 

receiver sample hits the eye opening (or no open eye 

exist). It can also occur when the oversampling ratio 

Fs/Fbit is insufficient for the given h(t). For this case, 

the same sequence C can correspond to at least two 

different B, and no further processing of C can select 

the right one. 

3. More than one n satisfy the above condition. The case 

when all such n resolve to the same bit value is trivial. 

The opposite can take place when h(t)≠h'(t) or in the 

presence of noise (σ > 0). The resolution of this is 

discussed in chapter F. 

The key concept discussed above is illustrated on Fig.5. 

 

Fig. 5.  Bit extraction concept 

When the next bit is discovered, it is attached to the string 

of known bits and the step repeats.  

 

242



D. Phase and frequency lock 

As the oversampling rate Fs/Fbit is not known exactly and 

varies over time, we must adjust it accordingly to keep phase 

synchronization. This can be done by adding a small delta to 

the current value of the oversampling rate and phase offset 

depending on the sign of the instant phase error. To get the 

latter, take a pattern P(t) ) = Ξ(t, B) of  m recently discovered 

bits B and compare E(P, C, -1/10Fbit) and E(P, C, 1/10Fbit). If 

the former is greater than the latter, then decrease the 

oversampling rate and phase by the small step, else increase 

both. 

The number of bits in B should provide at least one value 

transition. From the properties of the 8b/10b, 10 bits would be 

the adequate amount. 

E. h'(t) extraction. 

From implementation perspective, it may be more efficient 

to store the bit response r'(t)=U(t/Fbit)*h'(t) instead of h'(t) 

alone. It can be done in the form of vector r'n of the sampled 

values of r': r'n=r'(n/(128*Fbit)). Then, the computation of Ξ in 

the sampled form would be: 

     kn

N

=k

kn r'b=Bξ 128

0

12   

One of the simplest algorithms to make r'n to converge to rn 

would be, whenever the computed value of ek is nonzero, 

adjust the corresponding r'n by the small delta in the direction 

that decreases ek. 

F. Noise estimation and handling. 

In the presence of noise with the standard deviation σ, the 

probability of incorrect value of the comparator output is equal 

to that of instant noise value exceeds the distance from zero to 

the corresponding hypothesis value at the given point of time. 

Since both hypotheses are deterministic in the assumption that 

hint bits are decoded correctly, the reliability of each receiver 

sample can be computed. And vise versa, measuring the 

receiver error rate at particular samples and knowing their 

corresponding reliability, one can estimate noise sigma. So that 

the decoding algorithm would continually estimate the noise 

level and adjust weight of different comparator samples 

accordingly. 

IV. CONCLUSION 

In the 'classic' blind oversampling technique we use the 

fixed phase in the bit interval to sample data. This is OK for the  

environment, where additive random noise is small enough and 

can be neglected. The proposed method provides a 'dynamic 

phase' of sampling, i.e. the received samples set is chosen on 

the bit-by-bit basis, depending on the de-facto media properties 

and the previous bit pattern. This provides more samples to 

decode every single bit, together with the information of the 

reliability of each sample. As only a little fraction of data bits is 

defined by one or two samples, total BER in the environment 

with noise and dispersion can be improved by an order of 

magnitude or so. 

As a side result, the method provides background 

measurement of the pulse response of the media and the noise 

level. 

Although the efficient hardware implementation left 

beyond the scope of the paper, rough estimate shows that the 

complexity is not expected to be too high and forms the order 

of dozen 8-bit additions and table lookup per sample. The 

memory requirement basically defined by the storage of h'n, 

some 1 K bytes or less. 

The method can be applied with the minimum 

modifications to the multi-level sampling case (ADC instead of 

the comparator) as well. 
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Abstract— The SpaceWire standards are maintained and 

issued formally as ECSS documents (e.g. ECSS-E-ST-50-12C) 

and this means that equipment designed by different agencies is 

interoperable, which has significant benefits. 

SpaceWire is mainly used between instrument units, however 

to facilitate a high level of integration of onboard systems it is 

proposed that an ECSS SpaceWire Backplane standard should 

be created and adopted, the backplane offering power, signal and 

impedance-matched connectivity for high-speed serial links such 

as SpaceWire and SpaceFibre. 

The SpaceWire Backplane standard will assist in the aim of 

creating a common onboard infrastructure to be used across 

many different mission applications by encouraging design 

reusability at the sub-unit (PCB plug-in module) level.  A key 

advantage of a SpaceWire Backplane is the scalability of the 

design. 

A draft SpaceWire Backplane ECSS standard has been created 

by TAS-UK as part of an ESA contract.  It is based around the 

Smiths Connectors Nexus modular connector which can be 

populated with a variety of different contact inserts for power, 

signal and high-speed data and thus can be tailored to a 

particular application. 

The standard will specify the physical dimensions, connectors 

and electrical interfaces of the unit backplane and plug-in 

module. Units and plug-in modules will then be interoperable, so 

for example a module produced by one vendor will correctly fit 

into a unit from another vendor and interface correctly with the 

backplane electrical signals.  It permits both non-redundant and 

redundant units to be built and does not dictate the backplane 

SpaceWire network architecture. Recommendations are made to 

assist in the creation of reliable fault-tolerant systems. 

It is intended that this ECSS document takes advantage of 

specifications already existing, namely other ECSS and also 

ANSI/VITA VPX standards. The principal VITA standards are 

referenced include VPX (VITA 46), OpenVPX (VITA 65) and a 

new draft standard SpaceVPX (VITA 78).  It is anticipated that 

there will be a harmonisation activity in future between the 

SpaceVPX and this ECSS document before the formal ECSS 

standard release. 

This paper is a walk-through of the ECSS Backplane standard, 

it describes the thought processes and rationale behind it and the 

anticipated advantages of adopting it. 

Index Terms— SpaceWire, SpW, SpaceFibre, SpFi, ECSS, 

SpaceVPX, Backplane, Networking, Avionics, Spacecraft 

Electronics. 

I. INTRODUCTION 

A draft SpaceWire (SpW) [1] Backplane standard has been 

created using the ECSS drafting rules; the document is one 

output of an ESA contract performed by Thales Alenia Space 

UK (TAS-UK, formerly SEA Space Division). It is anticipated 

that the draft will evolve as part of a future ESA contract. 

The draft does not currently constitute an official 

document, although it may at a future date be submitted to 

ECSS for publication. It is anticipated that there will be a 

harmonisation activity between the SpaceVPX specification 

and this ECSS document before the formal ECSS standard 

release. 

To maximize flexibility a particular network architecture is 

not mandated, however a design based on the outputs of the 

ESA Modular Architecture for Robust Computing project [2] is 

recommended. The SpW backplane may be either passive or 

active [3]. 

II. AVIONICS APPLICATIONS 

In a spacecraft avionics unit the Printed Circuit Boards 

(PCBs) or modules are typically connected together via a 

backplane (Fig.1). 

 

Fig. 1.  Backplane within a Spacecraft avionics unit 
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The electrical interfaces at the backplane interface used are 

typically non-standard, consisting of parallel busses, discrete 

lines at different voltage levels and device/technology 

dependant busses. The mechanical interfaces also vary between 

equipment suppliers. 

It is anticipated that a SpW backplane standard will assist in 

creating a common onboard infrastructure to be used across 

many different mission applications by encouraging design 

reusability at the sub unit (PCB plug-in module) level. 

A key advantage of employing SpW is the scalability of the 

design and the simplification of Assembly Integration and Test 

(AIT) activities (Fig. 2). 
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Fig. 2.  A SpW backplane simplifies AIT activities 

The modules are commonly: 

 Power supply – provides internal unit power but may 

be commanded (e.g. on/off) and provides 

housekeeping telemetry (e.g. on/off and trip status, 

voltage, current, temperature). 

 Processor – provides the computing resource for 

complex decision making and data processing. Gathers 

telemetry and controls system elements. 

 Mass Memory – provides a repository for science data, 

application software images and intermediate products 

from data processing. 

 Sensor (input) interfaces – provides interfaces to 

multiple sensors types (e.g. switches, 

temperature/voltage/current sensors, scientific 

sensors). 

 Actuator (output) interfaces – provides outputs for 

control purposes (e.g. heaters, thrusters pulses, on/off 

signals). 

Clearly all these module types have different electrical 

interface requirements that need to be supported by the 

standard. 

III. BACKPLANE STANDARD - SUMMARY 

The aim is that the standard specifies the physical 

dimensions, connectors, thermal and electrical interfaces of the 

unit and plug-in module. Units and plug-in modules designed 

to the standard will then be interoperable, so for example a 

plug-in module produced by one vendor will correctly fit into a 

unit from another vendor and interface correctly with the 

backplanes electrical signals. 

The standard permits both non-redundant and redundant 

units to be built, it does not dictate the backplane SpW network 

architecture but provides recommendations to assist in the 

creation of reliable fault tolerant systems. 

The standard may be tailored for the specific characteristics 

and constraints of a space project in conformance with ECSS-

S-ST-00, however the aim should be that interoperability is not 

compromised. 

 

 

Fig. 3.  Smith Connectors (Hypertac) module Nexus connector 

The standard is based upon the Smiths Connectors 

HYP_6890 “Nexus” connector [4] shown in Fig. 3, it has with 

22 insert bays, additional connector designs are anticipated to 

be available in due course. The key advantage of this connector 

is that it can be populated with a variety of different contact 

inserts, thus it can be tailored to a particular application. 

IV. CONNECTOR DESIGNATIONS 

The Smiths Connectors HYP_6890 contains 22 insert bays, 

there are 4 connector insert variants used in the backplane 

standard, plus one blank insert (Fig. 4). The pin numbers are 

allocated as defined in Fig. 5. 

0375 0550 1002 0402 0000

Pin count

Current rating (7.5A)

 

Fig. 4.  Connector insert designations 
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Fig. 5.  Plug insert pin designations 

The module interface is via either 1 or 2 connectors 

designated as shown in Fig. 6 and Fig. 7 respectively. 
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Fig. 6.  Single connector module 

Two connector

module

P2

P1 S1

S2

Module Backplane

 

Fig. 7.  Two connector module 

An example module level pin designation is presented in 

Fig. 8.  

S1-4-6

Connector – bay - pin

P1-4-6 PCB module connector

Backplane connector

 

Fig. 8.  Two connector module 

V. MODULE INTERFACES 

The insert configurations have been defined for 3 module 

types: 

 Power 

 Router 

 Cluster (input/output module) 

 

The Power Module configuration is presented in Fig. 9. 

This provides: 

 Power connections (7.5A and 5A rated) 

 2 SpW links 

 LVDS clock and sync signals 

 Low rate serial input/output (I/O) 

 Logic I/O 

 Analogue I/O 

 

Fig. 9.  Power Module insert allocation 

The Router Module interface (Fig. 10) has a lower number 

of power and discrete I/O pins but supports 8 SpW links in a 

single connector to support its role as a SpW router function. 

Using two connectors on a double Eurocard means the module 

could support 16 SpW links. 

 

Fig. 10.  Router Module insert allocation 

The Cluster Module (Fig. 11) provides: 

 Power 

 4 SpW links 

 LVDS clock and sync signals, 

 Logic discrete I/O 

 Analogue discrete I/O 

 

Fig. 11.  Cluster Module insert allocation 

The pin allocations of each insert type are defined in the 

standard, four examples are given in Table I. Compliance with 

this pin allocation will ensure compatibility at the insert level 

so that other combinations of insert configurations could be 

defined. 
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TABLE I.  EXAMPLE INSERT PIN ALLOCATIONS 

Function 
Insert 

type 

Insert 

pin 
Signal allocation 

28V main bus 0375 
1 
2 

3 

+28V nominal 
NC 

0V (+28V) 

+5V and 0V 0505 

1 

2 

3 
4 

5 

0V (+5V) 

+5V +/-10% 

0V (+5V) 
+5V +/-10% 

0V (+5V) 

SpW X S in/out 0402 

1 

2 

3 
4 

5 

6 
7 

SpW_X_Sout+ 

SpW_X_Sout- 

Shield 
SpW_X_Sin+ 

SpW_X_Sin- 

Sheild 
sheild 

VI. MODULE PHYSICAL 

The Module physical size is based around the Single and 

Double Eurocard sizes (Fig. 12) and a non-standard “half 

height” module size. The mechanical and thermal interfaces 

specified will be elaborated in a future release of the standard. 

 

Fig. 12.  Chassis and module slot details 

VII. FUTURE STANDARD DEVELOPMENT 

It is intended that standard will take advantage of 

specifications already existing, namely the ECSS and 

ANSI/VITA VPX standards. The principal VITA standards 

that are potentially applicable are VPX (VITA 46), OpenVPX 

(VITA 65) and a new draft standard SpaceVPX (VITA 78). At 

the time of writing the SpaceVPX standard is at an early draft 

and is not on general release. 

It is also noted that additional details will need to be added 

to this ECSS standard to specify the tailoring of the VPX 

specifications for the SpW Backplane application, this tailoring 

being based on real needs, mechanical and thermal design, 

analysis and testing. 

VIII. KEY ADVANTAGES OF A SPW BACKPLANE 

Employing a SpW backplane within an Avionic unit has 

the following key advantages: 

 SpW is a well specified and supported standard  

 Common electrical interface for all modules 

 Compatibility between vendors 

 Reduction of interconnection count to a board 

 Support devices available (Router etc.) 

 IP Cores are available (SpW, RMAP)  

 Test equipment is readily available and well supported 

 Software interface specification is easier… 

 It permits a scalable architecture 

 High rate data transfer rates (compared to Mil-Std-

1553, UART, CAN, SPI, RS422 etc) 
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Abstract—The SpaceFibre Codec IP (beta version) was 

released by STAR-Dundee at the end of 2013. The SpaceFibre 

standard and the codec IP are designed in the way that it shall 

work with TI TLK2711-SP – a space qualified SERDES device 

[1]. This paper presents the work where the Codec IP and the 

TLK2711 are used to implement a SpaceFibre link. Firstly the 

SpaceFibre Codec and the TLK2711 device are introduced, 

especially the power-on reset and signal detection operations of 

the TLK2711 for they are fundamental for the SpaceFibre link. 

Experiments on link initialisation are presented with results and 

analysis.   

Index Terms— SpaceFibre Codec IP, TLK2711, SpaceFibre 

Link, Link Initialisation 

I. INTRODUCTION  

SpaceFibre is a very high speed serial communications link 

which is being designed for use on board spacecraft. As 

SpaceFibre is compatible with SpaceWire at packet level, a 

SpaceFibre link can transfer a SpaceWire packet but at a much 

higher speed. It also provides a broadcast mechanism similar to 

SpaceWire time-codes but offering much more capability. 

SpaceFibre is a complementary technology to the currently 

popular SpaceWire, and applications developed for SpaceWire 

can be readily transferred to SpaceFibre. 

SpaceFibre is designed to have a link speed of 2.5 Gigabits 

per second, as is achievable with current space qualified 

technology. It is possible to reach even higher speed, 20 

Gigabits per second, with future technology, and multi-laning. 

Beside the high performance in speed, SpaceFibre has more 

worthy features, such as low latency, integrated Quality of 

service (QoS), and integrated FDIR capabilities.  

A SpaceFibre Codec VHDL IP core has been developed at 

STAR-Dundee to evaluate and validate the SpaceFibre 

standard. A beta version of the Codec IP core was released 

around the end of 2013. The Codec IP is able to operate with 

an external SerDes device with minimal glue logics, including 

the Texas Instruments TLK2711-SP Wizard Link device. 

Together with a Microsemi Rad-Tolerant RTAX-2000 device, 

the Codec IP and the TLK2711-SP are ready to build a flight 

qualified SpaceFibre System. 

TLK2711-SP is a Space qualified component, with flight 

heritages. Its commercial counterpart is TLK2711A, and they 

are functionally equivalent.   

For the HPPDSP (High Processing Power Digital Signal 

Processor) project, high-speed data I/O interfaces are desired 

for which the SpaceFibre technology is a perfect fit. Designed 

for this project, the prototyping board is equipped with a Xilinx 

Virtex-4 FPGA and three TLK2711A devices, which are used 

for the implementations of three SpaceFibre interfaces. The 

STAR-Dundee SpaceFibre Codec IP has been successfully 

implemented on the FPGA, connected to the TLK2711A 

devices. Each of the interfaces has a number of virtual 

channels.  

This paper firstly introduces the IP core and the TLK2711 

device. Then the integration design is presented. Finally some 

experimental results are given and analysed. 

II. STAR-DUNDEE SPACEFIBRE CODEC IP 

The STAR-Dundee SpaceFibre Codec IP core was 

developed as part of the standard development for its 

evaluation and validation. It is in the form of VHDL source 

codes, and it is highly configurable giving flexibility through 

generics, such as the number of virtual channels. 

The CODEC is organized in layers that are defined in the 

standard, with interfaces between each layer. It doesn’t include 

the physical and serialisation layers. For the encoding layer, it 

can be configured to include or exclude the 8B10B 

encoding/decoding module, or more specifically to have a 

special interface to the TLK2711 device. This enables the IP 

core with capability to connect with different technologies. 

SpaceFibre Codec can transmit and receive SpaceWire 

packets encapsulated within Virtual Channel data frames, and 

also Broadcast frames and control words used to provide the 

QoS and the FDIR capabilities. This information is passed to 

the SpaceFibre interface via the Virtual Channel interface, the 

Broadcast interface, and the Management interface as shown in 

Fig. 1. 
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Fig. 1.  Overview of STAR-Dundee SpaceFibre Codec IP Core 

III. TI TLK2711 DEVICE 

The TI TLK2711-SP Wizard Link device is a Space 

qualified multigigabit transceiver. The device contains both a 

transmitter and receiver, performing parallel-to-serial and 

serial-to-parallel data conversion. This device offers data rates 

from 1.28 to 2.0 Gigabits/s (at a link speed of 1.6 to 2.5 

Gigabits/s).  

The transmitter takes in 16-bit wide serial data, encodes it 

using 8B/10B encoding and serialises it for transmission over a 

VML differential signal pair. The receiver takes the serial data, 

de-serialises it, and performs 8B/10B decoding to provide the 

16-bit parallel data. 

A. TLK2711 Transmitter 

The parallel data input to the transmitter comprises two 

bytes of data (TXD0-7 and TXD8-15) along with two 

control/data flags (TKLSB and TKMSB respectively). The 

control/data flags are high when the corresponding data byte 

contains a control code (K-code) and low when it contains 

data. The two data bytes and the control/data flags are latched 

into an 18-bit register on the rising edge of the TXCLK signal. 

The TXCLK signal must be a continuous clock with a 

frequency in the range 80 to 125 MHz. It drives most of the 

transmitter circuits. There is a clock synthesiser which 

multiplies up TXCLK by 20 to provide the clock to drive the 

parallel to serial converter. The clock synthesiser also provides 

a reference clock for the clock recovery circuitry in the 

receiver. 

To mitigate signal degradation on copper transmission 

media, two levels of pre-emphasis may be selected using the 

PRE input. When low the pre-emphasis is 5%, when high it is 

20%. 

The ENABLE signal is normally asserted to allow the 

TLK2711 device to operate. When de-asserted, the device is 

put in a power down mode with substantially reduced power 

consumption, as only signal detection circuit is active which 

draws less than 15 mW. In the power down mode, the serial 

transmit pins (TXN), the receiver data bus pins (RXD0-15) and 

RKLSB are tri-stated. But TXCLK clock still needs to be 

provided in power-down mode. 

 

 

Fig. 2.  TLK2711 Transmitter Block Diagram 

B. TLK2711 Receiver 

The received signal is fed via a pair of multiplexers to a 

serial to parallel convertor and to an interpolator and clock 

recovery block. The interpolator and clock recovery block 

recovers the received clock, to provide bit and word 

synchronisation. Bit synchronisation is achieved using a phase 

locked-loop (PLL) that takes the transmit bit clock from the 

transmitter (SYNCLK) as a reference and provides an output 

frequency locked to the transitions on the received serial bit 

stream.  

The serial data is converted to a correctly aligned pair of 

10-bit codes. The two 10-bit codes are decoded by a pair of 

8B/10B decoders, each providing an 8-bit data byte and a 

control/data flag RKMSB and RKLSB). These signals are 

registered in an 18-bit register. 

 

 

Fig. 3.  TLK2711 Receiver Block Diagram 

C. Power-on Reset 

Upon application of minimum valid power, the device goes 

through a power-on reset process. When ENABLE pin is 

asserted high from a power-down mode, the device also goes 
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into power-on reset process before the normal operation 

begins. 

During power-on reset, RXCLK is held low; the receiver 

data bus pins (RXD0-15) and RKLSB/RKMSB are in high-

impedance state; the serial transmit pins (TXP/TXN) are high 

impedance as well.  

The length of the process depends on the TXCLK 

frequency, but is less than 1 ms. 

D. Loss of Signal (LoS) Detection 

Loss-of-Signal detection is intended to be an indication of 

error conditions like a detached cable or no signal being 

transmitted, where the incoming signal no longer has sufficient 

voltage amplitude to keep the clock recovery circuit in lock. 

When loss of signal is detected the RXD0-15, RKMSB and 

RKLSB signals are all set high. This represents an invalid K-

code on both bytes so can be safely decoded to mean loss of 

signal. 

In power-down mode, the signal detection circuit is still 

active, and the RKMSB pin indicates the presence or otherwise 

of a signal on the receiver inputs. This can be used to provide 

an auto-start capability on a bi-directional serial link (similar to 

that used for SpaceWire). To save power when there is no data 

to send or to provide warm redundancy, the link can be put in 

the power down mode (ENABLE de-asserted).  

This signal detection circuit enables the auto-start 

capability of a SpaceFibre link. When one end of the link has 

data to send it can enable its TLK2711 device and start sending 

data. The other end of the link, in power-down mode, detects 

that there is now a signal on the receiver inputs (RKMSB goes 

HIGH indicating that there is no longer loss-of-signal). The 

TLK2711 device at that end of the link can then be enabled and 

the link begins normal operation. 

IV. SPACEFIBRE INTERFACES ON HPPDSP  

HPPDSP project requires the I/O data interfaces having a 

very high speed, for which the SpaceFibre technology has been 

adopted. There are three SpaceFibre ports on a HPPDSP 

prototyping board. For each port, there is a double-deck 

eSATA connector as shown in Fig. 4. The upper deck is 

connected to MGT RocketIO on the Xilinx Virtex-4 FPGA. 

The lower deck is connected to a TLK2711 device. For this 

project, the lower decks are in use.  

 

 

Fig. 4.  Picture of SpaceFibre Ports on HPPDSP Unit 

For each SpaceFibre interface, there are a number of virtual 

channels (VC), for instance four VCs (VC0 – VC3). The VC0, 

connected to a RMAP Target (and a RMAP initiator on one 

interface), is used to access the Configuration Bus on the 

FPGA design for configuration and control purpose. The VC1, 

VC2 and VC3 are connected to the IO DMA bus for data I/O 

transmission at high speed. 

 

 

Fig. 5.  Block Diagram of SpaceFibre Interface on HPPDSP 

V. EXPERIMENTS 

Two HPPDSP prototyping boards are used for the 

experiments. The SpaceFibre interfaces can be configured to 

“Disabled”, “Start”, or “Auto-Start”, using the Configuration 

Bus.  

A.  Loss of Signal (LoS) Detection 

This experiment checks the operations of the signal 

detection circuit, under circumstances of forced no-signal and 

forced signal on the link.  

The no-signal scenario is simulated with cable unplugged. 

When the TLK2711a device is enabled, the receiver outputs 

K31.7 on both MSB and LSB. When the device is disabled, the 

RK_MSB is set low.  

After the rising edge of the ENABLE pin, the outputs by 

the receiver are not reflecting the true state, as shown in Fig. 6. 

One can see a short false-positive pulse on the signal detection, 

which is about 6.2 us. It is rational to conclude this is due to the 

power-on reset process. 

 

Fig. 6.  Signal Detection with Forced No-signal Scenario 

The forced signal scenario is simulated with the other end 

of the link set to “Start”. When the TLK2711a device is 

enabled, the receiver doesn’t outputs K31.7 on both MSB and 

LSB. When the device is disabled, the RK_MSB is set high. 

After the falling edge of the ENABLE pin, one can see a short 

low pulse on the signal detection in Fig. 7. This is because the 

simulated scenario is not perfect, and for that period the other 

end of the link was going through a reset cycle. 
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Fig. 7.  Signal Detection with Forced Signal Scenario 

B. Link Initialisation 

An eSATA cable connects a SpaceFibre interface on one 

board to a SpaceFibre interface on the other board. This 

experiment has six different test cases. For each one, the same 

test is carried out three times. The time taken for this end to 

connect is recorded. 
 

TABLE I.  TEST CASES FOR EXPERIMENTS ON LINK INITIALISATION 

Case This End Remote End Time to Connect 

1 Then Start Started ~40us 

2 Then Auto-Start Started ~40us 

3 Started Then Start 
~35us after receiving 

first signal 

4 Started Then Auto-Start 
~35us after receiving 

first signal 

5 Then Start Auto-Started ~53us 

6 Auto-Started Then Start 
~53us after receiving 

first signal 

 

Test Case 1 and Test Case 2 are essentially the same test. 

Test Case 3 and Test Case 4 are essentially the same test. 

When one end is started, it tries to connect so it sends signal 

which can be picked up by the other end. Therefore “Then 

Start” and “Then Auto-Start” are not making any difference. 

For Test Case 1, before this end is set to “Start”, signal has 

been detected on the link. As soon as this end is set to “Start” 

at marker M1 in Fig. 8, the TLK2711 device is enabled. 

 

Fig. 8.  Link Initialisation under Test Case 1 

Then the power-on reset is in process, until there is the 

RXCLK at marker M2 in Fig. 8. Following that, it takes some 

further time for the device to synchronise and lock with the 

incoming serial data and to find a comma to align on the word 

boundary. Then it takes about 18us for the SpaceFibre Lane 

initialisation state machine to go through various states and get 

connected. In Fig. 8, the point that the link is connected is at 

maker M3, where it starts to send out IDLE frames. 

For Test Case 3, this end has been started, and the 

TLK2711 device has been enabled. It is at marker M1 in Fig. 9 

when the first signal is received. After about 16us, the device 

synchronised and locked with the incoming serial data and 

found a comma to align on the word boundary. Then it takes 

another about 18us for the link to get connected at maker M3 

where it starts to send out IDLE frames. 

 

Fig. 9.  Link Initialisation under Test Case 3 

For Test Case 6, this end has been set to Auto-Start. The 

TLK2711 device is enabled as soon as signal detected on the 

link that is at marker M1 in Fig. 10. After going through the 

power-on reset process, at yellow marker M4, it detects a LoS 

and therefore the TLK2711 device is disabled. At marker M2, 

signal is detected again and so the TLK2711 device is enabled. 

Then similarly it takes 16us plus 18us for the link to get 

connected at maker M3. The reason for the LoS detected may 

due to the remote end was in the power-on reset process.  

 

Fig. 10.  Link Initialisation under Test Case 6 
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Abstract— This paper describes the lessons learnt during the 

development and testing of the Modular Architecture for Robust 

Computing (MARC) demonstration system. It is principally 

written from a hardware perspective. 

The MARC system is designed for satellite avionics 

applications. The network and power architectures are based on 

established spacecraft redundancy concepts and provide 

tolerance to single point failures.  The MARC architecture is 

designed to provide a scalable solution that can meet the 

demanding needs of future missions, the SpaceWire network can 

be expanded to include new functions and to provide duplicate 

paths to achieve the level of redundancy needed for a particular 

mission. 

An important aspect of the demonstrator hardware is that the 

key components are space qualifiable parts; permitting the 

design to be upgraded to a fully space qualified system with 

minimal changes, in particular the hardware design uses the ESA 

Atmel AT697F processor and SpaceWire 10X router 

developments.  The ESA SpaceWire RMAP IP Core is also used 

for all module network interfaces, being implemented within 

FPGAs. 

The lessons learnt include the experiences with implementing 

the RMAP IP Core, VHDL synthesis problems, power 

consumption issues and the need for detailed internal unit 

interface specifications. Additional technology developments, 

such as radiation and fault tolerant Point of Load converters that 

are required for migration of the design to flight are also 

identified.    

Lessons were also learnt regarding parallel Hardware and 

Software developments to reduce development timescales whilst 

eliminating diverging design compatibility. 

Index Terms— SpaceWire, SpW, MARC, Avionics, RMAP. 

I. INTRODUCTION 

The Modular Architecture for Robust Computing (MARC) 

system (Fig.1) is an innovative hardware development that 

unifies future spacecraft processing system requirements to 

create a SpaceWire (SpW) [1] network based scalable, fault 

tolerant, high performance capability and robust system 

solution suitable for both Spacecraft platform and data 

handling applications [2]. 

The design comprises a SpaceWire Active Backplane and a 

set of plug-in Modules with SpaceWire interfaces; this scalable 

architecture permits optimisation of the system to suit different 

applications. 

The developed demonstration system uses many recently 

developed European technologies such as the SpaceWire 

RMAP IP Core the LEON2FT processor and the SpaceWire 

10X Router as well as commercial technologies such as DDR 

and FLASH within the Mass Memory Module.  An important 

aspect of the electronics design is the use of technologies that 

have a component level route to a radiation tolerant flight 

system. 

 

 

Fig. 1.  MARC Demonstrator 

The potential applications for MARC are extremely broad, 

encompassing single spacecraft with modest platform and 

instrument requirements, to high data rate instruments mounted 

on multiple formation-flying spacecraft. 

Avionics applications include: 

 Platform command and control (with SpW 

replacing legacy Mil-Std-1553) 

 Science spacecraft data handling and payload 

processing 

 Deep space missions requiring a high level of 

autonomy 

 Planetary robotic systems 

 Complex and/or multiple payloads 
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The project has completed the hardware build and test 

phase and the MARC Demonstrator is ready to be used for the 

development of flight software. The MARC hardware is 

designed to support software services based on the Spacecraft 

Onboard Interface Services standards (SOIS). 

The SpaceWire network architecture building block is 

shown in Fig. 2. , this is called a “Cluster”. The 8 Port Routers 

were implemented with the Atmel AT7910 device. The 

Module SpaceWire interfaces are implemented with the ESA 

developed RMAP SpW IP core within a Microsemi ProASIC 3 

FPGA. TAS-UK was an Alpha tester of the RMAP IP Core. 
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Fig. 2.  Network Cluster comprising 2 Routers and 4 Modules 

II. SPACEWIRE RT 

The MARC hardware supports the SpaceWire Real-Time 

(RT) protocol to the following extent: 

 Non-RMAP SpW RT packets bypass the RMAP 

IP Core on the Core Computing Module (CCM) 

 SpW RT packets can be exchanged with another 

CCM 

 Other modules are RMAP compatible but are not 

“time slot” aware however this is not an issue as 

they are slaves in the demonstrator 

 The CCM software manages all transfers and 

respects time slots 

 CCM FPGA incorporates a SpW RT packet 

transmit and receive buffer 

 Hardware flags have been added added to indicate 

the SpW RT message has been sent 

The SpW RT draft protocol was implemented in software, 

this consumed a significant percentage of the processing 

budget and reduced the responsiveness of the system. 

Lesson learnt: the functions required to implement 

complex SpW protocols should be partitioned into the 

hardware and software domains to increase system 

performance.  

III. SPW AND RMAP IP CORE 

The ESA SpW IP Core was available prior to the start of 

the MARC project and a compatible RMAP IP Core was under 

development.  TAS-UK reviewed the specification for the 

RMAP IP Core and noted that when mated with the SpW IP 

Core other packet protocols were not supported, this limitation 

was not compatible with the MARC system design.  One 

option open to TAS-UK was to design a “protocol sorter” that 

could be inserted between the two IP cores so that non-RMAP 

packets could be routed through the same SpW interface. 

Fortunately the ESA RMAP IP Core development was at a 

stage where it could be updated to permit other protocols to be 

used. 

Lesson learnt: Protocol IP Core extensions to the SpW IP 

Core should not preclude the use of other protocols. 

IV. SPW IP CORE INTEGRATION INTO THE PROASIC 

FPGA 

Integration of the RMAP IP Core into the ProASIC 3 

FPGA with the support logic for the processor and other 

interfaces was relatively straightforward initially.  Meeting the 

timing requirements to achieve a 200Mbps speed however was 

non-trivial and required many synthesis iterations with 

adjustments to the placement. 

Lesson learnt: Choose the FPGA I/O pins and verify the 

placed design meets the timing constraints before allocating 

pins at schematic level. Choosing I/O pins in physical 

proximity to the clock pin resources can assist in meeting high 

performance requirements. 

V. RMAP INITIATOR ERROR ON TIMEOUT 

When the MARC system is operating normally SpaceWire 

RMAP messages are initiated and replies are received within 

the RMAP Initiator watchdog time-out period and the system 

operated reliably. 

During the MARC system Failure Detection Isolation and 

Recovery (FDIR) testing random SpaceWire nodes attached to 

the active backplane are de-powered, in this situation an 

RMAP command to that node was routed through the 

backplane network and then be blocked, since there is no 

packet sink. In this situation, it was found that no further 

RMAP messages could be initiated by the sending node and 

the MARC system had to be power cycled to recover. Clearly 

the failure of the system to recover was not acceptable. 

Lengthy software investigations ensued to demonstrate that 

that it was definitely the hardware that was not behaving 

correctly. The RMAP Initiator was configured to support 36 

outstanding transactions, however during the software tests it 

was noted that up to 56 outstanding transactions could be 

reported. 

The RMAP IP core has been subjected to both simulation 

and hardware testing at Star Dundee. This involved the 

initiation of RMAP transactions with both no timeout and a 

fixed timeout without any anomalous behaviour. 

At TAS-UK the same test bench command script was 

modified to initiate 36 transactions with infinite timeout. The 

bug then manifested itself as a functional error in a back-

annotated gate-level simulation with no apparent associated 

timing problems.  The fault signature changed almost on a per-

synthesis basis suggesting that there were timing violations that 

were not being checked or reported. It is believed that the 

complex initiator processes and enumerated type state 

machines were not being correctly synthesized despite being 

written in valid VHDL, thus it was concluded that the Synplify 

synthesizer being used by TAS-UK had an undocumented bug. 

The RMAP IP Core design was produced by STAR Dundee 
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using the Mentor Graphics tool suite which employs a different 

synthesizer and it compiled the design correctly. 

The Mentor Graphics tool suite was not available to TAS-

UK, so the complete MARC VHDL code design for the 

Processor Module was released to the STAR Dundee to 

investigate and perform a re-build on behalf of TAS-UK. This 

recompiled design operated correctly in simulations and the 

MARC Demonstrator then correctly recovered in the FDIR test 

scenario. The final design achieved 200Mbps SpW data rates 

reliably. 

Lessons learnt:  Use the same design and synthesis tools 

as the IP Core creator to avoid possible synthesis bugs. Ensure 

the test benches check all all corner and boundary cases for the 

particular IP Core configuration used. Ideally IP Cores 

designed for Space applications should be validated using the 

different synthesis tools commonly used for Space electronics 

design. 

VI. POWER DISSIPATION 

The SpW active backplane used four AT7910 8 port routers 

these were connected in a network topology that provided 28 

point to point SpW link at 200Mbps.  The power consumption 

of the backplane was approximately 15 Watts, this included all 

of the power supply regulators and support devices such as 

buffers and oscillators. 

Lesson learnt: A rule of thumb based for this particular 

setup is that each SpW link has an associated dissipation of 

approximately 0.5W at 200Mbps. 

VII. LEON2FT MAXIMUM CLOCK RATE 

The AT697F data sheet cites a maximum processor clock 

rate of 100MHz.  A worst case analysis indicated that 0ns 

access time RAM would be needed to operate with zero wait 

states.  The MARC system was therefore operated with an 

80MHz processor clock rate. 

Lesson learnt: Data sheet clock rates are not always 

achievable in all conditions in a real system when the worst 

case is considered. 

VIII. POL CONVERTERS AND SUPPLY VOLTAGES 

The supply voltage required by integrated circuits is 

dependent on the semiconductor technology and device 

characteristics.  Typical voltages for digital devices are 5V, 

3.3V, 2.5V and 1.8V.  The trend towards higher speed parts 

has led to smaller semiconductor feature sizes, the thinner 

oxide layers employed have lower breakdown voltage and 

hence lower supply voltages are employed.  The high speed 

and high transistor count of these modern devices leads to a 

high current requirement at relatively low supply voltages. 

Providing all the different supply voltages at the currents 

required whilst maintaining the voltages within the required 

tolerance at the device pins is not trivial.  Linear regulators 

may be used but are inefficient if the input and output voltages 

are significantly different.  As an example generating a 2.5V 

regulated supply at 1A with a 5V input leads to a dissipation of 

2.5W in the regulator. 

The solution is to supply each module with a higher voltage 

and use Point of Load (POL) DC-DC converters onboard the 

module.  The MARC system uses a 24V backplane bus to keep 

the backplane voltage drops to an acceptable level. POLs 

however are not commonly available to generate voltages 

lower than 5V from a 24V input supply.  Typically the 

available terrestrial and space qualified POLs operate with a 

5V input. 

24V to 5V

DC-DC

5V to 3V3

DC-DC

5V to 2V5

DC-DC

5V to 1V8

DC-DC

Module

 

Fig. 3.  Module power supply voltage generation 

Lesson learnt: Allow for 2 stages of DC-DC conversion on 

the Module, for example 24V to 5V and then 5V to 1.8V. 

IX. TEST AND INTEGRATION 

The SpW active backplane [3] interface for each Module 

consisted of two SpW links and a single power rail.  The lack 

of bespoke interfaces at the backplane interface and the ability 

to connect EGSE to spare ports of the backplane SpW network 

permitted module level debugging using available off the shelf 

SpW test equipment. Modules in development could be 

emulated easily and the system status could be monitored 

without creating a bespoke hardware test environment. 
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Fig. 4.  A SpW backplane simplified MARC integration and test activities 

The use of SpW at the backplane interface permitted a 

PowerPC module supplied by another vendor to be integrated 

into the SpW network without difficulty. 

Lessons learnt: A SpW backplane has significant 

advantages during integration and test activities, simplifying 

module test and system level debugging. 
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X. PARALLEL HW AND SW DEVELOPMENTS 

The hardware and software development activities for 

MARC overlapped to shorten the complete system 

development schedule. The software was initially developed on 

a RASTA system until the MARC hardware demonstrator 

became available.  When the software was integrated with 

MARC it was found that there were significant 

incompatibilities between the hardware and software, this 

resulted in an extended software development schedule. 

 

Fig. 5.  Role of system-level Use Case Model 

 

There were a number of reasons for this situation arising: 

 unclear and misunderstood requirements 

 few team members have a full end-to-end 

understanding of what the system does and why 

 too much focus on sub-system design and physical 

interfaces in a way that is divorced from the top 

level requirements 

 the view that “Functionality is a software 

implementation detail” 

This situation could have been alleviated by using ‘Use 

Case Models’ which identify ‘the system’ and the ‘actors’ 

(roles played by users and external systems). 

A ‘Use Case’ [4] describes the behaviour required of the 

system to achieve a particular user goal in a story-like narrative 

structure that effectively communicates system vision in scope 

and detail.  The key advantage of this style is that the system 

behavior can be understood by software, hardware and “non-

engineering” team members. 

The Use Case Model may also be used for behavioural 

analysis to refine the requirements, highlight inconsistencies 

and to identify failure modes. 

Lesson learnt: Produce Use Case Models to assist in the 

development of compatible hardware and software for complex 

systems. 
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Abstract— The Atmel AT6981 is a complex system-on-chip 

based on a SPARC LEON2-FT core, and which provides a 

number of peripheral devices including three multi-function 

SpaceWire engines and a router. 

The RTEMS real-time operating system is widely used in 

spacecraft systems in many roles.  Its long history and open 

source availability make it an ideal choice for many applications.  

RTEMS has already been ported to many platforms, including 

some based on the SPARC LEON2 processor. 

The process of porting RTEMS to the AT6981 is described, 

and the performance, both for general data processing and for 

SpaceWire traffic handling, is examined. 

Index Terms— Relevant indexing terms: SpaceWire, 

Spacecraft Electronics, Real-Time Operating System, RTEMS. 

I. INTRODUCTION 

The requirements for spacecraft on-board data handling are 

continually increasing in terms of demands on both processing 

power and network bandwidth.  This has driven the 

development of ever more powerful and capable data 

processors and network controllers. 

The Atmel AT6981 [1] combines a high-performance, 

fault-tolerant processor with multiple SpaceWire engines and a 

SpaceWire router, providing both data processing and network 

control in a single package.  The inclusion of on-chip memory 

and a range of other peripherals and network interfaces make it 

a highly capable device, suitable for use in a wide range of 

applications. 

Along with the requirements for increased processing 

capabilities, there is also a need for a reliable software 

environment to support real-time scheduling of the data 

handling tasks.  The RTEMS operating system is an ideal 

candidate for this role, having proven its reliability and 

usefulness in use on many missions, as well as having been 

widely adopted in non-spaceflight applications. 

Although RTEMS has been ported to LEON2-based 

platforms, each target system has a different configuration, so 

an AT6981-specific port is required in order to make full use of 

the device’s capabilities.  Porting RTEMS essentially requires 

the development of a target-specific Board Support Package 

(BSP) together with additional device drivers for the target’s 

peripherals, and these are integrated into the RTEMS source 

tree in order to build the target-specific version. 

II. THE AT6981 SYSTEM-ON-CHIP 

Based on a SPARC V8 LEON2-FT processor running at 

200 MHz, the AT6981 is ideally suited for SpaceWire-based 

applications with the inclusion of three powerful and flexible 

SpaceWire engines.  Each engine contains an RMAP initiator, 

RMAP target and three general-purpose transmit/receive DMA 

channels.  These SpaceWire engines are connected to a 

SpaceWire router which has eight external ports, providing 

extensive network connectivity. 

Additionally, the AT6981 includes up to 1 MByte of on-

chip EDAC-protected SRAM, controllers for CAN, MIL-STD-

1553 and Ethernet, as well as general purpose I/O, UARTs, 

timers and other commonly-required interfaces. 

A diagram of the AT6981 is shown below in Figure 1. 

Fig. 1 – AT6981 Functional Block Diagram 
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The SpaceWire subsystem of the AT6981 is built around 

three highly capable, semi-autonomous engines which can 

offload much of the work involved in sending and receiving 

SpaceWire traffic from the main processor. 

A diagram of the SpaceWire subsystem is shown below in 

Figure 2. 

Fig. 2 – AT6981 SpaceWire Subsystem 

 

The SpaceWire router has three internal ports and eight 

external ports connected through a switch matrix which allows 

multiple simultaneous connections between inputs and outputs. 

The router is also connected to a time-code controller 

which indicates received time-codes, and can generate time-

codes based on internal counters, hardware interrupts or on 

command from the processor.  The time-code controller also 

handles and can generate distributed interrupts. 

For packets being transmitted, the protocol multiplexer/ 

demultiplexer selects packets to be sent to the router, using a 

fair arbitration scheme.  For received packets, the first four 

bytes of each packet are checked against configurable patterns 

and masks to determine the correct destination – RMAP target, 

RMAP initiator, or one of the three DMA channels. 

The RMAP target accepts RMAP commands from a remote 

system, performs read or write operations over the AHB bus to 

local memory, and optionally returns a reply packet.  The target 

supports all RMAP commands, and includes a 16 byte buffer 

for verified write commands. 

The RMAP initiator transmits RMAP commands to read or 

write memory or registers on a remote system, transferring data 

to or from local memory via the AHB bus.  The initiator is 

controlled by a table of transaction requests stored in memory, 

allowing it to transmit multiple commands and validate replies 

to them without processor intervention. 

The three DMA channels can each transmit and receive 

SpaceWire packets from or to local memory.  Transmitted 

packets can consist of one or more data chunks, allowing for 

separate storage of packet headers, while received packets are 

stored contiguously in memory.  As with the RMAP initiator, 

transmit and receive operations are controlled by configuration 

tables, minimising processor overhead. 

The DMA channels can also transmit and receive RMAP 

[2] and PUS [3] packets, using hardware CRC-8 and CRC-16 

computation respectively. 

With three identical SpaceWire engines, and eight external 

ports from the router to access the spacecraft’s on-board 

network, the AT6981 provides a very high level of capability 

for data handling.  The ability of these engines to operate 

autonomously means that this is achieved with minimal load on 

the main processor. 

III. THE RTEMS REAL-TIME OPERATING SYSTEM 

The RTEMS operating system has been designed 

specifically for use in real-time embedded environments, 

providing a full range of essential support features for real-time 

software, including mission-critical and safety-critical 

applications. 

RTEMS has been under continuous development since the 

late 1980’s, and has evolved over that time into a highly 

reliable and capable system.  It has been used in a wide range 

of application areas, such as networking, automotive, medical, 

hi-fi systems, particle accelerators and, most importantly, 

spacecraft systems [4]. 

Real-time systems are differentiated from other software 

applications by the requirement that they must respond to 

events within specified time constraints – “A real-time system 

is one whose logical correctness is based on both the 

correctness of the outputs and their timeliness.” [5]. 

Real-time requirements may be divided into two broad 

categories :- 

 

 Soft real-time – in which a missed deadline does not 

compromise the integrity of the system or result in a 

catastrophic event. 

 Hard real-time – in which a missed deadline causes the 

work performed to have no value or to result in a 

catastrophic event. 

 

RTEMS is designed to handle both of these types of 

constraint, and implements a number of different task 

scheduling options to allow for flexibility in system design, and 

for both hard and soft real-time tasks, and variations of them, 

to run in the same system. 

The RTEMS system is structured using a layered approach, 

as show in Figure 3. 

Fig. 3 – RTEMS Architecture 
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Although the architecture diagram shows a large number of 

components, the configuration mechanisms invoked when 

building an RTEMS system ensure that unused parts of the 

code base are not included in the final executable. 

A number of APIs are available, including a POSIX 

compliant API supporting a large part of POSIX 1003.1b, such 

as process and thread creation and control functions and object 

types (semaphores, mutexes, condition variables etc.), file and 

directory management and memory management. 

At the lowest level of the RTEMS architecture, the 

interface to the target hardware is managed through the Board 

Support Package, and this is discussed in more detail in the 

next section. 

IV. PORTING RTEMS TO THE AT6981 

RTEMS is already in widespread use for many spaceflight 

applications, and is seen as a reliable and easy-to-use operating 

system environment for the implementation of flight software.  

Porting RTEMS to the AT6981 extends the range of devices 

which are supported, and provides a very capable hardware-

software combination for many on-board data handling and 

communications applications. 

As stated previously, RTEMS has been ported to the 

LEON2 in some basic configurations.  However, in order to 

make full use of the features of the AT6981, a more complete, 

target-specific port was needed.  This provides not only the 

basic integration of the processor into RTEMS, but also drivers 

for the built-in peripheral devices. 

The first fundamental step in the process of porting 

RTEMS to any new target is identifying which components 

need to be developed, and which parts of existing ports, or 

parts of “standard RTEMS” can be used :- 

 

 Does a BSP for this board exist? 

 Does a BSP for a similar board exist? 

 Is the board’s CPU supported? 

 

In this case, although the CPU (SPARC LEON2) is 

supported, no really similar board or device has yet been 

ported, so only some basic, shared interrupt handling code 

could be used.  More of the common code from RTEMS, 

mainly related to system initialisation, could be included, but 

most of the BSP would have to be developed “from scratch” 

(albeit, based on the design and structure of other, similar 

BSPs). 

For an initial, basic BSP, a small number of modules must 

be implemented :- 

 

 Initialisation (board start-up) 

 Clock driver 

 Console driver 

 Timer driver (optional) 

 

The initialisation code is responsible for ensuring that the 

processor board is correctly initialised following a system 

power-on or reset.  Registers and memory areas are set to 

known states, the stack is set up and interrupts cleared to 

ensure correct and reliable operation of the operating system 

and the application software. 

The clock driver provides a reliable time reference to the 

RTEMS kernel, so that all primitives that require a clock tick 

work correctly. 

The console driver, effectively a UART driver, is primarily 

for use in debugging and for system status report messages. 

The timer driver is used by timing and benchmark tests, and 

although optional in the basic BSP, can be useful in 

determining system performance, and identifying areas which 

may need optimisation. 

Once the basic BSP had been implemented and tested, 

confirming that RTEMS was operating correctly, the next step 

was to develop drivers for the peripheral devices on the 

AT6981, beginning with the SpaceWire subsystem. 

In order to simplify the API for users of this feature, it was 

decided to write two separate device drivers, one for DMA 

channel management, and one for the RMAP targets and 

initiators.  This separation also reflects the fact that these parts 

of each engine can operate independently. 

The structure of an RTEMS device driver is relatively 

simple, and involves implementing a standard set of device 

operations – open, close, read, write and control, which map 

directly to the API functions typically available in most high-

level language support libraries.  Additionally, an initialisation 

function must be provided, and this is called during the 

RTEMS start-up sequence to carry out any device-specific 

initialisation which might be required. 

At present, only the SpaceWire device drivers have been 

written, but additional drivers for other peripherals will be 

added in the future. 

V. PERFORMANCE 

The testing of the RTEMS port was carried out on the 

STAR-Dundee AT6981 Prototype Card which contains an 

FPGA into which is programmed the LEON2 core, 128 KBytes 

of on-chip SRAM, the SpaceWire subsystem (as shown in 

Figure 2) and 256 MByte of DRAM.  The AT6981 Prototype 

Card is shown in figure 4. 

 
Fig.4 – STAR-Dundee AT6981 Prototype Card 
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The target clock speed for the production versions of the 

AT6981 will be 200 MHz, which should provide at least 150 

MIPS Dhrystone performance, and at least 40 MFLOPS 

Whetstone performance.  However, the Prototype card 

processor clock speed is limited to 30 MHz, so the measured 

performance is expected to be approximately one-sixth of the 

production device. 

The SpaceWire clock on the prototype card runs at the full 

200 MHz, so link speeds of up to 200 Mbit/s are supported. 

Testing is still ongoing, but it should be possible to transmit 

and receive packets at the maximum data rate via all three 

SpaceWire engines simultaneously, provided they are routed 

through different external ports.  The autonomous operation of 

the engines should require minimal processor overhead in 

handling these transactions, so processor performance is not 

expected to be a limiting factor in normal operation. 

Final, measured performance figures will be given in the 

oral presentation of this paper. 

VI. CONCLUSIONS 

The AT6981 provides a high-performance system-on-chip 

solution to the ever-increasing demands for on-board data 

processing and network bandwidth.  The flexibility and 

autonomous nature of the three SpaceWire engines allows for 

its use in a wide range of network configurations and operating 

modes. 

RTEMS has already gained wide acceptance for use as an 

environment for spacecraft software, and porting RTEMS to 

the AT6981 extends the range of hardware which supports it.  

This will provide additional options to designers and 

developers of on-board data handling systems, providing a 

reliable platform on which to implement any required 

application software. 

The open-source nature of RTEMS makes it relatively easy 

to configure, and to port to new target hardware.  Although the 

AT6981 port of RTEMS currently provides only a basic BSP 

and drivers for the SpaceWire engines, additional drivers will 

be developed in the future, increasing the usability of this 

versatile hardware / software combination. 
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Abstract— Verification of complex networks, especially 

meshed networks created of routers, can become quite difficult. 

There are several parameters influencing the actual data 

throughput, e.g., congestion in the network, transmission rates at 

the inputs of the network or between routers as well as the 

reception rate of data. An appropriate model is required to 

evaluate the network performance. This model can be defined at 

different levels of detail whereas the more detailed levels are 

considered to be more precise with respect to the real hardware 

behavior. The objective of this paper is to define such a model 

and to provide random constraint stimuli for an automatic 

tracking of the network performance. The model consists of a 

meshed network with a fixed topology using HDL descriptions of 

the SpaceWire routers in our system. However, this approach 

can also be applied to other network topologies. Precisely 

mimicking input and output data streams that are applied to the 

network is crucial to identify inefficient data paths. These data 

streams are generated dependent on predefined high level 

constraints (e.g. packet lengths, transmission rates) that are 

transferred into lower level constraints to finally create the 

required stimulus. The quality of the system, dependent on a 

specific data stream, is determined among others by tracking and 

analyzing the transition time of packets from source to 

destination. 

Index Terms— Network, Functional verification, Random 

constraint verification, Universal Verification Methodology 

(UVM) 

I. INTRODUCTION 

Accessing and monitoring signals or data traffic in 

embedded hardware can become very difficult but is often 

required. To address this problem the paper shows how 

monitoring/tracking of network traffic and related DUV 

(Device Under Verification) behavior is applied during 

simulation by use of a hardware verification language in 

combination with a random constraint verification approach. 

Since hardware debugging is usually harder than debugging 

based on simulation, we are creating a verification environment 

whenever possible. The OBC-NG prototype (On-board 

Computer - Next Generation) [1] which is developed by the 

German Aerospace Center will serve as the DUV. Because its 

network is heavily meshed it becomes even more complex and 

difficult to follow the data traffic and to monitor the behavior 

of the real system. These monitoring capabilities are important 

for debugging as soon as the actual data traffic differs from the 

expected data traffic that can be caused either by faulty DUV 

parts or by faulty interactions between DUV parts due to 

suboptimal configuration. Because the DUV might change its 

topology during development, it was intended to create a 

verification environment that scales with the used network 

topology. 

The remainder of this paper is structured as follows. Chapter 

II shows the used DUV in more detail, which is important to 

understand the structure of the surrounding test environment. 

The following Chapter III introduces the concepts of a typical 

UVM (Universal Verification Methodology) [2] test 

environment that is responsible for driving the DUV dependent 

on user constraints. The related stimuli generation that is used 

inside the test environment is explained in Chapter IV. 

Performance and behavior tracking is presented in contrast to 

the test environment in Chapter V. Finally, Chapter VI gives 

some conclusions.  

II. THE DEVICE UNDER VERIFICATION (DUV) 

The OBC-NG prototype will be used as the DUV with a 

basic structure shown in Fig. 1. The prototype consists of four 

identical nodes that are able to perform the same tasks. The 

main idea is that faulty nodes can be replaced by any other 

node as well as load balancing can be performed in an optimal 

way which is described in detail in [1]. However, for this paper 

only the structure of the network is important. 

Every node consists of a processing unit (PU0 to PU3) that 

is connected to a related SpaceWire router written in VHDL 

(R0 to R3). The router was designed according to the related 

standard [3]. The configuration of it, e.g. routing table entries, 

is performed by use of the RMAP protocol [4]. The router itself 

was independently tested by random constrained verification 

and can be considered as functional correct. All nodes are 

connected to each other via the routers. 
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Fig. 1. DUV Structure 

Note there is only one connection at every single node to 

provide the processing units with data that might come from 

instruments or other subsystems. This is not a technical 

limitation of the system. The number of links can be increased. 

The processing units forward data through the routers to other 

nodes if required. 

Hardware/software co-verification of the routers together 

with the respective PUs would slow down simulations 

drastically. Thus, it is reasonable to model data traffic between 

PUs and related router by random processes. The part of the 

system that fully simulated in the verification environment is 

enclosed in the dashed box shown in Fig. 1. 

III. VERIFICATION ENVIRONMENT 

Whenever a verification environment needs to be created it 

must be decided what test methodology should be followed and 

which language will be used.  

If one considers hardware description languages (HDL) like 

VHDL (Very High Speed Integrated Circuit Hardware 

Description Language) or Verilog as insufficient for test 

environments, one can select a language that focuses on 

verification. An option is SystemVerilog, which is standardized 

[5] and supported by the most common simulation tools. 

Further, a framework called UVM based on SystemVerilog is 

developed by the main EDA vendors, provided for free and 

used for the test environment that is explained in the following. 

Reasons for us to select UVM were the object-orientated 

approach that increases the reusability or extension of existing 

verification components as well as the ability to drive the 

simulation by random constrained stimulus. 

 

 

Fig. 2. Basic verification environment 

 

Fig. 2 shows the basic structure of the test environment that is 

used to drive the DUV and to track all necessary information 

related to data traffic and DUV behavior. The DUV is driven 

by a set of UVCs (Universal Verification Component). A 

UVC is attached to every interface that is provided by a DUV. 

As described before, the PUs are not embedded into the 

verification environment. Instead, the UVCs will drive the 

routers as shown in Fig. 3. 

 
Fig. 3. UVC interaction with the DUV 

 

Because the DUV consists of four nodes it is required to 

instantiate a single UVC for each router. During simulation, the 

UVC generates predefined SpaceWire packet objects to apply 

them sequentially to the DUV. The SCB (Scoreboard) shown 

in Fig. 2 provides functionality for comparing results or 

modifying data. For most packets that are transferred into the 

router an expected output packet is created by a transfer 

function inside TFUNC and stored inside EDATA. TFUNC 

also checks whether an expected packet needs to be created or 

not. E.g., in case of a routing table configuration with no 

response, a comparison of actual and expected data is not 

possible. However, if data is transferred from UVC0 over R0 

to R3 to UVC3 it is possible to compare sent data at UVC0 

with received data at UVC3. In case a UVC receives data, the 
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compare function inside VDATA is used to ensure that the 

packet was transferred correctly. PTRACK objects capture the 

performance properties of packets. Because these properties are 

tracked at every output, it is required to instantiate these 

module four times. The properties of the router are captured by 

the RTRACK objects, which have to be instantiated for every 

router separately. In case the topology changes, it is possible to 

add or remove the required amount of tracking modules. 

IV. STIMULI GENERATION 

As described in the previous chapter, UVCs are responsible 

for generating and applying data that is transferred over the 

network. This generation and randomization of data must be 

controlled in a way that it behaves as close as possible to the 

PUs in the real system. Additional, randomization control must 

be exchangeable for reusability and the application of different 

tests during simulation. 

Fig. 4. shows the generation flow of “SpW packets” from 

the highest level down to the DUV. The “PU traffic reference” 

provides additional information about the expected traffic 

behavior generated by the PUs in the real system, e.g.: 

 

 Distribution of different packet lengths 

 Distribution of logical addresses 

 Content of payload 

 Transfer speed 

 

However, this information is provided in plain text by people 

that are responsible for the PUs and without the requirement of 

having knowledge about SystemVerilog or the test 

environment. To refine the information for the randomization 

process of the “SpW packet”, a constraint file (specific 

constraints) is defined where the high level constraints are 

defined in SystemVerilog by the verification engineer. The 

“specific constraints” influence the randomization every time 

the Sequencer is requesting “SpW packets” by accessing 

“specific sequence”. “specific sequence” is derived from “base 

sequence” and will restrict the “base constraints” in a way how 

it is required for a specific test. If, e.g., “base sequence” creates 

“SpW packet” with payload lengths between 1 to 1000 bytes, a 

“specific sequence” could be created with allowed payload 

lengths between 500 to 600 bytes. Sequences can be seen as 

containers where packets can be created and randomized 

depending on defined constraints. If different behavior between 

tests and simulation runs is required, it is often sufficient to 

exchange only constraint files instead of changing the code of 

the test environment. 

 

 

Fig. 4. Stimulus generation flow 

 

Whether a packet needs to be generated depends on the 

Driver. If the Driver has applied previously requested packet 

content completely to the DUV, it will request a new one until 

the maximum amount of executed packets is reached. If the 

Drivers of all UVCs have finished the packet application, the 

simulation stops after a predefined drain time. This time is 

required to let the DUV work until the last packets are 

processed. 

The Monitor passes back the packets to the SCB 

(Scoreboard). Packets could be sent from drivers to scoreboard 

directly but this is not recommended because the UVC can also 

act in a passive way. In that case the driving part of the UVC is 

deactivated and replaced by, e.g., real HDL designs. But the 

monitoring of the DUV interface shall still be in place for 

checks and coverage purposes independent of the Driver 

activity. This replacement would happen, for instance, if we 

would decide to use a HDL description of our PUs to create the 

data traffic for the routers. This kind of replacement will take 

place every time HDL subsystems are integrated to a bigger 

system. Once connected they will exchange data over 

interfaces that were previously connected to UVCs during 

separate subsystem tests. Unfortunately, this flexibility is 

associated with additional effort since the monitor must 

reassemble packets. 

The “SpW packet” whose content finally drives the DUV is 

a class-based object that contains all the packet information 

like addresses, payload content, end of packet marker etc. but 

also additional information like delays, packet drop 

probabilities or system time information, which is important 

for the performance analysis described in the following 

chapter. 

V. PROPERTIES AND PERFORMANCE TRACKING 

If the UVCs are submitting data to the network according to 

the behavior of the real PUs, it is necessary to check that the 

network is able to handle the traffic. To identify suboptimal 
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behavior and optimization possibilities the following properties 

are tracked during the simulation: 

  

Packet Latency. It provides the transition time of the first byte 

of each packet from insertions into the network and reception 

at the destination. Only the first byte is considered to keep the 

latency determination independent from packet size. 

 

Packet Jitter. The jitter is defined as the difference between 

the maximum and the minimum transition time of packets. As 

for the packet latency, only the first byte of a packet is 

considered for the measurement. 

 

RX Router Buffer Full. If data paths through the network are 

saturated, receiving (RX) buffers become full. Either this can 

be caused by a UVC that provides too much data for a specific 

destination or too many packets are transferred over the same 

data path.  

 

TX Router Buffer Empty. To optimize the traffic load of the 

network it is useful to identify buffers and links that are rarely 

or never used. If no or little traffic is sent over an output port of 

a router, this can be derived from the status of the TX buffers. 

 

Router Closed Packet. The router has the option to close 

packets by EEP (Error End Of Packet) in two cases: 

 

1. A connection time between input and output exceeds 

a predefined threshold. 

2. A maximum amount of packet bytes during transfer 

between input and output was exceeded. 

 

All these attributes are monitored and tracked during the 

whole simulation by the PTRACK and RTRACK modules 

shown in Fig. 2. The PTRACK module is responsible for 

tracking packet latency and the packet jitter. This module does 

not need to be connected to signals inside the DUV. Instead, it 

gets data captured by the Monitor inside the UVC. How the 

PTRACK tracking is performed is described in the following. 

Every time an arbitrary UVC and its related Driver insert a 

packet in the network, the Monitor reassembles a copy of this 

packet and sends it to the SCB (Scoreboard). Depending on the 

packet type, the SCB decides whether it is stored or not. In 

general, only RMAP (Remote Memory Access Protocol) 

configuration packets are not stored. In addition to the packet 

content, two attributes are stored: 

  

 System time related to the moment the first byte was 

inserted into the network 

 Source UVC 

 

The packet plus additional attributes is stored until the packet is 

received at the destination UVC. Now the related Monitor 

captures and reassembles the received packet. If the received 

packet is not a reply related to an RMAP configuration, the 

Monitor triggers the tracking function inside the SCB to pass 

the captured packet further to the PTRACK module. 

The PTRACK module internally creates a dynamic data 

structure to store all required time information. This requires 

extracting the previous stored expected packet. As mentioned 

before, the expected packet was extended among other values 

by its network entry time. We know now when the packet 

entered and left the network. Now all information is available 

to create or extend the structure with the following attributes:  

 

 Longest transition time 

 Shortest transition time 

 Average transition time 

 Jitter 

 Logical address 

 Source UVC 

 

All transition times and jitter values are related to a specific 

data path. For each path, a separate tracking needs to be 

performed. The example in Fig. 5 shows that UVC 3 can be 

reached by use of three logical addresses: 56, 67 and 38. With 

R0 as source, three data paths are possible to reach R3: 

 

1. R0 to R1 to R3 

2. R0 to R3 

3. R0 to R2 to R3 

 

In this example the PTRACK module for UVC 3 would create 

three entries, one for each data path. Distinguishable by source 

UVC number and Logical address. 

 

 

Fig. 5. Logical path example 

At the end of the simulation, all tracked entries are printed at 

the simulator console.  

The example applied logical addressing. If path addressing 

is used, the data path of the packet is not implicitly given by 

two values (Source UVC and logical address) as it is the case 

for logical addressing. Path address handling is currently not 

supported by the performance-tracking framework. This would 

require the implementation of an algorithm that can reconstruct 

the path of a packet after reception. 

In case of exceptional high packet latencies, congestion or 

other irregularities, it should be possible to find the cause by 

observing the router attributes. The RTRACK modules track 

them. These modules are connected through interfaces to 

access all router signals no matter where or how deep they are 

located inside the HDL design. This kind of connection allows 

to add tracking functionalities if required. One just have to add 

the signals that should be observed and extend the RTRACK 

class. 
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The RTRACK modules start observing with the beginning 

of a simulation. For the buffer signals RX full and TX empty 

the following attributes are tracked: 

 

 Trigger amount 

 Longest time active 

 Shortest time active 

 Average time active 

 

Every time a buffer signal is triggered, the related tracking 

structure updates their values. Note that capturing is performed 

for every router input and output port separately inside each 

RTRACK module. The information how often a router closed a 

connection with an EEP is only tracked by counting the 

occurrences. Because the amount of available buffers per 

router is known during the whole simulation, it is not required 

to extend the tracking structure in a dynamic way, as it is the 

case for the PTRACK module. 

 

VI. CONCLUSIONS 

This paper presented an approach to evaluate the network 

performance of the OBC-NG prototype depending on the 

network configuration and constraints that model the incoming 

traffic into the network. We gave an overview of the involved 

system components beginning with the DUV and finishing 

with the performance/attribute tracking that is embedded into 

the test environment. The full access to all signals inside the 

DUV is a huge advantage compared to the real hardware.  

The presented approach can help to evaluate and optimize 

different network configurations and topologies for a given 

application.  

However, we are aware of the fact that the results strongly 

depend on the quality of the input traffic model. To determine 

sufficient traffic models is subject of future research. In 

addition, the current implementation of the performance 

tracking does not fulfill the requirements of credible statistics 

[6]. We do not perform, for instance, confidence determination 

yet. This requires a much higher effort in terms of memory and 

arithmetic functions in such a hardware-related environment. 

Unfortunately, it is not possible to provide test results in this 

paper. It is because the DUV network configuration and the 

traffic model are not finalized so far. Therefore, the application 

of the test environment to the real system is planned as the next 

work. 
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To support the validation and debugging of complete 

SpaceWire systems, STAR-Dundee Ltd have developed a 

SpaceWire Recorder. Using STAR-Dundee SpaceWire 

technology and the latest solid state data storage technology, the 

SpaceWire Recorder is capable of unobtrusively recording traffic 

on up to four links in both directions at a maximum aggregate 

data rate of 600Mbit/s. The maximum amount of data that can be 

recorded is limited only by the size of the solid state disks used. A 

Traffic Viewer software application provides a simple means of 

operating the recorder, as well as displaying and managing the 

large volume of SpaceWire traffic that can be recorded. 

Index Terms— Relevant indexing terms: SpaceWire, 

Networking, Spacecraft Electronics, Recorder 

I. INTRODUCTION 

Viewing SpaceWire traffic on a complete SpaceWire 

system for validation and debugging purposes can be 

challenging. One solution may be to use multiple SpaceWire 

Link Analyser Mk2s, each connected on a different link and 

each configured to capture data at the same time via external 

triggers. 

A SpaceWire Link Analyser Mk2 will unobtrusively 

capture very detailed information regarding SpaceWire traffic 

on a single SpaceWire link. The timing information of every 

SpaceWire character is captured along with a trace of the data 

and strobe signals. The amount of data captured however is 

limited by the Link Analyser memory size, the units are not 

time synchronized and each Link Analyser will have a separate 

instance of software running, making it very difficult to 

interpret the operation of the SpaceWire system. 

To resolve this problem STAR-Dundee has developed a 

SpaceWire Recorder. The SpaceWire Recorder is a standalone 

unit capable of recording SpaceWire traffic on multiple links 

unobtrusively to a hard disk. It is supplied with software that 

controls recording and displays the recorded traffic in a single 

application, allowing data on all links to be viewed 

simultaneously. The recording size is limited only by the hard 

disk size meaning large volumes of SpaceWire traffic can be 

recorded over long periods of time. Entire recordings can be 

viewed in software as opposed to only part of the recording. 

II. HARDWARE 

The SpaceWire Recorder is a standalone PC. It consists of a 

CompactPCI rack containing a power supply, one solid state 

disk (SSD) carrier, a processor board and the STAR-Dundee 

SpaceWire Recorder cPCI card. 

 

Fig. 1.  SpaceWire Recorder 
By default the SpaceWire Recorder comes with two 480GB 

solid state disks. One disk is responsible for storing SpaceWire 

traffic recordings and the other holds the system files such as 

the operating system. The recordings disk is held within a SSD 

carrier providing easy access. The system files disk is attached 

directly to the processor board. 

A powerful processor board accompanies the SpaceWire 

Recorder with an Intel Core i7 and 8GB RAM. Amongst the 

I/O there are two DisplayPort ports and a VGA port allowing 

three monitors to be used, plus gigabit Ethernet making remote 

connection possible. A rear transition module accompanies the 

processor board. This allows access to I/O from the back of the 

system. 

III. SPACEWIRE RECORDER CPCI CARD 

STAR-Dundee have developed a cPCI card capable of 

many different configurations. The SpaceWire Recorder is one 

of the first products to make use of this. The SpaceWire 

Recorder cPCI card has eight SpaceWire interfaces used to 
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unobtrusively record SpaceWire traffic in both directions on 

four links. Memory on-board the SpaceWire Recorder cPCI 

card allows the traffic to be captured and spooled very quickly 

to disk. Four external triggers allow the recorder to integrate 

with external equipment. Each external trigger can be 

configured as either an input or output trigger. These allow the 

user to control recording in response to an input signal or 

generate an output signal when an event of interest occurs. A 

dedicated trigger button allows the user to force a trigger 

providing further control over recording. The status of the 

SpaceWire interfaces, external triggers and trigger button are 

indicated by LEDs. 

 

Fig. 2.  SpaceWire Recorder cPCI Card 

IV. SOFTWARE 

The SpaceWire Recorder comes with all the necessary 

software pre-installed. This consists of Windows Embedded 

Standard 7, the board support packages required by the 

processor board, STAR-System (including the STAR-System 

PCI Driver) and the Traffic Viewer GUI software. 

 

Fig. 1.  Software Layers 

Windows Embedded Standard 7 delivers the performance, 

reliability and flexibility of Windows 7 in a form specific to the 

requirements of the SpaceWire Recorder. 

Developed by STAR-Dundee, STAR-System is a high 

performance suite of software designed to work with all future 

and a range of current STAR-Dundee devices. STAR-System 

includes numerous modules used by the SpaceWire Recorder, 

including the STAR-System PCI Driver. The fast data rates at 

which the SpaceWire Recorder can record are partly 

achievable thanks to the performance of the STAR-System PCI 

Driver. 

V. TRAFFIC VIEWER 

The Traffic Viewer is a GUI application that allows the 

user to control the SpaceWire Recorder and display and 

manage recordings. 

The user can configure the recording directory, the 

maximum recording size and the maximum recording time. 

Start and stop buttons control recording. Once a recording is 

complete it is displayed. Each column in the view represents 

the SpaceWire traffic in one direction of a SpaceWire link. The 

left most column shows the recording time. 

 

Fig. 2.  Traffic Viewer 

10ms of recorded SpaceWire traffic is loaded into the 

display at any one time. The user can specify the timing 

resolution of the display: 1us, 10us, 100us and 1ms. To 

seamlessly load another section of the recording, the time slider 

at the top of the view is used. Left and right of the time slider is 

the recording start and end time. To quickly navigate the 

recorded traffic the user can specify a specific time relative to 

the start of the recording or use the built-in search capabilities. 

Users can search for a data pattern, a time-code value, a 

specific error, the start of a packet, an EOP or an EEP. 

Double clicking a packet opens a dialog that shows the 

packet in greater detail. It shows the time at which it was 

captured, the packet duration and the packet data. 
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Fig. 3.  Packet Dialog 

VI. CAPABILITIES 

Using the SpaceWire Recorder SpaceWire Traffic can be 

recorded at high speed on many links over a long period of 

time. The maximum amount of data that can be recorded is 

only limited by the size of the solid state disks in use. 

The SpaceWire Recorder records data, time-codes and link 

errors. Using the Traffic Viewer application, recording can 

start and stop at the click of a button. Alternatively a recording 

can automatically stop when the recording disk is full, a 

specified amount of data has been recorded to disk or a pre-

defined period of time has elapsed since the recording was 

started. 

Recorded SpaceWire traffic is displayed in the Traffic 

Viewer. Search capabilities make it easy to navigate large 

recordings and identify the SpaceWire traffic of most interest. 

Recordings are automatically saved to be viewed at a later date.  

VII. PERFORMANCE 

To measure the recording performance of the SpaceWire 

Recorder a SpaceWire EGSE was used to generate data in both 

directions of all four links. The SpaceWire EGSE is a 

SpaceWire equipment emulator capable of full real-time 

performance. Once configured using a unique SpaceWire 

specific scripting language, it operates independent of 

software, capable of saturating a SpaceWire link with data at a 

200Mbit/s link speed, i.e. no Nulls between data characters. 

 

 

Fig. 4.  Performance Test Setup 
The SpaceWire EGSE was used to generate packets of a 

specific size consisting of random data at a fixed link speed 

over a prolonged period whilst recording was enabled. If no 

hardware buffer overflow was detected, the test was started 

again with an increased link speed. This incremental process 

was performed until a hardware buffer overflow was detected 

signifying the maximum recording speed was exceeded. 

Internal statistics monitoring within the SpaceWire Recorder 

software provided detailed information regarding the recording 

data rates achieved and the usage of the SpaceWire Recorder 

spooling buffers. 

The SpaceWire Recorder is capable of recording to disk at 

an aggregate data rate of 600Mbit/s. However the speed at 

which it can record to disk differs depending on the size of the 

recorded SpaceWire packets. The table below plots the 

aggregate recording data rate achieved for different packet 

sizes. 

 

Fig. 5.  Packet Size vs Aggregate Recording Data Rate 

The best performance achieved was an aggregate recording 

data rate of 664.78Mbit/s whilst recording continuous 2048 

byte packets. The worst performance achieved was a data rate 

of 11.24Mbit/s whilst recording continuous 1 byte packets 

which corresponds to a packet rate of 1.4M packets/s. The 

aggregate recording data rate drops considerably when 

recording continuous packets of size less than 64 bytes. The 
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main reason for this is the recording time-stamp overhead 

associated with each packet. 

If the rate at which data is transmitted from the SpaceWire 

devices connected to the SpaceWire Recorder exceeds the rate 

at which it can be recorded then a capture overflow will occur. 

If this happens, the Traffic Viewer application will stop 

recording automatically and alert the user.  

VIII. FUTURE WORK 

The SpaceWire Recorder hardware has capabilities 

currently not fully implemented in software. The Traffic 

Viewer application currently does not support: 

 Triggering: start recording when an event of interest 

occurs e.g. link error 

 Filtering: disable or enable recording of time-codes 

and specific errors (currently enabled by default) 

 Link statistics: view the average bit rate of each bi-

directional link 

New views of recorded SpaceWire traffic will also be 

added to the Traffic Viewer. The SpaceWire Recorder is 

currently being used to help validate the SpaceWire Plug and 

Play (PnP) protocol. Feedback from this and other users will be 

used to improve existing features and guide the development of 

new features. 

IX. CONCLUSION 

The SpaceWire Recorder is an essential tool for the 

validation and debugging of an entire SpaceWire network. It 

serves a different purpose from a SpaceWire Link Analyser 

Mk2, which is designed to capture a much smaller, yet more 

detailed, amount of SpaceWire traffic on a single SpaceWire 

link. 

The SpaceWire Recorder unit is built around a high 

performance SpaceWire Recorder cPCI card complimented by 

solid state disks and a powerful processor board. Combined 

with the STAR-System PCI Driver and the Traffic Viewer 

software application, the SpaceWire Recorder has impressive 

capabilities and delivers exceptional recording performance. 

Large quantities of SpaceWire traffic over multiple links can 

be recorded for long periods of time. The maximum aggregate 

recording data rate achieved whilst testing performance was 

664.78Mbit/s with 2048 byte packets. Recorded SpaceWire 

traffic can be viewed and managed using the Traffic Viewer 

application. 
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Abstract—The original STAR-Dundee SpaceWire-USB Brick 

has provided a simple yet powerful interface to SpaceWire 

networks for a number of years.  STAR-Dundee’s SpaceWire 

Brick Mk3 provides all the features of the original Brick, but 

with better performance, better software, better documentation 

and the same high quality support.  It will replace the Brick with 

a product which can be used to very easily perform numerous 

SpaceWire test and development activities, and at very high 

speeds. 

Index Terms—SpaceWire, USB, Brick, Interface, Router, 

STAR-Dundee, Spacecraft Test and Development Equipment, 

STAR-System. 

I. INTRODUCTION 

The original SpaceWire-USB Brick [1] has been serving 

the SpaceWire community for over ten years.  It is an excellent 

learning tool for those new to SpaceWire, but it is also used by 

more experienced engineers to develop and test new 

SpaceWire devices and networks. 

The software provided with the Brick was developed to 

provide the highest possible throughput, and is capable of 

transmitting and receiving concurrently from/to a PC over a 

USB 2.0 cable at the full 160 Mbits/s data rate achievable on a 

200 Mbits/s SpaceWire link. 

The Brick and its successor the Brick Mk2 [2] do have their 

limitations, however.  Both devices are restricted by the 

throughput constraints of USB 2.0, which means that a 

maximum combined throughput of around 360 Mbits/s is 

achievable. 

This paper introduces the replacement for these devices – 

the Brick Mk3.  This device will be released later this year 

(2014) and includes all the capabilities of the Brick Mk2, plus a 

number of improvements.  It is connected to the PC using USB 

3.0, which offers greatly improved performance when 

compared to USB 2.0.  The paper describes the advantages of 

using USB 3.0 for SpaceWire test and development equipment, 

introduces the new features in the Brick Mk3 hardware and 

software, and shows some typical scenarios in which the Brick 

Mk3 can be used.  It concludes with a summary of the benefits 

of using the Brick Mk3 for SpaceWire test and development. 

II. BUS COMPARISON 

The buses most commonly used to connect additional 

devices to a PC or rack are PCI and related technologies, and 

USB.  Devices can also be connected over a TCP/IP network, 

e.g. using Ethernet or wireless.  Each bus offers different 

capabilities, with advantages and disadvantages of each.  For 

this reason STAR-Dundee offers PCI [3], PCI Express (PCIe) 

[4], CompactPCI (cPCI) [5] and USB [2] [6] SpaceWire 

interface and router devices. 

Previous STAR-Dundee USB devices have included a USB 

2.0 connection [7].  A new version of USB, USB 3.0 [8], was 

released in 2008, offering higher data rates than the previous 

version.  As this version of USB has gained market share and is 

now provided in most new PCs, STAR-Dundee has released 

the new Brick Mk3 with support for USB 3.0. 

To highlight the benefits of using USB 3.0 in the Brick 

Mk3, the remainder of this section compares each of the buses 

mentioned above, concentrating on the advantages of USB 3.0 

for SpaceWire test and development. 

A. Throughput 

Both PCI and cPCI offer full-duplex data signalling rates of 

approximately 1 Gbits/s [9], while PCIe provides close to 2 

Gbits/s per lane [10].  USB 2.0 is slower in comparison, 

providing 480 Mbits/s, half-duplex [7].  One of the advantages 

of USB 3.0 is that it provides full-duplex data signalling at 

rates of up to 5 Gbits/s [8]. 

Although it is not possible to achieve user data rates at the 

full signalling rates of each of these buses due to protocol 

overheads, STAR-Dundee software and hardware is designed 

to obtain rates as close as possible to the maximum achievable.  

The overheads of the USB protocol are slightly higher than 

each of the PCI protocols, which have very small overheads.  

However, the high data signalling rates of USB 3.0 means that 

this is unlikely to have an effect on the Brick Mk3’s 

performance.  Initial investigations with the Brick Mk3 suggest 

that the device will be more than capable of ensuring both 

SpaceWire links on the device can concurrently transmit and 

receive packets at the maximum rate possible. 
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In comparison, Gigabit Ethernet devices offer a data 

signalling rate of 1 Gbits/s [11].  However, TCP/IP devices 

have greater overheads than the other buses, due to the use of 

the TCP/IP protocol suite in addition to the bus’s own protocol 

overheads, e.g. that of Ethernet in the case of Gigabit Ethernet. 

B. Latency 

Latency values of each of the buses are difficult to 

compare, due to the different natures of each bus, but both PCI 

and PCI Express provide the best latency of the buses being 

discussed.  USB 2.0 latency is not as good as that of the PCI 

buses.  However, one of the improvements to USB 3.0 was to 

the latency that could be achieved, particularly when large 

amounts of data are transferred.  Initial investigations with the 

Brick Mk3 suggest latency is slightly better when transmitting 

and receiving SpaceWire packets over USB 3.0 in comparison 

to USB 2.0. 

TCP/IP devices offer much poorer latency than the PCI and 

USB buses.  Latency of TCP/IP devices will also degrade with 

each additional hop across the network that is required to reach 

the device. 

C. Characteristics 

Each of the buses considered provide advantages in 

different circumstances.  For example, cPCI devices can be 

used in a rack system, while TCP/IP devices can be accessed 

from another location on the network. 

One advantage of USB is that it very easy to connect and 

disconnect devices to/from a PC.  Unlike the PCI buses, USB 

devices can be connected to laptops, in addition to desktop and 

rack PCs, and can be added or removed while the operating 

system is running.  Although not all PCs support USB 3.0 as 

yet, the Brick Mk3 can also be used in older USB 2.0 ports. 

III. HARDWARE FEATURES 

The Brick Mk3 hardware is an evolution of previous 

STAR-Dundee USB devices.  It includes all the new features 

added to the Brick Mk2 when it replaced the original 

SpaceWire USB Brick.  These include link speed and state 

change event signalling, the ability to inject errors on the link 

and support for the STAR-System software suite (see section 

IV). 

 

 

Fig. 1. SpaceWire Brick Mk3 

The Brick Mk2 includes an improved interface mode when 

compared to the original Brick, with independent channels for 

data and configuration.  The Brick Mk3 improves upon this 

with the ability to operate as a true interface, with independent 

channels for each link and a further channel for device 

configuration.  This allows the device to be configured while 

simultaneously transmitting and receiving on both links.  The 

Brick Mk3 can also be used in router mode, as with other 

STAR-Dundee interface devices.  In this mode it offers three 

external ports which are transported over the USB port in 

parallel. 

Another improvement in the Brick Mk3 is in the options 

available for setting the link speed.  Both the Brick Mk2 and 

the Brick Mk3 allow the link speed to be set by specifying 

multipliers and divisors, with the divisor being any value in a 

large range.  The Brick Mk2 limited the multiplier to be from a 

small list of values, but the Brick Mk3 uses the same method 

provided by the SpaceWire PCIe of allowing the multiplier to 

be any value in a large range. 

Work has also been performed to improve the physical 

characteristics of the Brick Mk3.  The box which houses the 

Brick Mk3 is very different from previous iterations of the 

Brick, in a blue metal case with the device type clearly visible 

on the top (see Fig. 1).  The SpaceWire connectors are 

mounted side by side, rather than on top of one another.  This 

makes it much easier to insert and remove SpaceWire cables, 

and to view the LEDs above each port. 

The Brick Mk3 features hardware designed to prevent any 

single point of failure causing damage to equipment interfaced 

to the SpaceWire or Trigger ports.  A FMECA report is 

available on request which provides further details on this 

protection. 

As with previous iterations of the Brick, the Brick Mk3 is 

USB powered, with only a single USB cable required to 

connect the device to a PC to provide power and a data 

connection.  Although the Brick Mk3 takes advantage of the 

benefits of USB 3.0, it can also be used in older USB 2.0 ports, 

with only the throughput and latency that can be achieved 

affected.  When used in a USB 2.0 port, performance is similar 

to that of the Brick Mk2. 

IV. SOFTWARE SUPPORT 

Software support for the Brick Mk3 hardware is provided 

by STAR-Dundee’s software suite, STAR-System.  This suite 

can be used with all of STAR-Dundee’s recent and planned 

future interface and router devices, including the SpaceWire 

Brick Mk2 [2], Router Mk2S [6], PCIe [4], PCI Mk2 [3] and 

cPCI Mk2 [5]. 

STAR-System consists of a number of layers.  At the 

bottom are the device drivers for communicating with the 

hardware.  STAR-System includes Windows and Linux drivers 

for communicating with STAR-Dundee USB devices, and 

these were updated to add support for the Brick Mk3.   

Above the drivers is the STAR-System core and the APIs 

for interacting with the devices.  These are designed to be 

generic, and not specific to any device, so only some very 
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minor changes to the core’s internals were required to support 

the Brick Mk3. 

At the top of the stack are the user applications.  STAR-

System includes both command-line test applications and 

Graphical User Interface (GUI) applications, covering many 

typical ways in which a SpaceWire interface or router device is 

used.  GUI applications are provided to: 

 Type in the bytes of packets and have these 

transmitted 

 Receive packets and display their bytes 

 Specify complex packet formats and have these 

transmitted at high rates 

 Receive packets at high rates and compare their 

format to specified complex packet formats 

 Configure the properties of devices, including 

their routing tables 

 Inject errors on a link 

Again, these applications are all designed to be generic and 

to work with all device types.  Only some minor changes were 

required to the Device Configuration application to support the 

features specific to the Brick Mk3.  The other applications 

needed no changes to work with the Brick Mk3. 

The STAR-System drivers, APIs and applications are all 

designed to provide very high data rates and low latency.  

When tested with the Brick Mk3 in internal loopback mode 

(i.e. not accessing SpaceWire), STAR-System applications 

were capable of transmitting and receiving at rates of 

approximately 1 Gbit/s, i.e. 2 Gbits of data crossed the USB 

link every second. 

The release of the Brick Mk3 will coincide with the release 

of version 3.0 of STAR-System.  This will include a number of 

improvements from the last release, including: 

 A new Time-code GUI application for 

transmitting and receiving time-codes and 

configuring device settings related to time-codes 

 Numerous improvements to the existing GUI 

applications 

 The SpaceWire CUBA Software, a command-line 

application previously provided with the original 

Brick for transmitting and receiving RMAP 

commands and SpaceWire packets 

 Context sensitive help in all GUI applications 

 More detailed documentation 

The main change to STAR-System version 3.0, however, is in 

the internal core of the software.  A great deal of work has been 

done on improving the performance of the software stack, 

reducing CPU usage and latency, and increasing throughput for 

all supported STAR-System devices.  These were areas in 

which STAR-System already excelled, but improvements were 

identified which would be beneficial on real-time operating 

systems and in low resource environments.  A pleasant side-

effect of making these changes is that they are also beneficial 

when using STAR-System on standard PCs running Windows 

or Linux. 

V. USING THE BRICK MK3 

The sections above have described the individual 

improvements to the Brick Mk3 and some of the features 

provided.  This section describes how these features can be 

used in typical SpaceWire test and development activities. 

A. Checking Data Received From an Instrument 

The Brick Mk3 is capable of receiving packets at very high 

rates.  When testing a SpaceWire instrument, the Brick Mk3 

can be combined with the STAR-System Sink application to 

not only receive data from the instrument at high rates, but also 

check that the packets are in the correct format, and record the 

instrument data to file. 

A SpaceWire camera is likely to transmit packets which 

contain more fields than just the image data.  There is likely to 

be address information at the start of the packet and there may 

be a checksum or CRC at the end.  The STAR-System Sink 

application allows you to specify the format of the packets that 

are expected to be received.  It can then check each field in the 

received packets is in the correct format, and write individual 

fields, or the full packet, to file. 

Fig. 2 shows an example packet format for a camera 

configured using the Sink’s Packet Format dialog.  The Sink 

expects to receive a single address byte of 0xfe, followed by a 

16-bit sequence number.  The Sink will check that the address 

byte is correct and the sequence number increments in each 

packet.  After the sequence number is the image data which is 

expected to be 1 MByte.  As there’s no way to know what 

image the camera will be sending, the content of this field is 

not checked. 

 

 

Fig. 2. Sink Packet Format 

 

274



Finally the packet ends with a CRC.  The properties of the 

CRC are shown in the Packet Format dialog screenshot.  The 

CRC being used is the RMAP CRC, although a number of 

different CRCs and checksums are supported.  The CRC in this 

example covers the sequence number and image, although it 

could be set to cover any of the fields in the packet.  The Sink 

will check the CRC is correct in each received packet. 

A separate dialog in the Sink application allows packets, or 

individual fields in packets, to be recorded to file.  The format 

in which each packet or field is written to file is then specified 

in the dialog shown in Fig. 3.  Each of the bytes in the field can 

be written to the file numerically as text, with spaces or another 

separator between each value.  The field in each packet can 

also be written to one large file.  For the camera’s images in the 

screenshot, we have chosen to write the images to file as binary 

data, with a new file used for each image.  Assuming these files 

are in an appropriate format, it should then be possible to open 

the files received from the camera and view them in a photo 

viewer. 

 

 

Fig. 3. Sink Recording to File 

 

The Sink application provides many other features, and has 

a partner application, the Source, which can be used to transmit 

packets.  It uses the same packet formats as the Sink, so the 

camera packet format specified here can also be used in the 

Source to simulate the camera. 

B. Configuring a SpW-10X (AT7910E) 

The Device Configuration application can be used to 

configure STAR-System devices such as the Brick Mk3, 

providing an interface for setting link speeds, routing tables 

and viewing error status information.  The application can also 

be used to configure routing devices over a SpaceWire 

network, using a device such as the Brick Mk3 to communicate 

with the devices on the network.  Supported routing devices 

include the AT7910E, the ESA SpaceWire Router [12]. 

When working with a spacecraft network containing 

AT7910E devices, the Brick Mk3 can be connected to the 

network and used to check the status of these devices, as shown 

in Fig. 4.  In this screenshot, the Device Properties of an 

AT7910E are on display, showing the general properties of the 

device, and providing the option to configure settings which 

affect the entire device.  Tabs are provided for each port, 

including the configuration, SpaceWire and external ports, 

showing the current error status, and allowing the links to be 

started, stopped, etc.  The final tab provides the ability to 

configure each routing table entry of the device. 

 

 

Fig. 4. Device Configuration of an AT7910E via a Brick Mk3 

 

C. Acting as a Time-code Master 

When experimenting with time-codes, e.g. for SpaceWire-

D development, the Brick Mk3 can very easily be enabled as a 

time-code master.  The STAR-System Time-code application 

includes a tab for enabling the device as a time-code master, 

see Fig. 5.  The frequency at which time-codes are to be 

generated can be entered in hertz, and the Brick Mk3 will be 

enabled as a time-code master once the Enable button is 

clicked. 

 

 

Fig. 5. Enabling a Brick Mk3 as a Time-code Master 
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Fig. 6. Receiving Time-codes With a Brick Mk3 

 

To see the time-codes which are being generated, or which 

are being received from another time-code master on the 

network, the Time-code application includes a tab for receiving 

time-codes, shown in Fig. 6.  This shows each time-code’s 

value as it received on a clock, as well as displaying the value 

numerically along with the values of the time-code flags. 

The Time-code application also includes tabs for 

transmitting individual time-codes and for specifying which 

ports time-codes should be routed out of. 

VI. SUMMARY 

The SpaceWire Brick Mk3 is a powerful interface and 

router device, which offers the capability to transmit and 

receive at the maximum speed that can be achieved on a 200 

Mbits/s link, on two links concurrently while also configuring 

the device.  In other words it is capable of transmitting and 

receiving at 160 Mbits/s on both SpaceWire links, while also 

reading and writing registers on the device, giving a total 

combined data rate of greater than 640 Mbits/s.  It can also 

transmit and receive packets with latencies which are better 

than can be achieved with the SpaceWire Brick Mk2.  This is 

possible because of the improved throughput and latency 

provided by USB 3.0, and because of the inclusion of a true 

interface mode in the device. 

Combined with the comprehensive STAR-System software 

suite, the Brick Mk3 product can be used to perform many of 

the tasks required during SpaceWire test and development. 
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Abstract— In 2006, we developed SpaceWire platform named 

SpaceCube cooperation with JAXA and NEC. After the 

success of SpaceCube project, we developed number of 

SpaceWire products. Some examples of this innovation 

include several kind of the SpaceWire interface boards, 

SpaceWire router and SpaceCubeMK2. These developments 

included the support and cooperation of  JAXA, OSAKA 

University, Japan Space Systems and NEC. In this paper we 

describe architecture, functions and usage about our new 

products which are the SpaceWire-to-GigabitEther and the 

SpaceWire backplane. The equipment  used as verification for 

ASTRO-H of JAXA. 

 
Index Terms—Backplane 

I. INTRODUCTION  

The SpaceWire-to-GigabitEther is the bridge unit to 

convert between TCP/IP protocol and SpaceWire. This unit’s 

notable feature is high-speed, therefore this unit does not install 

software  such as OS. Rather, it is designed only as hardware 

by FPGA. The second feature of this unit is a lightweight and 

small size, so it is used a satellite component test . 

 

On the other hand, SpaceWire Backplane with the flexibility 

and scalability features  is developed by Osaka University and 

JAXA. We developed the SpaceWire Packet Recorder which 

adopted this backplane. This SpaceWire Packet Recorder is 

capable of testing SpaceWire network component, and 

recording large scale SpaceWire network system. 

 

This paper describe architecture and feature of the SpaceWire-

to-GigabitEther and the Packet Recorder. 

 

II. SPACEWIRE-TO-GIGABITETHER 

We developed the SpaceWire-to-GigabitEther unit which is 

the unit to convert SpaceWire and TCI/IP protocol. This unit 

has 4 SpaceWire ports (all port Max 200M bps) and the 4 ports 

total link rate is achieved at a theoretical maximum speed 

800Mbps.  

 The IP (hardware logic) which include  MAC, TCP stack 

on FPGA was also developed originally, so one of the future is 

flexibility to modify and version up this unit. 

 

 
Fig.1. SpaceWire-to-GigabitEther 

 
 

 

Ether 10/100/1000BASE x 1Port 

SpaceWire Number of Port:4Ports 

Link Speed:200MBps (Max) 

Link Status LED:4 led's 

FPGA Spartan6 

memory 128MB (DDR2 SDRAM) 

size 136mm  x 75mm  x 25,2mm 

power 5V/1.5A  (Typ.) 

 

     We experienced the SpaceWire-to-GigabitEther unit 

accentual transfer speeds using a port to 4 ports of Space Wire. 

We got almost logically full speed from this result.      
 

 
    Use a port          Use 2 ports        Use 3 ports         Use 4 ports 

Fig.2. SpaceWire transfer speed 

TABLE1 Specification 
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Fig.3.Block diagram 

 

This is the example to connect the SpaceWire-to-

GigabitEther unit to target board (The SpaceWire DIO2). It 

can send RMAP command using sample software on PC. It 

also sends RMAP command after generate RMAP header 

information and data to control target board via SpaceWire. 
The user can download sample software and develop its own 

application  using the  sample software source code  from  

Shimafuji Electric Inc. web page. 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. SPACEWIRE BACKPLANE 

The SpaceWire Traffic Generator / the SpaceWire Packet 

Recorder is consist of  MCH/SpaceWire Router board, SpW 

Traffic Generator board / SpW Packet Recorder board and 

backplane. There are 2 type of backplane, 6slot type which can 

hold 6 SpW Packet Recorder boards and 12 slots type. 
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Fig.7. 6 slot backplane topology  
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Fig.8. board configuration 

 

 

 

 

 

 

 

 

Fig.4. Connection example 
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Fig.6Sample software screen 

Fig.5. Connections 
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chassis micro-TCA 

PC interface Ether (10/100/1000BASE) 

x  1Port 

Number of  

SpaceWire 

monitor channel  

 

The SpaceWire Traffic Generator  

     6 slot : 1-24Ports 

   12 slot : 1-48Port 

The SpaceWire Packet Recorder 

     6 slot : 1-12 Ports 

   12 slot : 1-24Port 

(Link Speed: 200MBps (MAX)) 

Power AC100/200V 

 

 
Fig.8.  The SpaceWire backplane6 slots  shell Front View 

 

 
Fig.9.  The SpaceWire backplane 12 slots shell Front View 

 

MCH/ SpaceWire Router 

All SpaceWire links are connected to MCH which installed 

SpaceWire router. We have developed original MCH with 

28ports SpaceWire router. 

 

 

 

 

 

 

 

 

 

Fig.10.Mch/SpaceWire Router 
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Fig.11.Mch/SpaceWire Router configuration 

SpW PTraffic Generator 

The SpaceWire Traffic Generator transfer generated 

SpaceWire packets simultaneously, sequentially or continually. 

The generated SpW packet(s) will stored in RAM from 

backplane SpW ports, and send it out when received transmit 

signal. This SpaceWire Traffic Generator is using same 

hardware as The SpaceWire Packet Recorder  but FPGA IP. 

 

 
Fig.12.SpW Traffic Generator front view 
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Fig.13.SpW Traffic Generator block diagram 

 

 

SpW Packet Recorder 

The SpaceWire Packet Recorder  monitor the SpaceWire 

link interface. It store Spacewire packet in RAM via MDM 

connector at the front panel on board with timestamp and 

attribute information in accordance with the conditions which 

set by PC. A SpaceWire Packet Recorder board could record 2 

channel (4 ports) of SpaceWire links, and the buffer size is 

assigned  2 M bytes per port.   

When the monitoring SpaceWire packet meet the  trigger 

condition, it send notice to host. The method of monitoring,  

configure the trigger condition, monitor data on memory and 

time stamp can read or write to/from PC via MCH/SpaceWire 

Router. 

Fig.14.DATA format is describe data format to be stored in 

the memory and Fig.15.SpW Packet Recorder is front View of  

the SpaceWire Packet Recorder. 

  

- Format 1 

32bit data 

Time stamp Attribute data 

16bit                            8bit                 8bit  

- Format 2 (once / 64K bit) 

64bit data 

Time stamp Attribute data 

16bit                            8bit                  8bit  

Time stamp 

32bit 
Fig.14.DATA format 

 

TABLE2 back plane specification 
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Fig.15.SpW Packet Recorder front view 

 

SpW I/F

SpW I/F

SpW I/F

SpW I/F

RMAP I/F
Internal

configuration
Register

SpW Router

B
ack P

lane

SpaceWire 
200MHz

Port-1

Port-2

Port-3

Port-4

Port-0

RMAP I/F Port-5

Packet Monitor
ch1

Packet Monitor
ch2

Packet Monitor
Register

MCB I/F MCB I/F MCB I/F MCB I/F MCB I/F

MCB 

Port-1 Port-2 Port-3 Port-4 Port-5

DDR2-SDRAM

MDM

MDM

MDM

MDM

FPGA

 
Fig.15. SpW Packet Recorder Block Diagram 

 

Packet Recorder function  

1)  Trigger much stop mode 

It can set various trigger on SpaceWire level and/or RMAP 

level. When much the data and trigger, stop monitor by 

configure setting on PC (start trigger, center trigger and end 

trigger).  Fig.11. Example of sampling screen. Below diagram 

shows the screen with the data and trigger. 

 

 
Fig.11. Example of sampling screen 

 

2)  Long term continues recording 

This mode can record SpaceWire packets on PC HDD until 

receiving stops command from PC. It could set to record or 

not the NULL, FCT, EOP/EEP, and data. 

Table 3 describes the relation of transfer rate and number of 

ports to record packets without losing the packets. 

 

 

 

 

 

 

 

 

 

Table 3 Number of record port and maximum transfer rate 

Number of 

Port 

Rate  

[bit/sec] 

Rate 

[Byte/sec] 

2 66 Mbps 16.5 MB/s 

4 33 Mbps 8.3 MB/s 

6 22 Mbps 5.5 MB/s 

8 16 Mbps 4.0 MB/s 

16 8 Mbps 2.0 MB/s 

24 5.5 Mbps 1.4 MB/s 

32 4 Mbps 1.0 MB/s 

40 3.3 Mbps 0.8 MB/s 

48 2.7 Mbps 0.4 MB/s 

 

Note 

1 : The maximum transfer rate might be different 

by PC specification 

2 : The data size of SpaceWire packet is quarter 

on this table, the size on the memory  

includes some information such as time stamp 

etc. 
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Abstract— To support customers using the National 

Instruments LabVIEW software development environment, 

STAR-Dundee Ltd. have developed LabVIEW libraries and 

drivers allowing for the rapid integration of STAR-Dundee 

SpaceWire interface devices into EGSE or test and verification 

applications. Customers familiar with STAR-Dundee’s STAR-

System API suite can use a wrapper library to control and 

configure any supported SpaceWire interface device under the 

Windows operating system. Using a native LabVIEW NI-VISA 

driver, users can interface to STAR-Dundee SpaceWire PCI and 

cPCI, boards on any platform supported by LabVIEW, including 

National Instruments real-time targets. 

In this paper, the LabVIEW solutions provided by STAR-

Dundee are described, including an overview of the APIs, and 

example usage demonstrating solutions to common tasks. 

Index Terms— SpaceWire, LabVIEW, NI-VISA, VISA 

I. INTRODUCTION 

The design of SpaceWire electronic check-out and ground 

support equipment can be both costly and time consuming. To 

help alleviate this problem, STAR-Dundee supplies a number 

of test and development devices that can be used to transmit 

and receive SpaceWire traffic and configure and monitor 

devices on a network. Users can write their own custom 

applications using a provided powerful API. 

National Instruments LabVIEW can be used to rapidly 

develop test and measurement systems with custom graphical 

user interfaces.  

Combining STAR-Dundee equipment with LabVIEW 

provides a means of rapidly developing SpaceWire test 

applications. 

II. LABVIEW 

LabVIEW is a software development environment provided 

by National Instruments Corporation [1]. The environment 

provides a visual dataflow programming language in which 

functions are laid out in a flow chart style, with ‘wires’ 

connecting the output of one node to the input of another. Data 

is operated on at each node immediately as it becomes 

available, and the compiler identifies segments of code that can 

run in parallel and automatically splits the application into 

multiple threads.  

LabVIEW offers the ability to work at a higher layer of 

abstraction than typical text based programming languages like 

C. For example, no manual memory allocation is required by 

the user, there are many included libraries hiding the 

implementation of File I/O and network connectivity, and 

graphical user interfaces are created in a drag and drop manner. 

As an example of the way LabVIEW allows rapid 

development, compare the volume of C code required to select 

a desired SpaceWire device and configure its link speed to the 

code required to perform the same operation with the STAR-

Dundee VISA Driver: (Fig. 1) 

 

 

Fig. 1. LabVIEW source compared to text based code. 
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III. STAR-DUNDEE LABVIEW SOLUTIONS 

STAR-Dundee provides two separate LabVIEW solutions: 

a LabVIEW wrapper around the existing STAR-System 

libraries (currently provided only for Windows based hosts), 

and a native LabVIEW NI-VISA driver that can be used on all 

targets supported by LabVIEW. 

A. STAR-System Wrapper 

STAR-System is the driver and API system provided with 

all new and future STAR-Dundee interface and router devices 

[2]. STAR-System provides high bandwidth and low latency 

packet transmission and reception, and a consistent API 

interface to numerous device types. Supported devices include 

the SpaceWire USB Brick Mk2 and Router Mk2s, and the PCI 

Mk2 and PCIe boards. 

The STAR-System LabVIEW wrapper library [3] provides 

access to every function exported by the STAR-System C API, 

and includes a number of example VIs (Virtual Instruments) 

that provide implementations of commonly performed 

SpaceWire tasks, such as setting up routing tables, sending and 

receiving time-codes and configuring link speed and status. 

Also provided are the RMAP packet library and example 

implementations of an RMAP Target and Initiator (shown in 

Fig. 2).  

Using the STAR-System wrapper allows LabVIEW 

applications to share data with other STAR-System processes 

running on the host. For example, device names set up using 

the STAR-System Device Configuration GUI can be viewed or 

modified with changes propagated across all running 

processes. This can help a user quickly identify and select a 

desired device to work with without looking up serial numbers. 

The complexity of the C API has been abstracted away 

where possible. No manual memory allocation is required to 

transmit and receive packets; this is handled by the wrapper 

with packet data buffers provided as LabVIEW byte arrays. 

LabVIEW events are used to implement device listeners and 

transfer completion events. 

Performance of the LabVIEW wrapper compares favorably 

with that of unwrapped STAR-System performance [4] with 

performance figures roughly the same when transmitting and 

receiving packets of length above around 60 bytes (Fig. 3). 

These figures are for a 200Mbit/s link speed, and show 

performance is close to the maximum theoretical data rate (160 

Mbits/s). 

 

 

Fig.3. STAR-System wrapper loopback performance. 

 

B. NI-VISA Driver 

National Instruments VISA (NI-VISA) provides a standard 

programming interface between hardware and development 

environments such as LabVIEW [5]. NI-VISA is supported 

across the National Instruments product line. 

The STAR-Dundee SpaceWire NI-VISA driver has been 

implemented as a native LabVIEW driver, providing support 

for the STAR-Dundee PCI family of devices. Software written 

to control these devices may be deployed on any hardware 

platform that supports cPCI/PCI and NI-VISA, including both 

Windows based hosts and LabVIEW Real-Time targets, 

without requiring modifications to source code. The software is 

provided as LabVIEW source with password protected block 

diagrams, allowing users to compile for any target. 

The driver allows STAR-Dundee SpaceWire PCI cards to 

be detected with and controlled by National Instruments’ MAX 

(Measurement and automation explorer) tool (Fig. 4). 

 

 

Fig. 2. RMAP Initiator example front panel. 

 

 

Fig. 4. MAX displaying chassis with cPCI cards 
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The driver has been designed to be intuitive to work with 

for LabVIEW users. For example, device access follows the 

familiar “Open, Perform Action, Close” architecture, with 

LabVIEW arrays used to pass SpaceWire data to transmit and 

receive functions. Figure 5 demonstrates the ease of use of this 

API. This example implements a software loopback device: 

packets are received on one port of the device, and are then 

looped back out of another. One could easily extend this 

example into a useful tool by inspecting the received traffic and 

permuting it in some way, perhaps by inserting or removing 

time codes, or injecting errors, before re-transmitting out the 

other port. 

 

 

 

 

 

 

Fig. 5. LabVIEW source code example showing a software loopback application. 
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IV. FUTURE WORK 

The STAR-System wrapper for LabVIEW supports all 

functionality provided by the current STAR-System libraries. 

This wrapper will be continuously upgraded to support any 

new functionality and released at the same time as new STAR-

System releases 

The NI-VISA driver is currently capable of transmitting 

and receiving SpaceWire packets, and configuring SpaceWire 

links. The RMAP packet library (already provided with STAR-

System) will be ported to native LabVIEW code allowing it to 

be used with the NI-VISA driver on LabVIEW RT targets. 

Error injection support will also be added, allowing a user to 

inject, for example, a parity error on a given byte in a data 

stream, along with all the device configuration operations 

offered by the STAR-System API. Currently only the cPCI/PCI 

Mk2 cards are supported by this driver, but a USB driver could 

be quickly developed by re-using the existing top level API. 

V. CONCLUSION 

LabVIEW is a software development platform that allows 

for rapid development of test and measurement applications. 

Users of STAR-Dundee SpaceWire equipment can leverage the 

features of LabVIEW by using ready-built SpaceWire wrapper 

libraries and drivers in order to reduce the time and cost of 

developing test and verification tools. 
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I. Abstract— This paper proposes an optional coding scheme 

for SpaceWire in lieu of the current Data Strobe scheme for three 

reasons.  Firstly, to provide a straightforward method for 

electrical isolation of the interface; secondly, to provide ability to 

reduce the mass and bend radius of the SpaceWire cable; and 

thirdly, to provide a means for a common physical layer over 

which multiple spacecraft onboard data link protocols could 

operate for a wide range of data rates.  The intent is to 

accomplish these goals without significant change to existing 

SpaceWire design investments. 

The ability to optionally use Manchester coding in place of the 

current Data Strobe coding provides the ability to DC balance 

signal transitions, unlike the SpaceWire Data Strobe coding; and 

therefore the ability to electrically isolate the interface without 

additional concerns. 

Additionally, because the Manchester coding scheme encodes 

the clock and data on the same signal, the number of wires in the 

existing SpaceWire cable could be reduced by 50%.  This 

reduction could be an important consideration for many users of 

SpaceWire as indicated by the effort currently underway by the 

SpaceWire working group to reduce the cable mass and bend 

radius by elimination of shields.  Reducing the signal count by 

half would provide even greater gains.  

It is proposed to restrict the data rate for the optional 

Manchester coding to a fixed data rate of 10 Megabits per second 

(Mbps) in order to simplify the necessary changes and still able to 

operate in existing radiation tolerant Field Programmable Gate 

Arrays (FPGAs).  Even with this constraint, 10 Mbps will satisfy 

many applications where SpaceWire is used.  These include 

command and control applications and instrumentation 

applications with moderate data rate requirements. 

For most NASA flight implementations, SpaceWire designs are 

implemented using rad-tolerant FPGAs and the desire to 

preserve the heritage design investment is important for cost and 

risk considerations.  The Manchester coding option can be 

accommodated in existing designs with only changes to the 

FPGA. 

II. Index Terms— SpaceWire, Signal level, Line encoding, 

Manchester encoding 

III. INTRODUCTION 

Developers of spacecraft using SpaceWire have expressed 

concern with the inability to electrically isolate the physical 

interface without possibility for voltage build-up of the signal, 

resulting in failure of the interface [1].  This is because the 

SpaceWire Data Strobe (DS) line coding does not have an 

equal distribution of ones and zeroes over time; i.e., it is not a 

Direct Current (DC) balanced signal. 

Another concern expressed for potential users of 

SpaceWire is the bend radius and the mass of the cable 

specified in the original SpaceWire standard [2], ECSS-E-50-

12A. Both of these concerns are being addressed by efforts by 

the SpaceWire working group, but with solutions that are very 

different than the original SpaceWire standard, which would 

impede incremental improvements to existing SpaceWire 

designs, necessary to preserve the cost of the investment. 

A simple solution to address these concerns for many 

applications under 10 Megabit per second (Mbps) would be to 

modify the line coding portion of SpaceWire design to encode 

both the clock and data on the same signal.  This would halve 

the number of wires for the interface and provide for a DC 

balanced line encoding so that electrical isolation could be 

achieved.  The resulting physical interface consisting of a 

differential pair in both directions may also be used with other 

DC balanced line coding schemes, such as 8b/10b, so that the 

interface may be shared with multi-gigabit per second (Gbps) 

applications or SpaceWire-Real Time (SpaceWire-RT), a new 

SpaceWire specification that uses 8b/10b line code.  For 

implementations that use a Field Programmable Gate Array 

(FPGA), this allows hardware to be independent of the data 

link protocol used. 

IV. ORIGINAL SPACEWIRE CODING SCHEME 

The original SpaceWire encoding scheme is Data Strobe 

(DS), which has several advantages over other encoding 

schemes because it is simple to implement and provides a 

variable data rate without negotiation between transmitter and 

receiver. 

A major advantage is that the DS decoding circuit is a 

trivial asynchronous implementation.  Because of the 
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asynchronous recovery of the DS received clock, the NASA 

SpaceWire implementation can decode a bit stream that is two 

and a half times faster than the decoder’s local oscillator.  This 

has been an important consideration for flight applications 

where an asymmetrical link is used, i.e., where data is received 

faster than it is transmitted.  Another scenario is where the 

SpaceWire implementation is in a one-time programmable 

FPGA that does not contain clock multiplier circuitry necessary 

for oversampling and clock resynchronization for high rate 

data. 

Another advantage of the DS encoding is that the frequency 

components of the two signals (Data and Strobe) are half the 

frequency of the transmitted bit rate, which results in lower 

Electro-Magnetic Interference (EMI) emissions when 

compared to traditional clock and data schemes.   

Lastly, unlike the traditional clock and data transmission 

schemes, DS encoding has a whole bit period of clock to data 

skew margin versus a half-bit period for the traditional clock 

and data scheme because the clock is recovered at the receiver 

by an exclusive OR (XOR) operation. 

These advantages have been important and will remain 

important considerations for spacecraft onboard network 

designs.  However, there are other considerations and 

applications (described later) that require a trade-off analysis at 

the system level, and these include electrical isolation of the 

interface, cable mass, and bend radius for applications where 

10 Mbps is sufficient bandwidth.  When applicable, it would be 

beneficial for system engineers to be able to make decisions on 

a link-by-link basis depending upon what considerations are 

important for the particular function.  This would be possible, 

if an optional minimal encoding scheme like Manchester is 

utilized. 

V. MANCHESTER ENCODING OPTION FOR SPACEWIRE 

This paper proposes that the SpaceWire working group 

consider the standardization of an optional Manchester line 

encoding scheme for SpaceWire for the reasons stated 

previously. 

The Manchester scheme encodes the clock and data over 

the same signal and therefore reduces the number of wires by 

half when compared to the original SpaceWire DS encoding 

scheme.  It also is a DC balanced signal so the interface may be 

easily isolated with either a transformer or in-line capacitors. 

Inherent to Manchester codes, it always performs a mid-bit 

period signal level transition to indicate the logic value.  The 

logic value is encoded by the direction of the level transition, 

either high-to-low or low-to-high transition, to encode either a 

logic one or zero depending upon the particular Manchester 

code.   

Manchester codes also have a level transition at the 

beginning of the bit period if the previous logic value (bit) is 

the same as the current logic value.  However, if the current 

logic value is different than the previous logic value, there is no 

signal level transition at the beginning of the current bit period.   

The trick is to determine which transition is the beginning 

of a bit period or a mid-bit transition.  The Manchester 

decoding is trivial to accomplish for a moderate fixed data rate 

(10 Mbps) application in a typical rad-tolerant FPGA without 

clock multiplier circuitry. 

Popular protocols that use Manchester codes are MIL-STD 

1553, which uses Manchester II Bi-Phase L coding at a low 

data rate of 1MHz and 10Base-T Ethernet (802.3), which uses 

a Manchester code at 10MHz.  MIL-STD-1553 and 10Base-T 

Ethernet use Manchester codes that have opposite voltage 

levels. 

The key advantage with SpaceWire using a Manchester 

option have over MIL-STD-1553 and 10Base-T Ethernet is 

that is has 10 times the bandwidth of MIL-STD-1553, and it is 

a simpler and less complex protocol with a smaller packet 

header compared with 10Base-T Ethernet. 

Additionally, the Manchester encoded SpaceWire option 

will provide for a single network protocol to unify the other 

existing SpaceWire options, which include, SpaceWire-RT and 

SpaceFiber (multi-Gbps protocol) that may be run over copper 

(instead of fiber) as well as the original SpaceWire. 

Either Manchester coding options could be adopted by the 

SpaceWire working group. 

VI. USE CASES 

The primary use cases for the SpaceWire Manchester code 

option would be for those applications that only need 10 Mbps 

of bandwidth and require an electrically isolated interface.  In 

addition, Manchester coding would be suitable for applications 

where the routing of the electrical harness is challenging 

because of space constraints and a need for a thinner cable that 

provides a tighter bend radius (assuming the bandwidth 

requirement of less than 10 Mbps is acceptable).  

The electrical isolation may be required to prevent the 

destruction of a Low Voltage Differential Signal (LVDS) 

transceiver.  This could occur by the propagation of a failure 

through an intermediate shared cross-strapped connection for a 

critical function because of a power supply failure in another 

unit. 

Other possibilities are to prevent a latent electrical failure 

due to an Electrostatic Discharge (ESD) event, or to increase 

the margin for common mode voltage range of the transceiver, 

or to reduce the signal noise back to the connecting system that 

is sensitive to conducted noise. 

These applications are directly applicable for the 

implementation of the NASA SpaceAGE Bus electrical 

interface specification. 

The SpaceAGE Bus is an electrical specification to connect 

board level components within an avionics box [3].  Unlike the 

traditional backplane, the SpaceAGE bus defines point-to-point 

electrical interfaces to integrate avionics board level functions 

by cabling together mechanical card frame enclosures that 

house electronics boards to form avionics box functions.  The 

SpaceAGE Bus defines a complete set of physical interfaces 

that are independent of protocol, including communication, 

clock, analog, power, and more, that are typical for space 

avionics backplanes. 

The rationale for SpaceAGE Bus is to reduce the non-

recurring Engineering (NRE) development of avionic systems 

through the elimination of “glue” elements such as backplane, 
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low voltage power supply (LVPS) and mechanical chassis that 

change depending upon the number and arrangement of 

electronic board functions.  Because the SpaceAGE Bus board 

level functions have electrical interfaces that are isolated, 

network attached with primary power input, they are like 

independent boxes themselves, and allow for new 

configurations to be easily connected together with greatly 

reduced NRE.   

This is one reason why the standardization of a common 

physical layer, independent of protocol is important for NASA, 

because one set of interfaces can be used for a wide range of 

requirements. 

For example, spacecraft onboard communications have 

numerous differing requirements from kilobit per second 

(kbps) data rates up to Gbps data rates depending upon their 

application.  Examples of kbps applications include board 

functions that control power for heaters or solenoid position 

values for propellants, to low rate telemetry collection of 

temperature and other engineering data, etc.  Examples of Gbps 

applications include memory operations between a processor 

and a high data rate instrument or a Solid State Recorder 

(SSR); or from SSR to a Digital Signal Processor; or high-rate 

down-link from SSR to a downlink function, etc. 

VII. IMPLEMENTATION CONSIDERATIONS 

The data rate required for an application’s SpaceWire link 

will determine the technologies necessary to implement the 

SpaceWire protocol.  The Manchester encoder function is a 

straightforward implementation that only involves the 

Exclusive-Or (XOR) Boolean function of the clock and the 

data represented as non-return-to-zero (NRZ). 

The decoder for the Manchester code, however, requires 

oversampling of the encoded waveform and comparison to 

known synchronization value (SpaceWire NULL character) to 

acquire the bit period boundaries and the mid-period transition 

used to reconstruct the NRZ data. 

Because of the fixed 10 Mbps data rate for the SpaceWire 

Manchester coding option, the implementation is straight-

forward for clock frequencies typical for a rad tolerant FPGA 

without clock multiplier circuitry.  This is significant because 

low complexity and design heritage are key considerations for 

many electronic board functions for spacecraft command and 

control electronics, which perform actuator functionality and 

low rate housekeeping data telemetry collection.  These types 

of functions are typically redundant and the isolation of the 

electrical interface is an important consideration for cross-

strapped redundancy.  Additionally, many instrument functions 

require less than 10 Mbps bandwidth, and this reduces the 

complexity for their data link protocol implementation as well. 

Since the SpaceWire protocol requires the link to start-up at 

10 MHz, there is no change of frequency for the Manchester 

encoding option, which also simplifies the implementation. 

There are many publications for how to decode Manchester 

encoded data.  The focus here is using radiation tolerant 

FPGAs that NASA typically uses.  This would necessitate 

performing the Manchester decoding without clock multiplier 

circuitry.   

One Manchester decoder method that requires very few 

flip-flops and logic gates uses a decoder local clock that is 

asynchronous to the received Manchester waveform.  This 

implementation requires a nominal eight times (8x) clock of 

the received data rate, but the receiver local clock may be as 

low as five times (5x) clock, but no more than twelve times 

clock (12x)[4].  This method also filters out edges after a valid 

transition is detected, minimizing the effects of noise on the 

signal.  Since 10 MHz is selected, an 80 MHz oscillator is well 

within the margin of a radiation tolerant FPGA without clock 

synchronization logic [5]. 

There are additional Manchester decoding options, 

including one that utilizes additional logic but uses the same 

decoder clock (10 MHz) as the receive data rate to create four 

phases with which to sample the received Manchester 

data[6][7].  Even though it implements a lower clock frequency 

and it has a good tolerance toward input jitter and 

receiver/transmitter frequency mismatch caused by oscillator 

tolerance differences, it is significantly more complex than the 

previously described circuit and requires more logic. 

The SpaceWire specification allows the 10 Mbps receive 

data to be +/- 1 Mbps (or from 9 Mbps to 11 Mbps), both of 

these previously described decode methods support this 

difference in frequency but the eight times (8x) implementation 

maintains lock easier and is the method simulated for the 

NASA application. 

Still, there are numerous other methods for decoding 

Manchester waveforms with and without clock synchronization 

logic and the implementation details described above were 

provided as a cursory survey of options. 

VIII. PRESERVATION OF SPACEWIRE INVESTMENT 

The decoding schemes referenced previously are sufficient 

to decode SpaceWire Manchester encoding at a fixed 10MHz 

without the use of a clock multiplier.  Regardless of how the 

Manchester decoder is implemented, the important part is that 

the heritage of existing SpaceWire designs can be preserved.  

Because the changes required implementing the Manchester 

encoding only involve the signal layer of the SpaceWire 

specification (where the encoding is specified), the remainder 

of the SpaceWire design may stay the same. 

For many users, like NASA, this is an important 

consideration as millions of dollars of NRE have been 

expended across multiple missions to develop, debug, and 

refine the SpaceWire design, including verification 

environments and test equipment.  For example, the NASA 

SpaceWire design heritage spans over a decade with the 

missions of Swift, JWST, LRO, LCROSS, GOES-R, MMS, 

and GPM.  Additionally, the NASA SpaceWire design has 

been provided to well over 100 companies, and much feedback 

has been received concerning problems which have been fixed 

throughout this time, adding additional value to the design.  

This makes it compelling and difficult to completely abandon 

the existing SpaceWire design for new solutions that are not 

incremental in nature.  

289



IX. SPACEWIRE CORRECTIVE EFFORTS 

The SpaceWire working group has also been exploring 

solutions to fix SpaceWire, especially in the Quality of Service 

(QoS) realm to prevent blocking on the network.  The solution 

has the side effect of providing a DC balanced line code, which 

could be used to electrically isolate the SpaceWire interface.  

This new protocol called SpaceWire-RT [8], uses an 8b/10b 

line coding that is used by most multi-Gbps protocols. 

However, SpaceWire-RT is intended for SpaceWire data rates 

of 2 to 200 Mbps.  The problem with this approach is that it 

discards the design investments accumulated with the original 

SpaceWire design and, in its place, proposes a more complex 

and larger design solution within a typical rad tolerant FPGA 

when compared the Manchester option.  It is therefore not 

viewed as an incremental approach in the near term.  It does 

however; provide a means to define a common interface for a 

wider range of data rates, i.e., interfaces that both the multi-

Gbps SpaceFiber and SpaceWire-RT can utilize.  SpaceWire-

RT is seen by the authors as a long term solution, and one 

where additional complexity can be accommodated and where 

new design investment is acceptable. 

Independently, the SpaceWire working group have also 

been working on defining a lower mass SpaceWire cable, 

which will also reduce the bend radius by the elimination of 

some shields [2]. 

These are important efforts.  It is the position of the authors 

that an incremental approach to change that maintains as much 

backward compatibility to the original SpaceWire to be a more 

practical solution, especially given how difficult it is to insert 

new technologies into missions because of the risk adverse 

posture of space mission projects. 

X. SUMMARY 

This paper presented an incremental design approach 

option to improve SpaceWire, yet leverages most of existing 

FPGA based SpaceWire designs for moderate data rate 

applications that require electrical isolation.  It also describes 

an additional way to further reduce the mass and bend radius of 

the SpaceWire cable for applications that are tight on space.  

Additionally, it provides a means to specify a common 

physical layer and which could work with any protocol that 

uses a DC balanced line code, such as 8b/10b (used for multi-

Gbps protocols).  Overall, this approach provides options for 

system engineers to optimize system level designs. 
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Abstract—important tasks for any on-board communication 
network are time synchronization (devices work 
synchronization) and transmission of low-frequent hard real-
time signals, alarm and critical commands. In the SpaceWire 
standard there are time-codes and distributed interrupts 
propagation mechanisms for these purposes. The SpaceFibre is 
a very high-speed serial link for on-board communication; it 
carries SpaceWire packets over virtual channels. For 
broadcast propagation of control information SpaceFibre 
provides the broadcast messages service which may be 
considered as similar to SpaceWire time-codes for every 
virtual channel. The GigaSpaceWire has been developed to 
enhance link characteristics for SpaceWire networks. In the 
paper we consider transmission of SpaceWire control codes 
through the communication onboard network where 
SpaceWire, GigaSpaceWire and SpaceFibre technology are 
used together; comparison of SpaceWire control codes 
(distributed interrupts and time-codes with SpaceFibre 
broadcast messages.  
One of the main problem in above-stated standards is the 
problem of transmission of SpaceWire C-codes. In 
GigaSpaceWire links these codes are implemented by the pair 
of symbols — descriptive 8b/10b K-code + C-code itself. In 
SpaceFibre this code could be implemented by a new 4 byte 
symbol, which does not go to the Retry level. So at the network 
level in a routing switch the control-code propagation will be 
similar to SpaceWire standard but with another time 
characteristics.    
Index Terms—real-time signalling, Distributed Interrupts, 
Time-codes, standardisation. 

I. INTRODUCTION  
The important tasks for on-board distributed 

communication network are time synchronization (device work 
synchronization) and also a task of informing devices about of 
certain single events in a system in hard real time, for example 
failure of some devices or readiness for some action, and 
required signals with and without acknowledges, [ 1, 2]. For 
this purpose a hard real time signals are required.  

In modern on-board distributed communication networks 
the technology is used in which the transmission of data and 
control traffic are union and transmit over the same links. The 
basic modern on-board communication standards are 

SpaceWire /GigaSpaceWire [3, 5] and SpaceFibre [4]. 
Transmission of control codes in hard real time in on-board 
system based on these three technologies, is important task. In 
this paper we consider and compare mechanisms of control 
code transmission in these standards. 

In SpaceWire and GigaSpaceWire for hard real-time signal 
transmission the distributed interrupt and time-codes 
mechanism are used. In SpaceFibre for control code 
transmission the broadcast messages mechanism is used. In 
practice it can be required to build networks, where all three 
technology are used, so the important task is providing 
opportunities for hard real-time signal transmission through 
such networks. 

II. HARD REAL TIME SIGNALS 

A. Hard real time signals classification  
In general hard real time signals can be separated in two 

classes:  
 Synchronous signals are signals which value depends 

on a previous signal value and form a sequence of 
logically dependent events with a certain period. Their 
general purpose is synchronization of devices’ work 
and providing a common time in all system, etc.  

 Asynchronous signals are single signals which do not 
depend on previous signals. Such signals are necessary 
for informing devices about single critically important 
events in real time. 

Synchronous signals also can be periodic and aperiodic, 
asynchronous signals can be with or without 
acknowledgement. 

Consider the control codes in SpaceWire, GigaSpaceWire 
and SpaceFibre, from the point of this classification. 

B. Time-codes propagation mechanism in SpaceWire and 
GigaSpaceWire 
Time-codes distribution mechanism relates to transmission 

of synchronous signals. 
At the symbol level under the time-codes there are 

allocated special symbols. These symbols have the highest 
priority, (higher than other control codes and data characters 
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have), that allows to transmit time-codes fast in condition of 
high network load by data transmission, and provide time-code 
transmission without delays through the loaded or blocked by 
data paths. For time codes six bits are  allocated that allows to 
encode 64 subsequent codes. 

A time-code source is a node (the source node), and all 
network devices which receive the code can handle it. The 
time-codes are distributed by broadcasting. When any device 
has received the time-code, it compare the code with the stored 
in the device value and if the new value is one greater than 
previous (it corresponds to correct value), than the devise 
stores it and sends the code to all ports, the incoming port 
excluding. If the time code is incorrect than the device 
overwrites its value but does not transmit further. This 
comparison determines the dependence of every subsequent 
code from successful/unsuccessful transmission of the previous 
code. In Fig.1 the example of time-code propagation is shown. 
The digit inside is the current time-code value.  

Fig.  1  Example of time-code propagation 

C. Distributed interrupt mechanism in  SpaceWire and 
GigaSpaceWire 
The distributed interrupt mechanism allows to transmit 

asynchronous signals with and without acknowledgement.  
At the symbol level of the SpaceWire and GigaSpaceWire 

protocol stack for distributed interrupt and acknowledge codes 
special symbols are allocated – Interrupt-codes and 
Acknowledge-codes. These symbols have the higher priority 
than data symbols have; it allows fast transmission of 
distributed interrupt in case of strong network load by data 
symbols and provides Interrupt-codes transmission without 
delays through the loaded or blocked by data paths. The higher 
priority has only time-codes but the network load of time-codes 
is low and has limited influence on the Interrupt-code 
propagation time. For the Interrupt-code 5 bits are allocated 
that allow to encode 32 distributed interrupts. There are two 
possible mode of distributed interrupt mechanism: mode with 
acknowledge and mode without acknowledge. 

In general case the sources and handlers of the Interrupt-
codes are terminal nodes. Interrupt-codes and Acknowledge-
codes are broadcasted to all network nodes. For protection 
from retransmission in a network with cycles every node and 
router has a 32-bit ISR register, the bit  i of which corresponds 
to the Interrupt-code type with number i. When a certain event 
has happened in a node, the Interrupt-code with corresponding 
to this event 5-th bit code is formed. Then the ISR checks and 
if the corresponding bit is equal to zero, it is set to one and 
Interrupt-code is sent to the network. If the bit is already set to 
one it means that Interrupt-code with the same identifier has 
been already sent to the network and acknowledgement has not 
been received yet, so the Interrupt-code is not sent again. When 

the Acknowledge-code is received the corresponding bit of ISR 
is set to zero.     

When a router receives the Interrupt-code it also checks the 
corresponding bit in ISR. If it is equal to zero, it sets it to one 
and the Interrupt-code is sent to all output ports excluding the 
incoming one. If the bit in ISR is equal to one, then the 
Interrupt-code is ignored and is not sent further; it is necessary 
for protection from endless time-code retransmission in 
networks with cycles.  

In case of using mode without acknowledge for clearing the 
ISR bits after sending of Interrupt-code and in case of 
Interrupt-code has been lost, the timeout TReset for every bit of 
ISR is used. It allows automatically cleaning the bit of ISR if 
the acknowledge has not been received in time, and thus 
recover registers for the next Interrupt-code transmission. Also 
for protection of crossing Interrupt-codes and Acknowledge-
codes waves the timeout TISRChange for every ISR bit is used, 
which does not allow to change the ISR bits earlier than certain 
time has elapsed.   

In Fig. 2 the example of Interrupt-code propagation of one 
type is shown. The digit inside is a value of the correspondent 
ISR bit.  

 
Fig.  2 The example of Interrupt-code and Acknowledge-code 

propagation 

D. The of Broadcast messages mechanism in SpaceFibre 
The SpaceFibre standard together with the data packet 

transmission service provides the service for messages 
broadcast (analog of control codes) transmission that is 
responsible for broadcast propagation of short messages (8 
bytes) to all network nodes. These messages can transmit time 
and signals of synchronization and can be used for indication 
about different events in a network. 

The interface of the SpaceFibre broadcast channel codec 
consist of registers set for writing broadcast message 
parameters, and the same set for reading parameters of 
incoming broadcast messages.    

Broadcast message has the following parameters:   
 Broadcast channel number,  
 Sequence number B_SEQ,   
 type, 
 data, 
 late flag. 
Sources of broadcast messages are nodes. Recipients are all 

other nodes and routers. When in a user application it is 
necessary to send a broadcast code, their parameters are 
defined and request is transmitted to the SpaceFibre port 
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interface TX_BROADCAST.request (Broadcast Channel, 
Broadcast Sequence Number, Broadcast Type, Late, Message), 
which initiate transmission of the broadcast message through 
the SpaceFibre port. When the broadcast message is sent the 
broadcast sequence number is incremented by one. 

When a router receives a broadcast code it checks its 
broadcast number B_SEC with the current value in the device 
for given broadcast channel and determines if the received 
code is correct or not. Incoming code is correct if its sequence 
number is one more than the current value. When the correct 
code is received the current sequence number is incremented 
by one and the code is transmitted to all output ports excluding 
the incoming port. If the sequence number is incorrect then the 
code is not transmitted further. So in a network with cycles a 
repeatedly incoming code is not transmitted further. Also it 
means that broadcast messages are synchronous messages 
because the transmission of the next code depends on the 
previous code.   

A broadcast frame format is shown in Fig.3.  

 
Fig. 3 Broadcast frame format 

A Broadcast frame starts with the control SBF (Start 
Broadcast Frame) word and finishes by the EBF (End 
Broadcast Frame) word. The BC (Broadcast Channel) field 
identifies broadcast channel of transmitted message. The 
B_SEQ#/B_TYPE field contain two subfields: 3 bits for 
sequence number  B_SEQ (7:5) and 5 bits for message type 
B_TYPE (4:0). The broadcast sequence number field contains 
incrementing value which is specified for the broadcast 
channel. Every broadcast channel has its own broadcast 
sequence number which is used for broadcast frame 
propagation through the SpaceFibre network. The type field 
defined broadcast message type and the semantic of the 
following 8 data bytes. 

At the end of the broadcast frame there is a RSVD/LATE 
field, which contain 7 reserved bits and 1 bit is a flag LATE, 
which is set to one if the code was resent at retry level. It is 
used for informing a receiver node that given broadcast frame 
has been delayed as a result of one or several retransmission. If 
the broadcast message contains the time for synchronization 
than user application can decide to ignore it because of late 
delivery, or the broadcast message may contain information 
about some event, which still can be useful for the application 
despite delay.   

The sequence number SEQ_NUM at the end of frame is 
used for supporting retransmission at the Retry level. 8-bit 
CRC cover fields from SBF to EBF. 

For monitoring and limitation used by the broadcast 
message amount of link bandwidth with the broadcast 
mechanism should be associated one Broadcast Bandwidth 
Credit Counter for all broadcast channels. It should monitor 
and control the aggregate bandwidth of all broadcast channels. 

The control parameter, which is called the Expected Broadcast 
Bandwidth Percentage, should define a portion of the link 
bandwidth, which is reserved for a broadcast message 
including the overhead of the broadcast frame delimiters. If the 
allocated percentage of bandwidth is already used, the 
broadcast messages will not pass.  

Broadcast messages are synchronous signals within the 
same broadcast channel because for every broadcast channel 
there is own counter for the broadcast sequence number, which 
increments for every new message in the broadcast channel; 
the message is correct if its number is one more than the 
previous one. The type defines the data semantics.  

III. MECHANISM OF BROADCAST MESSAGES IN 
SPACEFIBRE AND CONTROL CODES IN SPACEWIRE 

AND GIGASPACEWIRE 

E. Mechanism of broadcast messages in SpaceFibre and 
Time-codes in SpaceWire and GigaSpaceWire 
Their mechanisms use synchronous messages without 

acknowledge.  
In SpaceWire there is only one channel and it uses very 

compact six-bit sequence number; there are no additional fields 
for type and data. Because of it little jitter of control code 
propagation in a network is provided, that is very important 
characteristics for synchronization.    

In SpaceFibre the size of broadcast message is substantially 
greater, so the propagation time of broadcast message over the 
link will be greater than in GigaSpaceWire and SpaceWire. 
Due to the large number of broadcast channel, and respectively 
the greater number of propagating broadcast codes at the same 
time in a network, the waiting time in a broadcast code 
transmission queue can be large.  

Also in SpaceFibre there is the Retry level and 
retransmission, so control code can be delayed in a retry buffer 
for indefinite time, that makes broadcast propagation time 
much less predictable, whilst it is a critical characteristic for 
hard real-time signals. On the other hand, even delayed code 
arrival can allow to receive correctly the next code. However if 
the code delay was quite big and the correct code reaches the 
destination by another path in network cycles, and the next 
correct code has already sent, then the appearance of the old 
code can spoil the broadcast sequence number and thus the 
next correct code can be erroneously dropped. These situations 
require a separate investigation.  

So the time-code mechanism in SpaceWire and 
GigaSpaceWire is much more fast and simple but with limited 
functionality (only one channel and six bit for sequence 
number, without type and data field); it corresponds to hard 
real-time requirements. The broadcast messages mechanism in 
SpaceFibre is more complex, with great features, but slower. It 
is good to have both mechanisms, they complement each other. 
The time-code mechanism is for more accurate synchronization 
(as a main synchronization in a system), for situations, where 
jitter and code delivery time are critically important, for using 
it for hard real-time. For other cases, where hard real-time is 
not required, the SpaceFibre broadcast messages because it 
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more flexible and give much more features (due to type/data 
fields for every message). 

F. Transmission of asynchronous signals in SpaceFibre and 
distributed interrupt mechanism in SpaceWire and 
GigaSpaceWire  
The main aim of the distributed interrupt mechanism is 

transmission of different asynchronous signals set with or 
without acknowledge in a hard real-time mode.  

The broadcast messages mechanism by the message 
transmission type is a synchronous and without acknowledge, 
it has type and data field, which allow transmitting big amount 
of different messages. To use the broadcast messages 
mechanism “as is” for asynchronous signal transmission is not 
possible.  

The broadcast messages mechanism is a synchronous 
within the same broadcast channel and there could be  256 
channels , so it is possible to send 256 independent from each 
other massages. It is possible to consider such messages, in 
general, as asynchronous ones, because they are independent 
from each other. Every channel can correspond to one message 
type (Interrupt_Identifier), and for implementing of 
acknowledges it is possible to use type and data field of 
broadcast message. The reliability and time characteristics of 
such asynchronous messages transmission by using broadcast 
messages will be significantly worse than distributed interrupt 
mechanism’s characteristics in SpaceWire and GigaSpaceWire 
and will not correspond to hard real-time requirements:    

 Big overheads in comparison with distributed 
interrupts. 

 Error recovery time will be longer because timeouts 
which allow to distributed interrupt mechanism 
recover the initial register values after errors, have to 
be implemented in software over broadcast messages 
mechanism. 

 Dependence from the previous errors. For example, the 
transmission of the current code can be indicated as a 
fault because the previous code of the same type was 
lost and the sequence number is not incrementing in 
the part of network; for their recovery can be required 
to send several codes (the number of codes depends on 
network topology and the place of error). For example 
if the network has the tree structure (the worst case), 
then for the sequence number recovery there are 
needed as many code sending, how many levels  there 
are in the tree (the shortest path length). The correct 
codes will not reach the destination only because of the 
previous error. The existence of retry level broke the 
main principle of asynchronous signal transmission (by 
its dependence from the previous codes).  It makes 
impossible using of broadcast message mechanism for 
asynchronous signals transmission in hard real-time, 
because everything will be good only if there is no 
errors. And also there is a dependence on the network 
structure.    

 The Retry level makes unpredictable the message 
delivery time. In the distributed interrupt mechanism in 

the mode with acknowledge the all timeouts and 
parameters values depend on estimation of maximally 
possible code propagation time in the worst case. This 
time should be estimated taking in account possible 
retransmissions at the Retry level. If there are many 
cycles, then the retransmission may severely degrade 
the mechanism work. For example if the code has been 
delayed in some device’s buffer due to disconnections, 
but reaches the all other nodes by other paths and the 
acknowledge has been already sent, and after that from 
the retry level the old code has been sent, it only 
damages the sequence number and the next code will 
not reach all network nodes. 

 The bandwidth limitation for broadcast message 
propagation (broadcast percentage parameter) also can 
cause the control code delay or loss.  

 It will be difficult in administration. 
Thus it is clear that it is possible to use the broadcast 

messages mechanism only in not hard real-time mode.  
To enable in SpaceFibre the asynchronous messages 

transmission in hard real-time mode, the non-standard 
implementation of distributed interrupt mechanism is done.    

IV. NON-STANDARD IMPLEMENTATION OF THE 
DISTRIBUTED INTERRUPTS AND TIME CODES 

MECHANISMS IN SPACEFIBRE  
In devices, which have been implemented in collaboration 

with the “ELVEES” company, the non-standard 
implementation of time-codes and distributed interrupt 
mechanisms were added, similar to SpaceWire and 
GigaSpaceWire.   

At the level before the Retry level for time-code and 
interrupt/acknowledge code the special symbols are allocated, 
which perform similar to time-codes and Interrupt-codes and 
Acknowledge codes in SpaceWire. It allows to solve several 
tasks:   

 asynchronous signals transmission in SpaceFibre; 
 time-codes mechanism with smaller jitter; 
 supporting the time-codes and distributed interrupt 

mechanism in a networks, where at the same time the 
SpaceWire, SpaceFibre and GigaSpaceWire are used. 

In Fig.4 the new, additional Control code layer is shown. 
The new Layer can send and receive the CCode of the 

SpaceWire network. The main difference from broadcast layer 
– the messages on the Control code layer are flowing much 
quicker through the SpaceFibre network, thus making the 
CCodes of Spacewire reasonable. The CCodes of SpaceWire 
network are inserted between the Retry and the Lane layers of 
SpaceFibre. The CCodes are lower than the Retry layer, so no 
error is detected on the Retry layer.   
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Fig.  4 New Control Code Layer 

 

V. THE TIME CHARACTERISTICS OF CONTROL CODES 
IN SPACEWIRE, GIGASPACEWIRE AND SPACEFIBRE  

Let’s estimate the minimum possible control code 
transmission time in the network. 

We assume that the local frequency of router’s work are the 
same and equal to 125 MHz. The transmission speed in 
SpaceWire network is 400Mbit/s, transmission speed in 
GigaSpaceWire and SpaceFibre is 1250 Mbit/s. For 
estimations of distributed interrupts and acknowledge codes, 
which have the priority less than the time-codes priority, we 
assume that they are transmitted at the moments when the 
time-codes are not transmitted in a network. 

Dependence of the minimal transmission time from the 
number of routers in a network is shown in the Fig 5. 

As can be seen from these grapfhics the time-codes and 
distributed interrupt propagation time for all network types are 
realy close to each other. The distributed interrupt codes 
propagation time is more than time-code propagation time at 7-
8% bacause of their handling in a router requires more number 
of actions then for time-codes.   

The minimal broadcast code propagation time on the 
overage at 1,7 times greater then time-codes and distributed 
interrupt propagation time. That is because of broadcast codes 
have bigger length and at every data link the CRC is checked. 

 
Fig.5. Graphic of minimal transmission time dependence from the 

number of routers in a SpaceWire, SpaceFibre and GigaSpaceWire network  

VI. CONCLUSION 
In the paper we consider the main space standards for 

onboard communication networks - SpaceWire, 
GigaSpaceWire and SpaceFibre. There is given a classification 
of real time signals, which are required for control code 
transmission – distributed interrupt and time-codes 
mechanisms and broadcast messages. It is considered the 
implementation of the control-code in main standards and their 
short comparison is made. Overview of the non-standard 
control code implementation in SpaceFibre is given.  
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Abstract— iSAFT is an integrated powerful HW/SW 

environment for the simulation, validation & monitoring of 

satellite/spacecraft on-board data networks supporting 

simultaneously a wide range of protocols. This paper presents a 

study on how iSAFT modules can be used for the validation of 

demanding spacecraft subsystems such as the EUCLID Fine 

Guidance Sensor (FGS). Validation of the EUCLID FGS includes 

the accurate injection of static sky images through SpaceWire 

and acquisition of the units’ response through another 

SpaceWire and MIL-STD-1553 channels and, synchronization 

with the AOCS SCOE which provides quaternion and angular 

rate for dynamic simulations and remote control of other testbed 

elements (e.g. OGSE). The paper presents the proposed EGSE 

HW and SW architectures, their configurations and the 

performance characteristics which pose very strict requirements 

on the design of the EGSEs. 

Index Terms— SpaceWire, FGS, iSAFT, validation, 1553, 

FMEA, IRIG. 

I. INTRODUCTION 

EUCLID is an ESA mission which aims to map the 

geometry and nature of the dark Universe by investigating the 

distance-redshift relationship and the evolution of cosmic 

structures. To meet the high precision imaging requirements, 

one of the most crucial components of the satellite is the Euclid 

Attitude and Orbit Control System (AOCS). AOCS is a high 

precision control unit that is used for the provision of stable 

pointing for visual exposure. 

One of the main components of the AOCS is the Fine 

Guidance Sensor (FGS) required to satisfy the mission’s 

pointing requirements. The FGS consists of three electronic 

modules: a detector which acquires raw sky images, a module 

that process them and a unit which uses the images and a star 

catalogue to calculate accurate pointing information. 

In this paper, the validation requirements for the EUCLID 

FGS are presented and analysed as an example of how 

TELETEL’s iSAFT integrated environment can be used to 

address the validation needs of complex flight equipment. 

iSAFT is an integrated powerful HW/SW environment for 

the simulation, validation & monitoring of satellite/spacecraft 

on-board data networks supporting simultaneously a wide 

range of protocols (RMAP, PTP, CCSDS Space Packet, 

TM/TC, CANopen, etc.) and network interfaces (SpaceWire, 

ECSS MIL-STD-1553, ECSS CAN). It is based on over 20 

years of experience in the area of protocol validation in the 

telecommunications and aeronautical sectors, and it has been 

fully re-engineered in cooperation with ESA & space Primes, 

to comply with space on-board industrial validation 

requirements (ECSS, EGSE, AIT, AIV, etc.). iSAFT is also 

highly modular and expandable to support new network 

interfaces & protocols (Fig. 1). 

The iSAFT environment consists of COTS and in-house 

made hardware subsystems (such as communication interfaces 

like SpaceWire, MIL-STD-1553, CAN boards, power 

subsystems, specific I/O subsystems, etc.) plus the lower and 

higher layer software. 

The iSAFT Software tool chain is composed of the 

following general parts: 

 The iSAFT Console which is based on a state of art 

windowing graphical user interface, which provides to 

the operator easy configuration, control and monitoring 

capabilities, plus additional tools for traffic logs 

display and management as well as a test management 

and execution environment (iSAFT TestRunner). 

 The iSAFT Runtime Environment (RTE) containing 

modules that perform simulation, monitoring and data 

processing using the underlying physical interfaces. 

iSAFT RTE provides service interfaces for all 

containing modules providing a scalable and fully 

distributed framework that can be deployed in multiple  

iSAFT stations and provides LAN remote control. 

 General Application Management modules including 

the configuration management, common logging 

functionality, self-tests and diagnostic functions as 

well as internal Database management.  

 Protocol Modules for command and control with 

external EGSEs, SCOEs or the CCS. The Hardware 

Abstraction Layer which provides an abstraction to the 

underlying Driver APIs being able to change the 

Boards with different ones while keeping higher layer 

software independent. 

 The Drivers and API libraries of the Interface Cards, 

the DAQ system, the Power supply equipment and the 

DC Electronic Load equipment. 

 

297



 

Fig. 1.  iSAFT features 

The following sections present the study on how you can 

build a complete EGSE based on the iSAFT simulation, time-

stamping and synchronization capabilities in order to validate 

the EUCLID FGS subsystem. Validation can be performed at 

each FGS unit individually and at the entire FGS integrated 

system. The main concept of the validation is the injection of 

static sky images through SpaceWire and acquisition of the 

units’ response through another SpaceWire/MIL-STD-1553 

channel, as well as synchronization with the AOCS SCOE 

which provides quaternion and angular rate for dynamic 

simulations and remote control of other testbed elements (e.g. 

OGSE). 

II. EUCLID FGS EGSES DESIGN APPROACH 

A. Overview 

The FGS is a sensitive camera (star sensor) that provides 

dedicated, mission-critical support for the EUCLID’s AOCS 

system by providing the AOCS with the high accuracy attitude 

measurement required to meet the demanding pointing 

performance during science observation. The proposed EGSE 

solution is based on the existing iSAFT Protocol Validation 

System (PVS) product instances, and on specific extensions in 

order to meet the EUCLID FGS EGSEs requirements [4,5,6,7].  

The FGS is composed of a Focal Plane Assembly 

(detectors and detectors support structure) and the Proximity 

Electronics Module (PEMs), installed on the Euclid Payload 

Module (PLM), as well as the Electronic Unit (EU) mounted 

on the Euclid Service and Module (SVM). The EUCLID FGS 

EGSEs (Fig. 2) should be able to stimulate electrically the 

EUCLID FGS PEMs and EU by simulating the behavior of the 

detection chain (detector + PEM read out electronics) and the 

behavior of the complete detection chain (PEM output: after 

data processing) to carry out closed loop tests and avionic open 

loop test in real time with hardware in the loop. 

 

Fig. 2.  FGS EGSE overview 

 

Fig. 3.   EU + FGS EGSE requirements 

In details, the EU+FGS EGSE should be provided for the 

verification of the EU, PEM and integrated FGS. EU+FGS 

EGSE should be provided for EU Assembly, Integration and 

Testing (AIT) activities and FGS AIT activities. This EGSE 

shall be used to test the EU unit and to test the FGS subsystem 

(EU + PEM +Detectors). This EGSE shall be able to test the 

EU, the EU + PEM’s and the EU+ PEM’s + Detectors. 

The FGS communicates internally through SpaceWire and 

externally through MIL-STD-1553 with the CDMU. Test 

connectors are provided for the injection of emulated sky 

images through SpaceWire. 
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Fig. 4.  iSAFT based EU EGSE module #2 & #3 hardware architecture 

Finally, the unit shall be controlled through ECSS-14C 

discrete interfaces for ON/OFF commanding and 

synchronization with the CDMU, whereas power shall be  

provided through a Latching Current Limiter. The design 

approach for the main components is presented in the 

following section. 

B. EU+FGS EGSE 

An overview of the structure for EU+FGS EGSE is shown 

in Fig. 3. It includes three EU EGSE modules (#1, #2 and #3) 

and the PEM OGSE (Optical Ground Support Equipment). The 

main functionalities of the EU EGSE module #1 module 

include EU/FGS FULL Power Supply, Discrete & 

Synchronization Signals Generation, EU 1553 Protocol 

simulation and Modules Control. 

For each of the EU EGSE Module #2 (A or B) two main 

functionalities are defined including PEM Power Consumption 

Simulation and PEM SpaceWire Simulation. 

The EU EGSE Module #3 is used for the AIT testing 

activities and its main functionality is to stimulate 

simultaneously 2 EU channels or 2 PEM channels. 

The components modules that compose the EU EGSE 

Module #2 & #3 are shown in Table I and their overall HW 

and SW architectures are presented in Fig. 4 and Fig. 5 

respectively. 

As derived from the HW architecture of the EU EGSE 

module #2 (Fig. 4), 4 SpW channels are needed per module #2. 

These can be supported for both A and B modules through a 

single TELETEL Octal SpaceWire board that provides SpW 

Simulation over 8 ports and IRIG time-stamping. 

The board supports per port independent transmission 

trigger conditions and actions and can be configured to 

transmit upon the assertion of the Tframe signal and to disable 

the SpW ports upon the assertion of the Switch OFF signal. In 

addition the level of the Switch OFF can be readable by the 

SW in order to allow disabling all other elements of Modules 

#2 A and B. 

TELETEL’s 16 trigger channels board can be used only to 

perform electrical adaptation of the Tframe signal and feed it to 

TELETEL’s SpW board at appropriate levels. 

1) PEM SpaceWire simulation 

The iSAFT control software can simulate PEM SpaceWire 

links being able to reply to all the TM/TC commands sent by 

the EU. Additionally, it can send preconfigured file data, which 

correspond to the data generated by the PEM unit when the 

detectors are connected. 

PEM SpaceWire simulation can be supported by using the 

SpW Simulation engine, as shown in Fig. 6, and a dedicated 

module (i.e. PEM Simulation module) that implements the 

SpaceWire protocol used at the EU-PEM communication and 

can be controlled by the MMI (i.e. PEM Simulation control 

window).  

The PEM Simulation control can support the configuration 

of the PEM simulation options, the selection of preconfigured 

data to be transmitted as well as selection and transmission of 

specific TM commands during the simulation. The PEM 

SpaceWire simulation configuration and control can also be 

performed through user defined Test Cases. 

TABLE I.  EU EGSE MODULE #2 & #3 COMPONENTS  

Function Subsystem 

Processing unit N/A 

Modules #2 PEM 
Power Consumption 

Simulation 

Electronic Load system 

Electronic load modules for the 36V network 

Electronic load modules for the 15V, 6.5V, -

6.5V and 3.5V networks 

Nominal Redundant EU Power Supply 

switching unit 

LAN-GPIB gateway 

Ethernet Switch for control of Electronic 

loads and relay switches 

Module #2 (A and B) 

SpW Simulation 

Software 

SpW interface 

Tframe triggers 

Module #3 SpW 
Simulation 

SpW interface 

Interface to other 

EGSE elements 
Switch OFF signals receiver 

During PEM simulation the SpW Monitoring engine can 

simultaneously monitor all SpW links and log and archive all 

packets with a resolution down to 8 nsecs with an external 

IRIG source. 
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2) FGS Stimulation  

The iSAFT Control software can support the stimulation 

of the FGS PEM or EU Test interfaces through a dedicated 

module (i.e. the FGS PEM or Detector Pattern Generation 

module) and the use of the SpW Simulation engine.  

For the PEM channels the electrical stimulation signal 

can be defined as the actual digitized image which would 

have been delivered by the detector acquisition / readout 

stage, in consistency with the FGS operational mode, and the 

satellite dynamics state.  

For the EU Channels: the electrical stimulation signal can 

be defined as the actual digitized image which would have 

been delivered by the PEM pre-processing in consistency 

with the FGS operational mode, and the satellite dynamics 

state. This option will be used with the EU configuration. 

The Detector Pattern Generation module implements an 

algorithm that processes the input (quaternion, angular rate, 
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etc.) and based on the input selects, generates and processes 

an image pattern from a data source or data base (i.e. the 

Digitized Image Pattern Database). The resulting processed 

data can be packetized and transmitted to the SpW PEM or 

EU Test links. The data source will contain digitized image 

patterns, the star catalogue, additional light sources and 

characteristics of the CCD optics already available. 

The FGS stimulation can provide the electrical 

stimulation signal (SpW packets transmission) at [0.5, 2] Hz 

according to the inputs delivered by the AOCS SCOE that 

include: 

 Attitude quaternion from the Inertial Reference 

Frame to the Boresight Reference Frame,  

 Satellite’s angular rate up to 0.001 deg/s and  

 Linear motion. 

More specifically, for the PEM channels stimulation the 

following algorithm can be used: 

1. Generate the image of the sky with those stars that 

are located in the field of view that is observed taken 

into account the AOCS SCOE input data (attitude 

quaternion, angular rate, linear motion) and an initial 

light offset.  

a. This dynamic pattern (two new ones 

[4000x4000]16bits pixels, each one to be 

sent for each independent SpW link) can 

be generated taken into account the AOCS 

SCOE input data described above (attitude 

quaternion, angular rate, linear motion) and 

an initial light offset. 

Note: A [4000x4000] 16bit pixels shall be 

generated, but two different transmissions 

to PEM are foreseen:  

1. In case of being needed to transmit the 

full frame image, this will require a 

transmission time of 4 secs in a 100Mbps 

SpW link, in this case the performance 

requirement for 1 sec delay between 

consecutive patterns cannot apply. 

2. In windows mode, before sending to 

PEM any information, a windowing 

readout shall be simulated on the 

[4000x4000]16bits pattern. The maximum 

information that will be sent to PEM is 

15windows of 65x65pixels 16bits, which is 

compatible with 100Mbps and 1s delay.  

b. This dynamic pattern will be generated 

after correlating the AOCS SCOE input 

data with the star catalogue info that will 

be stored in a 1Mbyte memory bank. Only 

1Mbyte will be used for storing the star 

catalogue info that is useful for the real 

time patterns generation of the current test. 

Note: The produced image will be a 

synthetic simulated image based on the star 

objects and their lighting attributes selected 

from the available star catalogue in the 

field of view of CCD.  

c. 100Mbyte – 1Gbyte can be used for 

storing the rest of the star catalogue 

information that is not being used for the 

current test. 

2. Take into account additional light sources defined by 

the user, such as, false stars, non-continuous light 

sources, straylight patterns. 

3. Simulate the optics characteristics, such as, focal 

length, distortions, aberrations, etc. and light noise 

and faulty pixels. 

4. Simulate the integration time of the detector (based 

on user defined input values).  

Tasks 2, 3 and 4 are real time processes that are 

performed on the selected pattern output of task 1 before 

being sent to PEM via the SpW link. During FGS 

stimulation the SpW Monitoring engine should 

simultaneously monitor all SpW links and log and archive all 

packets with a resolution of 8 nsec. 

Additional open loop simulation can be available in 

which the user can program one sequence of input 

parameters to be used instead of the data received from the 

AOCS SCOE external interface. 

This FGS PEM or Detector Pattern Generation module 

can manage dedicated interfaces (from iSAFT MMI, the 

CCS LAN, user Test Cases or the AOCS SCOE interface) in 

order at least to:  

 Send Start/Stop Simulation commands,  

 Send the required data during closed loop execution, 

i.e. quaternion, S/C rate, S/C attitude, … 

 Send a wrong attitude pattern for special tests. 

Finally, the FGS stimulation will be able to stimulate the 

PEM with a “wrong” attitude patterns commanded by CCS 

LAN. 

III. CONCLUSIONS 

The validation of flight equipment can be a very 

demanding process, especially for critical mission equipment 

as in the case of EUCLID FGS. In this paper, the possible 

use of the iSAFT integrated HW/SW environment for the 

validation of flight equipment and more specifically in the 

case of the EUCLID FGS has been presented. The technical 

approach presented includes the hardware and software 

architectures based on the existing iSAFT Protocol 

Validation System (PVS) for the verification of the EU, 

PEM and integrated FGS, according to the EUCLID 

design/technical specification and general requirements for 

EGSEs. 

The analysis showed that iSAFT can support the different 

requirements of FGS like flight devices by providing a 

modular and expandable architecture with several features 

that can be applied for the accurate simulation, validation & 

monitoring of such a device’s behavior. Due to the variable 

configurations supported by iSAFT, it is possible to cover 

different performance/reliability/cost requirements for 

demanding scientific missions like the EUCLID Fine 

Guidance Sensor case. 
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4LINKS LTD 

 4Links, designs, manufactures and supplies an extensive range of SpaceWire test and simulation equipment and 

IP products. The company was founded in 2000 by personnel who contributed to the European Space Agency 

SpaceWire standard, a spacecraft on-board network technology now used internationally on more than 100 

satellites. Today the 4Links product range is renowned as being the most comprehensive and reliable on the 

market. 4Links is based on the Science and Innovation Centre on Bletchley Park, the World War II code-

breaking centre, in Buckinghamshire, UK. 

 
 

 

 

 

 

AEROFLEX 

Aeroflex Microelectronic Solution - HiRel divisions supply integrated circuits such as standard products for 

HiRel applications including FPGAs, LEON 3FT Microprocessors, Logic, MIL-STD-1553 

Databus/Transceivers, Clocks, Voltage Regulators and Supervisors, MUXes, Diodes, MOSFETS, LVDS and 

Memory families and our SpaceWire products - Transceivers, Protocol IP, Routers. 

 

Our RadHard-by-Design Digital and Mixed-Signal ASICs handle design complexities up to 3,000,000 usable 

gates. We also offer Radiation Testing and Circuit Card Assembly Services. 

 

Aeroflex Gaisler, based in Goteborg, Sweden, is a provider of SoC solutions and IP-cores for exceptionally 

competitive markets such as Aerospace, Military and Commercial applications. The Aeroflex Gaisler's IPcores 

consist of user-customizable 32-bit SPARC V8 processor and floating-point-unit cores, SpaceWire cores, 

peripheral IP-cores and associated software and development tools. The new GR712 LEON Microprocessor is 

in production. Aeroflex Gaisler solutions help companies develop application-specific SoCs that are highly 

competitive for customer specific applications. Gaisler Research's personnel have extended design experience, 

and have been involved in establishing standards for ASIC and FPGA development. 



 

ATMEL 

 
In Europe, ATMEL has 2 main Business Units:  

 

 MCU: MicroController Business Unit:  

This BU develops Standard products and Custom products based on AVR8, AVR32 and ARM core.   

ATMEL is becoming the first supplier of 8bit controllers thanks to its success with many applications 

and especially the MaxTouch family.  

 

 Automotive, Memory and Aerospace Business Unit: 

This BU develops products for dedicated Markets and applications. 

 

Aerospace developments within ATMEL are all located in Europe, mainly in France (Nantes and Rousset) but 

also with technical centres supporting ASIC and FPGA business locally (France, Italy, Germany, UK).  

 

There is no involvement of any USA Atmel employees and Aerospace products are guaranteed not to be 

restricted by ITAR and EAR rules.  

 

ATMEL Nantes site has been developing Integrated Circuit for space application since 1985. The development 

team installed now in Nantes and Rousset has a very large experience of radiation hardened circuits design and 

fabrication constraints.  

 

ATMEL circuits are available in rad-hard versions that meet the harsh environment (cumulated dose, latch-up 

and transient phenomena) of space applications. Design and manufacturing facilities reach international quality 

standards recognition and are QML-V certified and ESCC QML certified.  

 

High-reliability radiation-hardened products provided by Atmel mean:  

• Full military operating temperature range (-55 to + 125°C)  

• 100K - 300Krd range, Latch-Up, SEE, SEFI hardened  

 

ATMEL also proposes some Rad Tolerant products for Space applications like launchers, manned space flight 

and LEO satellites. Those devices are also targeting civil and military avionic critical applications where single 

events need to be minimized. 

 

Rad Tolerant products mean Latch up immunity, 20 to 50Krd range TID and higher SEU LET versus COTS 

devices. 

 

Qualification flow is also adapted to the targeted market. 

 

Atmel portfolio contents advanced technical and competitive solutions for space market for the following 

products range:  

• Processors & microcontrollers (32-bit SPARC, ARM & 8 bits AVR)  

• Memories (SRAM & EEPROM)  

• Communication ICs   

• SRAM-based Reprogrammable FPGAs  

• ASICs (up to 30M gates)  

 

Atmel is committed for the long term to support the aerospace industry.  

  



 

AXON’ CABLE 

 

The Axon’ group designs and manufactures wire, cable, connectors and cable assemblies for advanced 

technology applications in the principal fields of space, aeronautics, medical electronics, automotive and 

scientific research. Headquartered in France (100 Km east of Paris) the Group employs some 1700 staff in 14 

subsidiaries across Europe, America and Asia, with an annual turnover of €115 million euro.   

 

Axon’ Cable has been involved in many space projects, including the International Space Station, various LEO 

and GEO satellites and rocket launchers including Ariane 5, and can boast flight heritage dating back to 1997.  

 

The group offers various types of products for space applications:  

- ESCC approved wires, cables and connectors,  

- lightweight aluminium round cables and braids,  

- aluminium bus bars for satellite power distribution,  

- MIL-STD-1553 databus looms for digital transmission systems,  

- high data rate links for Voice-Data-Image transmission including SpaceWire, IEEE1394, Ethernet  

  and Fibre  Channel,  

- solutions suitable for the forthcoming multi-gigabit protocol, SpaceFibre,  

- and custom-designed products for specific applications. 

 

Additionally, Axon’ has been involved either as prime or subcontractor on a number of ESA EMITS tenders 

including the development of high temperature thruster cables, the development of low mass SpaceWire, the 

evaluation of shielding techniques for Spacecraft harnesses, the evaluation of Nano-D for Space, the 

development of Combo Micro-D’s and the provision of cables for the SpaceFibre Demonstrator. 

  



 

MOSCOW INSTITUTE OF PHYSICS AND TECHNOLOGY 

Moscow Institute of Physics and Technology (MIPT) is one of the leading Russian universities in the areas of 

physics, mathematics, and informatics. 

MIPT was founded in 1946 by the Leading Soviet scientists on Special Decision of the Soviet Government as an 

advanced educational and research Institution for the preparing of the specialists in advanced fields of Science 

(with primary concentration in Physics) and Industry. 

For the time of MIPT functioning 8 Nobel Laureats were its Professors. MIPT graduates Andrey Geim and 

Konstantin Novoselov were awarded jointly by the Nobel Prize in Physics 2010. 

In the 60 years of its history, MIPT has trained over 30,000 high-level specialists in various fields of Science, 

Technology, Economics, and Business. Over 17,000 MIPT graduates have become Ph. Doctors of Science; over 

6,000 have gained degree of Habilitated Doctor of Science. More than 150 alumni have been elected Full and 

Corresponding Members of the Russian Academy of Sciences. 

Our mission is to provide training of highly employable graduates for cutting-edge science and technology 

fields. 

From the outset, MIPT has used a unique system for training specialists, known as the Phystech System, which 

combines fundamental science, engineering disciplines and student research. Students and graduates of MIPT 

are representatives of an elite circle who, thanks to their interdisciplinary scientific surroundings, are able to 

fully realize their potential. 

Prospectus with detailed information: http://mipt.ru/education/abitur/MIPT_overview_en.pdf 

 

SHIMAFUJI ELECTRIC 

 
Since 1990, Shimafuji Electric has been developing microcomputer boards including transmission, graphics and 

other complex peripheral functions and also producing small amount of products for some OEMs.   

 

Shimafuji have joined the Japan SpaceWire user Group since early days.  We developed the SpaceWire 

compliant cubic computer, Space Cube with JAXA, and we have some SpaceWire function boards, like 

Sampling ADC, Digital I/O, and ETC since 2005. Then, our one of latest model is the 4 port Space Wire to 

Gigabit Ether Unit and we are developing the 24-link SpaceWire Packet Recorder and 48-port SpaceWire 

Packet Generator based on the 12-slots microTCA SpaceWire Backplane system. 

 

http://mipt.ru/education/abitur/MIPT_overview_en.pdf


 

STAR-DUNDEE LTD 

STAR-Dundee specialises in supporting users and developers of SpaceWire and SpaceFibre; data networking 

standards for on-board satellites and spacecraft.  

SpaceWire is established as one of the main data-handling networks used on many ESA, NASA and JAXA 

spacecraft and by research organisations and space industry across the world. SpaceWire's speed, simplicity, 

flexibility and interoperability have contributed to its continuing adoption and popularity. 

STAR-Dundee has a comprehensive product line of SpaceWire test and development equipment that can test 

across all levels of SpaceWire standard. The product portfolio encompasses equipment to enable the design, 

development, integration and testing of SpaceWire networks and devices, along with industry-leading flight IP 

cores, chip designs, design services, consultancy and training.  

SpaceFibre is an emerging ESA standard networking technology that provides a very high-speed serial data-link 

for high data-rate payloads. SpaceFibre aims to complement the capabilities of the widely used SpaceWire 

standard: achieving initial data rates of 2 Gbits/s improving to 5 Gbits/s long-term, capable of operating over 

fibre-optic and copper cable, reducing cable mass by a factor of four, adding integrated QoS including 

bandwidth reservation, priority and scheduling, enhancing robustness with FDIR features at all protocol levels, 

providing galvanic isolation, and multi-laning improves the data-rate further to well over 20 Gbits/s. 

SpaceFibre is being developed by the University of Dundee for ESA and STAR-Dundee can now provide 

SpaceFibre IP Cores and chip designs, SpaceFibre interfaces, SpaceWire to SpaceFibre Bridge, and SpaceFibre 

link analysis tools; everything needed for the early adoption of this new technology. 

The STAR-Dundee team has leading expertise in all areas of SpaceWire and SpaceFibre technology and is 

committed to helping our customers adopt these technologies, providing continued support through the full 

development life-cycle. 

  



 

TELETEL 

TELETEL, founded in 1995, is a private Greek software and hardware, design and development 

company, having a long history of providing development services and products in the space, defense 

and aeronautics sectors. TELETEL works very closely with the European industry having provided 

software and hardware solutions to DASSAULT, SAGEM, THALES, MBDA, EADS, AIRBUS, 

ALCATEL-LUCENT, MOTOROLA and many other customers. Since Greece's membership to ESA, 

TELETEL invests in space technologies at an accelerating pace, being today one of the most 

successful Greek organizations in the space market. 

TELETEL’s main competence is the provision of system, SW & HW solutions mainly for 

communication systems with special emphasis on test, validation and data interfaces simulation 

(Spacewire, MIL-STD-1553, CAN). Since 2007, various activities in the validation of Space related 

components (SpW, SpW-T, SpW-D, IMA TSP, SCOC3, N-Mass, etc.) have been successfully 

handled, internal infrastructure (i.e. representative testbeds for on-board network architecture) has 

gradually been built, and TELETEL developed its own platform/product (i.e. iSAFT PVS) to address 

the needs of various mission EGSE, SCOE or DFE configurations.  

The iSAFT PVS product line includes today the following space products: 

 iSAFT Protocol Validation Platform for on-boards data networks (http://teletel.eu/isaft-protocol-

validation-platform ) 

 iSAFT SpaceWire/MIL-STD-1553/CAN Recorder  (http://teletel.eu/isaft-spacewire-mil-std-1553-

can-recorder ) 

 iSAFT SpaceWire/MIL-STD-1553 Simulator  (http://teletel.eu/isaft-spacewire-mil-std-1553-

simulator/ ) 

TELETEL is fully certified according to the ISO 9001:2008 Quality Standard and can handle graded 

material according to NATO C-M (55) 15 FINAL Security System. The company strictly follows 

development practices and standards such as ECSS, DO-178B, etc. TELETEL is also involved in 

various R&D programs funded by EU, ESA, EDA, NATO and industrial consortia. Further 

information about TELETEL can be found at www.teletel.eu 

 

http://teletel.eu/isaft-protocol-validation-platform
http://teletel.eu/isaft-protocol-validation-platform
http://teletel.eu/isaft-spacewire-mil-std-1553-can-recorder
http://teletel.eu/isaft-spacewire-mil-std-1553-can-recorder
http://teletel.eu/isaft-spacewire-mil-std-1553-simulator/
http://teletel.eu/isaft-spacewire-mil-std-1553-simulator/
http://www.teletel.eu/
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